
CWP-544

An efficient method for computing local
cross-correlations of multi-dimensional signals

Dave Hale
Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA

ABSTRACT
Consider two multi-dimensional digital signals, each with Ns samples. For some
number of lags Nl � Ns, the cost of computing a single cross-correlation of
these two signals is proportional to Ns ×Nl.
By exploiting several properties of Gaussian windows, we can compute Ns local
cross-correlations, again with computational cost proportional to Ns×Nl. Here,
local means the cross-correlation of signals after applying a Gaussian window
centered on a single sample. Computational cost is independent of the size of
the window.

Key words: digital signal processing, image processing

1 INTRODUCTION

Cross-correlations are ubiquitous in digital signal pro-
cessing. We use cross-correlations to estimate rela-
tive shifts between two signals, and to compute filters
that shape one signal to match another. We use auto-
correlations (a special case of cross-correlations) to com-
pute prediction error filters, and to estimate the orien-
tations of features in multi-dimensional images.

In such applications we must assume that the quan-
tities estimated do not vary significantly for the dura-
tion of the signals cross-correlated. But those quantities
often do vary, and the variations can be important.

For example, attenuation of seismic waves implies
that prediction error filters derived from seismograms
should vary continuously with time. In other words, es-
timates of prediction error filters that vary with time
contain information about seismic attenuation (Hale,
1982).

Likewise, multi-dimensional prediction or predic-
tion error filters contain information about the orien-
tations of features in multi-dimensional seismic images.
Such filters may be used to attenuate noise (Abma
and Claerbout, 1995; Gülünay, 2000) or to interpolate
missing samples (Crawley et al., 1999). In any multi-
dimensional image of interest, the orientations and the
corresponding filters are not constant.

Time shifts estimated with cross-correlations and
applied to seismograms to compensate for near-surface
variations may also vary with time (e.g., MacKay et al,

2003). And those variations contain information about
the near surface.

In seismic interferometry, time shifts estimated
with cross-correlation of seismic coda may change with
time. We may use that change to estimate seismic wave
velocities (Pacheco and Snieder, 2003).

In time-lapse seismic imaging, we may cross-
correlate two 3-D images to derive corrections for differ-
ences in seismic acquisition and processing (e.g., Rickett
and Lumley, 2001). Because those differences vary spa-
tially, a single cross-correlation does not yield adequate
corrections.

In all of these applications, we cross-correlate sig-
nals to obtain estimates of important parameters that
cannot be constant for the duration of those signals.

To account for variations in estimated parameters,
we might compute local cross-correlations. We might
first truncate or taper our signals to zero outside some
specified window, and then cross-correlate those win-
dowed signals. We might compute a suite of local cross-
correlations by repeating these window-and-correlate
steps for multiple, perhaps overlapping, windows. In this
process, we must choose the number of windows and
their shape and size.

Our choice of window size is an unavoidable com-
promise. Ideally, we use windows large enough to pro-
vide meaningful estimates of parameters, but small
enough that we may reasonably assume those param-

2 D. Hale

Figure 1. A 2-D seismic image, with 315× 315 samples.

eters are constant within each window. The uncertainty
relation (e.g.; Bracewell, 1978) constrains this choice.

In contrast, we often choose the number of win-
dows and their shape simply to reduce computational
costs. For example, we might avoid a Gaussian window
shape (although that shape is optimal with respect to
the uncertainty relation) because the Gaussian function
is never zero. We might also choose a small number of
windows because the cost of the repeated window-and-
correlate process is proportional to that number.

Here I describe an efficient method for computing
a local cross-correlation for every sample in a multi-
dimensional signal. The number of windows equals the
number of signal samples, and their shape is Gaussian.

Figures 2 and 3 display local auto-correlations for
the small 2-D seismic image shown in Figure 1. The
method described in this paper computes a local auto-
correlation for every sample in that image. Figure 2
shows one lag (5, 5) from each of those auto-correlations.
Figure 3 shows 225 = 15 × 15 lags, but for only 1/225
of the auto-correlations computed.

