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ABSTRACT
An e�cient method for computing local auto-correlations leads to a new method

for local adaptive prediction or prediction error filtering of multi-dimensional

images. Using a conjugate-gradient method for least-squares optimization, we

compute a di↵erent prediction filter for each sample in an image. These adaptive

prediction filters preserve locally coherent signals, while attenuating random

noise.

Key words: digital signal processing, image processing

1 INTRODUCTION

Prediction filters pass those parts of signals that can be
predicted, while rejecting any unpredictable parts, the
prediction errors.

In some applications, those unpredictable parts rep-
resent the information that we seek. We then perform
prediction error filtering by subtracting the predicted
signal from an input signal. Examples in seismic signal
processing include predictive deconvolution and multi-
ple attenuation (Robinson, 1967; Robinson and Treitel,
1980; Spitz, 1999; Guitton et al., 2001), and plane-wave
destruction filters (Fomel, 2002).

In other applications, the prediction errors repre-
sent random noise that we wish to attenuate. Examples
in seismic signal processing include t � x and f � x
prediction filtering (Canales, 1984; Abma and Claer-
bout, 1995; Soubaras, R., 1995; Gülünay, 1986; Gülünay,
2000).

In all of these applications, we compute filter co-
e�cients from the same signals that we wish to filter.
Because characteristics of those signals typically vary
with time and space, we must often compute and apply
filters that vary accordingly.

Today, we typically account for these variations by
dividing our signals into some number of overlapping
windows, processing each window independently, and
then blending the processed windows together in some
way to hide the seams between them. Prediction filters
computed and applied in this way are local, in that each
is tuned to a local window of the signal.

Here, I describe an e�cient method for comput-
ing and applying a di↵erent prediction filter for every

sample in a multi-dimensional signal. No blending of
windows is necessary; we have no seams to hide. In this
sense, our local prediction filters are seamless.

We begin with a review of the most relevant aspects
of prediction filtering. We then describe our implemen-
tation of local prediction filtering, and provide examples
of its application to a seismic image.

2 PREDICTION FILTERING

In linear prediction filtering of a one-dimensional sam-
pled signal f [i], we compute a predicted signal f̃ [i] de-
fined by

f̃ [i] ⌘
X

j 6=0

a[j]f [i� j].

In least-squares linear prediction filtering, we compute
the filter coe�cients a[j] to minimize a sum

E ⌘
X

i

e2[i] (1)

of squared prediction errors

e[i] ⌘ f [i]� f̃ [i]

= f [i]�
X

j 6=0

a[j]f [i� j].

The set of integer indices j for which we compute
coe�cients a[j] should not include zero, because that
would permit a trivial and useless zero-error solution to
this least-squares problem. However, the indices j need
not be positive. For example, if f [i] is a time series, then
including both positive and negative indices j yields a
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predicted sample value f̃ [i] that is a linear combination
of both past and future input sample values f [i� j].

For any number of filter coe�cients a[j], we can
minimize the sum E in equation 1 by setting to zero
partial derivatives of E with respect to a[k]:

0 =
@E

@a[k]

=
X

i

e[i]f [i� k]

=
X

i

f [i]f [i� k]�
X

j 6=0

a[j]
X

i

f [i� j]f [i� k]. (2)

Defining the auto-correlation

r[l] ⌘
X

i

f [i]f [i� l] =
X

i

f [i]f [i + l],

equation 2 becomes simply
X

j

r[k � j]a[j] = r[k]. (3)

Equation 3 represents a system of normal equations, one
equation for each filter coe�cient a[j].

For example, the normal equations for three pre-
diction filter coe�cients a[�1], a[1], and a[2] are
"

r[0] r[�2] r[�3]
r[2] r[0] r[�1]
r[3] r[1] r[0]

#"
a[�1]
a[1]
a[2]

#
=

"
r[�1]
r[1]
r[2]

#
. (4)

As in this example, the normal equations 3 are always
symmetric, due to the symmetry of auto-correlations
r[k] = r[�k].