Note that the 2-D local auto-correlations displayed
in Figure 3 vary significantly. Each auto-correlation con-
tains local information about the image of Figure 1.

Surprisingly, the cost of computing a local auto-
correlation for each sample in this image is independent
of the size of the Gaussian window. Indeed, the cost
(number of floating-point operations) of computing al-
most 100, 000 local auto-correlations in this example is
only about 32 times greater than that of computing a
single non-local auto-correlation of the entire image.

Figure 2. Local auto-correlations of the image in Figure 1
for a single lag (5,5) — five samples in both the hori-

zontal and vertical directions. The local window is a two-

dimensional Gaussian function with radius σ = 8 samples.

Figure 3. A subset of the local auto-correlations of the image

in Figure 1. Shown here are 225 = 15 × 15 lags for only
1/225 of the local auto-correlations computed. Each auto-
correlation is normalized by its value at lag (0,0).

Computing local cross-correlations 3

Figure 4. Cross-correlation c of two sequences f and g.

2 CROSS-CORRELATION

We first consider the familiar cross-correlation of two
1-D analog signals f and g, defined by:

c(u) = (f ? g)(u) ≡
∫ ∞

−∞
dx f(x) g(x + u), (1)

where u denotes the cross-correlation lag. With the
change of variables x → x − u/2, we obtain a centered
definition

c(u) = (f ? g)(u) ≡
∫ ∞

−∞
dx f(x− u/2) g(x + u/2) (2)

that will be useful in our derivation of local cross-
correlations below.

From the centered form of equation 2, we can easily
confirm the relation

c(u) = (f ? g)(u) = (g ? f)(−u).

A cross-correlation is generally not a symmetric func-
tion. Of course, if the signals f and g are identical, then
c(u) is an auto-correlation

r(u) = (f ? f)(u) = (f ? f)(−u) = r(−u),

which is symmetric in the lag variable u. In our local
cross-correlations below, it is important that we pre-
serve these relations.

The sampled version of equation 1 is

c[l] = (f ? g)[l] ≡
∞∑

j=−∞

f [j] g[j + l], (3)

where the new lag variable l is constrained to be an in-
teger. Figure 4 shows an example of the sampled cross-
correlation c of two sequences f and g. Note that the
number of lags Nl = 21 for which we have computed the
cross-correlation c is significantly less than the number
of samples Ns = 101 in the two sequences f and g. This
scenario Nl � Ns is common in digital signal process-
ing. When Nl ≈ Ns, we might more efficiently compute
the cross-correlation via fast Fourier transforms, after

Figure 5. Cross-correlation c of two Gaussian-windowed se-
quences f and g.

padding the sequences f and g sufficiently with zeros to
avoid aliasing.

However, for Nl � Ns, the most efficient way
to compute a cross-correlation is to simply evaluate
the sum as written in equation 3. In this case, the
computational complexity of cross-correlation is clearly
O(Ns × Nl). This means, for example, that the cost of
cross-correlation doubles if we double either the number
of samples Ns or the number of lags Nl.

The generalization to multi-dimensional signals is
straightforward. For two-dimensional signals, equation
3 becomes

c[l1, l2] =

∞∑
j1=−∞

∞∑
j2=−∞

f [j1, j2] g[j1 + l1, j2 + l2]. (4)

In two dimensions, lags have two components l1 and
l2. The computational complexity is again O(Ns ×Nl),
where Ns is the total number of samples in the 2-D
signals, and Nl is the number of 2-D lags for which we
compute the cross-correlation.

3 GAUSSIAN WINDOWS

To obtain a local cross-correlation, we might apply a
smooth window function w to each of the sequences f
and g, before computing the cross-correlation via equa-
tion 3. Figure 5 illustrates this process. In this example,
the window function w is a Gaussian defined by

w(x) ≡ e−x2/2σ2
, (5)

with Fourier transform

W (k) ≡
∫ ∞

−∞
dx e−ikxw(x) =

√
2πσ e−k2σ2/2.

We choose a Gaussian window because it has four
desirable properties:

(i) Optimal resolution. Only the Gaussian window

4 D. Hale

minimizes the resolution product ∆k × ∆x, where ∆x
and ∆k denote consistently-defined widths of w(x) and
W (k), respectively.

(ii) Isotropic and separable in N dimensions. Only
the Gaussian window is both isotropic and separable.

(iii) Fast recursive-filter implementation. The cost of
applying a filter with an approximately Gaussian im-
pulse response is independent of the filter length.

(iv) The product of any two Gaussians with equal
widths is a Gaussian.

Property (i) follows from the uncertainty relation.
Multiplication by any window function w(x) corre-
sponds to convolution in the wavenumber k domain,
and this convolution smears the Fourier transforms F (k)
and G(k) of the signals f(x) and g(x). This smearing
implies a loss of resolution in those Fourier spectra. For
the Gaussian window, with ∆x = σ, we have ∆k = 1/σ,
and the product ∆k×∆x = 1. No other window function
w(x) has a smaller resolution product (e.g., Bracewell,
1978). The Gaussian window smears the Fourier spectra
of f(x) and g(x) less than does any other.

Property (ii) highlights two features that are
important when processing multi-dimensional signals:
isotropy and separability. Many window functions have
one or the other of these two features, but only the
Gaussian window has both (Sahoo and Kannappan,
1992). Isotropic windows have a width and shape that
is the same in all directions. Isotropy implies no direc-
tional bias in multi-dimensional correlations.

Separability implies computational efficiency. An
N-dimensional Gaussian window is simply the product
of N one-dimensional Gaussian windows. For two dimen-
sions, the Gaussian window w(x) of equation 5 leads to

w(x1, x2) ≡ e−(x2
1+x2

2)/2σ2

= e−x2
1/2σ2

× e−x2
2/2σ2

= w(x1)× w(x2).

From this result, we can readily show that convolution
with an N-dimensional Gaussian window (filter) can be
performed by applying a sequence of one-dimensional
Gaussian filters. For two dimensions,

w(x1, x2) ∗ f(x1, x2)

≡
∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2 w(x1 − ξ1, x2 − ξ2)f(ξ1, ξ2)

=

∫ ∞

−∞
dξ1 w(x1 − ξ1)

∫ ∞

−∞
dξ2 w(x2 − ξ2)f(ξ1, ξ2)

= w(x1) ∗1 w(x2) ∗2 f(x1, x2),

where ∗1 and ∗2 denote one-dimensional convolutions in
the 1st and 2nd dimensions, respectively.

Property (iii) implies that application of those one-
dimensional Gaussian filters is efficient, with computa-
tional cost independent of the parameter σ. Specifically,
for half-widths σ > 3 samples, a recursive implementa-
tion requires fewer multiplications and additions than

Figure 6. The product of two Gaussian windows (upper)
with the same half-widths σ is a Gaussian window (lower)

with half-width σ/
√

2.

does convolution with a typical finite-length approxi-
mation to a Gaussian filter (Deriche, 1992; van Vliet et
al., 1998; Hale, 2006b). A recursive implementation is
also more efficient than one based on fast Fourier trans-
forms.

The last property (iv), though trivial to prove, is
perhaps less well-known than the first three. Using the
Gaussian window w(x) defined by equation 5, the simple
proof is:

a w(x− u/2)× b w(x + u/2)

= a e−(x−u/2)2/2σ2
× b e−(x+u/2)2/2σ2

= ab e−u2/4σ2
e−x2/σ2

. (6)

Figure 6 illustrates this property, for u = 20. Equation 6
shows that changing the separation u of the peaks of two
Gaussians changes only the amplitude, not the width,
of their Gaussian product. Property (iv) is essential in
the efficient computation of local cross-correlations de-
scribed below.

4 LOCAL CROSS-CORRELATIONS

Consider now the local cross-correlation process illus-
trated in Figure 5. This figure shows the computation of
a single local cross-correlation. If we slide the Gaussian
window to the right or left, we obtain a different local
cross-correlation. Indeed, we could compute Nl lags of
a local cross-correlation for each of the Ns samples in
the sequences f and g by centering a Gaussian window
on each of those samples.

Described this way, we might expect the computa-
tional complexity of the repeated process of windowing
and cross-correlation to be O(Ns × Nw × Nl), where
Nw is the number of non-zero samples in each Gaussian
window, and Ns is the number of samples on which we
can center that window. Because the Gaussian window

Computing local cross-correlations 5

is never zero, Nw = Ns. In practice, however, we might
truncate to zero each Gaussian window for samples far
from its central peak.

A computational complexity of O(Ns × Nw × Nl)
would be costly, especially for large windows of multi-
dimensional signals. However, using properties (ii), (iii),
and (iv) of Gaussian windows listed above, we can re-
duce this complexity to only O(Nl ×Ns).

For the moment, consider f and g to be continuous
functions of x, and define the windowed signals

f(x; y) ≡ f(x)w(y − x)

g(x; y) ≡ g(x)w(y − x).

Here, w(y−x) is a Gaussian window centered at location
x = y. Then define cross-correlation of these windowed
signals by

c(y; u) ≡
∫ ∞

−∞
dx f(x; y) g(x + u; y)

=

∫ ∞

−∞
dx f(x− u/2; y) g(x + u/2; y)

=

∫ ∞

−∞
dx f(x− u/2) g(x + u/2)

×w(y − x + u/2) w(y − x− u/2)

=

∫ ∞

−∞
dx f(x− u/2)g(x + u/2) v(y − x; u),

(7)

where equations 6 and 7 define

v(x; u) ≡ w(x + u/2)× w(x− u/2)

= e−u2/4σ2
e−x2/σ2

. (8)

For any lag u, equation 7 shows that we can com-
pute local cross-correlations c(y; u) for all y by con-
volving the Gaussian filter v(x; u) with the product of
shifted signals f(x− u/2)g(x + u/2).

In practice, we must compute the cross-correlation
c(y; u) for sampled integer values of y and u. For odd
integer lags u, the arguments x ∓ u/2 of f and g in
equation 7 suggest that interpolation of those signals
may be necessary. To avoid that interpolation, we de-
compose any integer lag u = l into two integer parts:

lf ≡ bl/2c, lg ≡ dl/2e,

where bxc denotes the largest integer not greater than
x, and dxe denotes the smallest integer not less than x.
Then l = lg + lf , |l| mod 2 = lg − lf and, with a change
of variables, equation 7 becomes

c(y; l) =

∫ ∞

−∞
dx f(x− lf) g(x + lg)

× v(y − x− (|l| mod 2)/2; l).

Finally, integer sampling of the variables x and y yields

c[k; l] =

∞∑
j=−∞

f [j − lf] g[j + lg]

× v(k − j − (|l| mod 2)/2; l). (9)

For any integer lag l, equation 9 suggests that local
cross-correlations c[k; l] be computed in two steps:

(i) Compute a sample-by-sample product of shifted
sequences f and g:

h[j; l] ≡ f [j − lf] g[j + lg]. (10)

(ii) Filter that product by convolving with a Gaus-
sian window, which for odd lags l is shifted by half a
sample:

c[k; l] =

∞∑
j=−∞

h[j; l]v(k − j − (|l| mod 2)/2; l). (11)

As discussed above, recursive filters exist that ap-
proximate well this convolution with a Gaussian win-
dow. To handle the case of odd lags l, we might in-
corporate the half-sample shift in equation 11 into our
design of those recursive filters. Alternatively, we simply
approximate the shift by linear midpoint interpolation
of two Gaussian windows:

v(k − (|l| mod 2)/2; l) ≈ (v[k; l] + v[k − |l| mod 2; l])/2,

which leads to

c[k; l]

=
1

2

∞∑
j=−∞

h[j; l] (v[k − j; l] + v[k − j − |l| mod 2; l])

=
1

2

∞∑
j=−∞

(h[j; l] + h[j − |l| mod 2; l]) v[k − j; l]

=

∞∑
j=−∞

h̃[j; l] v[k − j; l], (12)

where

h̃[j; l] ≡ (f [j − lf] g[j + lg] + f [j − lg] g[j + lf])/2.

Note that h̃[j; l] is simply h[j; l] for even lags l. For odd
lags, h̃[j; l] is a linear midpoint interpolation of two val-
ues of h[j; l].

In some applications, the approximation of linear
interpolation may be inadequate. This approximation
corresponds to using slightly different windows for the
even and odd lags of local cross-correlations. That dif-
ference can be significant in applications such as local
prediction error filtering, where it may cause normal
equations to become singular (Hale, 2006a). In such
applications, we replace linear midpoint interpolation
of two samples with an 8-sample interpolation derived
from a windowed sinc function.

In any case, implementation of equation 12 is

6 D. Hale

straightforward. We first compute a sum h̃[j; l] of
sample-by-sample products of shifted sequences f and
g, and then filter that sum with a Gaussian window.

With recursive implementations, the cost of the
Gaussian filter in equation 12 is proportional to the
number Ns of samples to be filtered, and that cost is
independent of the width of the Gaussian. Therefore,
the complexity of computing c[k; l] for any single lag l
is O(Ns).

The complexity of computing Nl lags of Ns local
cross-correlations is O(Nl × Ns)! In other words, the
computational complexity for Nl lags of Ns local cross-
correlations is the same as that for Nl lags of a single
non-local cross-correlation.

This same computational complexity extends to
multiple dimensions. In two dimensions, for any 2-D lag
(l1, l2), we first compute the sum

h̃[j1, j2; l1, l2] = (

f [j1 − l1f , j2 − l2f] g[j1 + l1g, j2 + l2g] +

f [j1 − l1g, j2 − l2f] g[j1 + l1f , j2 + l2g] +

f [j1 − l1f , j2 − l2g] g[j1 + l1g, j2 + l2f] +

f [j1 − l1g, j2 − l2g] g[j1 + l1f , j2 + l2f])/4,

where

l1f ≡ bl1/2c, l1g ≡ dl1/2e,
l2f ≡ bl2/2c, l2g ≡ dl2/2e,

and then apply a two-dimensional Gaussian filter to that
sum to obtain local cross-correlations c[k1, k2; l1, l2]. Re-
call that the two-dimensional Gaussian filter is equiva-
lent to a cascade of two one-dimensional Gaussian fil-
ters. Again, the computational complexity is O(Nl ×
Ns), where Ns is the total number of samples in the
2-D signals, and Nl is the number of 2-D lags for which
we compute local cross-correlations. This is the pro-
cess that we used to compute the local auto-correlations
shown in Figures 2 and 3.

The actual cost of computing Ns local cross-
correlations is of course higher than that of computing
a single non-local cross-correlation, but only by a con-
stant factor that is independent of the number of lags
Nl and the number of samples Ns.

That constant factor depends primarily on the
number of coefficients used in recursive approximations
to Gaussian filtering. In our implementations, these
filters require about 16 multiplications and 16 addi-
tions per sample per dimension filtered. A single cross-
correlation requires only one multiplication and one ad-
dition per sample. So, for the 2-D image of Figure 1, the
constant factor is about 32 = 16 × 2. For 3-D images,
the constant factor would be about 48 = 16× 3.

In other words, the cost in floating-point operations
of computing almost 100,000 local auto-correlations for
the 2-D image of Figure 1 is only about 32 times
greater than that of computing a single non-local auto-
correlation of that same image.

5 CONCLUSION

When computing Ns local cross-correlations for all Ns

samples of two signals by conventional windowing, we
can imagine three loops: an outermost loop over Ns win-
dows, an inner loop over Nl lags, and an innermost loop
where we multiply and sum Nw non-zero samples in
each window. These three loops imply a computational
complexity of O(Ns ×Nl ×Nw).

The trick described in this paper is to first rear-
range the loops: an outermost loop over Nl lags, an inner
loop over Ns samples, and an innermost loop over Nw

non-zero samples in each window. We then recognize the
two inner loops over Ns and Nw as a convolution that
we can replace with recursive filtering, with cost that is
independent of Nw. So the computational complexity is
only O(Nl ×Ns).

In summary, we rearrange the computation so that
Gaussian windowing becomes recursive Gaussian filter-
ing.

In this rearrangement, we must take care to ensure
that important properties of cross-correlations are pre-
served. For example, in local prediction error filtering,
it is important that each local auto-correlation be sym-
metric about zero lag, and that the system of normal
equations to be solved for prediction error coefficients is
both symmetric and positive-definite.

It is easy to derive a local correlation-like sequence
that would not have these properties. For example,

c[k; l] =

∞∑
j=−∞

f [j] g[j + l] w[k − j],

where w[j] is a sampled Gaussian window defined by
equation 5, defines a local correlation-like sequence that
is simpler and easier to implement than equation 12.
But this simpler definition does not yield local auto-
correlations that are symmetric. The changes of variable
and half-sample shifts used to derive equation 12 above
are required to obtain accurate local cross-correlations.

The method described in this paper computes a
local cross-correlation for every sample in a multi-
dimensional signal. This capability leads us to ask two
questions. Do we need to keep all of them? And, if not,
how many do we need?

On the one hand, the smooth variations in Fig-
ure 2 suggest that we might subsample local auto-
correlations without aliasing. That smoothness depends
on our choice of Gaussian half-width σ. In that exam-
ple, we used a Gaussian radius σ = 8. Had we used a
larger radius, the features in Figure 2 would have been
even smoother.

On the other hand, it is possible for local cross-
correlations to be aliased even when the signals being
correlated are not. This is because the bandwidth of the
product of two signals (recall equation 10) is the sum of
the bandwidths of those two signals.

Computing local cross-correlations 7

We leave these questions of sampling and aliasing
of local cross-correlations to another paper.

ACKNOWLEDGMENT

Thanks to Ken Larner and John Stockwell for their
helpful reviews of this manuscript.

REFERENCES

Abma, R., and Claerbout, J., 1995, Lateral prediction for

noise attenuation by t-x and f-x techniques: Geophysics,
v. 60, no. 6, p. 1887–1896.

Bracewell, R., 1978, The Fourier transform and its applica-

tions (2nd edition): McGraw-Hill.
Crawley, S., Clapp, R., and Claerbout, J., 1999, Interpo-

lation with smoothly non-stationary prediction-error fil-

ters: 69th Annual International Meeting, SEG, Expanded
Abstracts, p. 1154–1157.

Deriche, R., 1992, Recursively implementing the Gaussian

and its derivatives: Proceedings of the 2nd International
Conference on Image Processing, Singapore, p. 263–267.

Gülünay, N., 2000, Noncausal spatial prediction filtering for
random noise reduction on 3-D poststack data: Geo-

physics, v. 65, no. 5, p. 1641–1653.

Hale, D., 1982, Q-adaptive deconvolution: Stanford Explo-
ration Project Report, no. 30, p. 133–158.

Hale, D., 2006a, Seamless local prediction filtering: this re-

port.
Hale, D., 2006b, Recursive Gaussian filters: this report.

Kannappan, P., and Sahoo, P.K., 1992, Rotation invari-

ant separable functions are Gaussian: SIAM Journal on
Mathematical Analysis, v. 23, no. 5, p. 1342–1351.

MacKay, S., Fried, J., and Carvill, C., 2003, The impact of

water-velocity variations on deepwater seismic data: The
Leading Edge, v. 22, p. 344–350.

Pacheco, C., and Snieder, R., 2003, Time-lapse monitoring
with multiply scattered waves: 73rd Annual International

Meeting, SEG, Expanded Abstracts, p. 1849–1852.

Rickett, J.E., and Lumley, D.E., 2001, Cross-equalization
data processing for time-lapse seismic reservoir monitor-

ing — a case study from the Gulf of Mexico: Geophysics,

v. 66, no. 4, p. 1015–1025.
van Vliet, L., Young, I., and Verbeek, P. 1998, Recursive

Gaussian derivative filters: Proceedings of the Inter-
national Conference on Pattern Recognition, Brisbane,
p. 509–514.

8 D. Hale