For signals f [i] with at least one non-zero sample,
this system is also positive definite. That is, for any
non-zero sequence v[k],
X

k

X

j

v[k]r[k � j]v[j]

=
X

k

X

j

v[k]

 
X

i

f [i� k]f [i� j]

!
v[j]

=
X

i

 
X

k

f [i� k]v[k]

! 
X

j

f [i� j]v[j]

!

=
X

i

 
X

k

f [i� k]v[k]

!2

> 0.

In general, though symmetric and positive-definite,
the normal equations 3 are not Toeplitz, as illustrated
by the example in equation 4.

3 MULTI-DIMENSIONAL PREDICTION
FILTERING

Least-squares linear prediction filtering is easily ex-
tended to multi-dimensional signals. In two dimensions,
for a signal f [i1, i2], we compute a predicted signal

f̃ [i1, i2] ⌘
X

j1,j2
6=0,0

a[j1, j2]f [i1 � j1, i2 � j2]. (5)

We determine the filter coe�cients a[j1, j2] by minimiz-
ing

E ⌘
X

i

e2[i1, i2],

where

e[i1, i2] ⌘ f [i1, i2]� f̃ [i1, i2]

= f [i1, i2]�
X

j1,j2
6=0,0

a[j1, j2]f [i1 � j1, i2 � j2]. (6)

The solution to this least-squares problem is again the
solution to a symmetric positive-definite system of nor-
mal equations:
X

j1,j2

r[k1 � j1, k2 � j2]a[j1, j2] = r[k1, k2] (7)

where

r[l1, l2] ⌘
X

i1,i2

f [i1, i2]f [i1 + l1, i2 + l2]. (8)

In two dimensions, each pair of indices [j1, j2] cor-
responds to one equation and one unknown a[j1, j2]. Ex-
cept for the restriction [j1, j2] 6= [0, 0], the choice of these
indices is arbitrary and defines the support of the pre-
diction filter. Let that support be represented by two ar-
rays of length M , lag1[j] and lag2[j], for j = 1, 2, . . . , M .
Then Algorithm 1 below computes the 2-D prediction
filter.

Algorithm 1 Compute a 2-D prediction filter

1: for k  1, 2, . . . , M do
2: k1  lag1[k]
3: k2  lag2[k]
4: for j  1, 2, . . . , M do
5: j1  lag1[j]
6: j2  lag2[j]
7: R(k, j) r[k1 � j1, k2 � j2] . equation 8
8: end for
9: r(k) r[k1, k2] . equation 8

10: end for
11: Solve Ra = r for a . normal equations 7
12: for j  1, 2, . . . , M do
13: j1  lag1[j]
14: j2  lag2[j]
15: a[j1, j2] a(j)
16: end for
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In lines 7 and 9 of Algorithm 1, the variables R(k, j)
and r(k) are elements of the M ⇥ M matrix R and
M ⇥ 1 column vector r, respectively, in the normal
equations of line 11. Significant time is saved when
computing those elements by exploiting the symmetry
r[l1, l2] = r[�l1,�l2] and computing only values that
have not been computed previously.

Here is an example of the normal equations Ra = r
solved in Algorithm 1 for M = 3:
"

r[0, 0] r[1,�1] r[0,�1]
r[�1, 1] r[0, 0] r[�1, 0]
r[0, 1] r[1, 0] r[0, 0]

#"
a[1, 0]
a[0, 1]
a[1, 1]

#
=

"
r[1, 0]
r[0, 1]
r[1, 1]

#
. (9)

Although symmetric and positive-definite, this system
of equations is again not Toeplitz. In some cases, the
normal equations for multi-dimensional prediction fil-
ters can be converted into block Toeplitz systems (e.g.,
Claerbout, 1976). But these systems are generally not
Toeplitz, which means that we cannot always use the
e�cient Levinson recursion (e.g., Golub and van Loan,
1989) to solve them.

The extension of Algorithm 1 to higher-dimensional
images is straightforward. In any dimension, the number
of equations to be solved equals the number of predic-
tion filter coe�cients.

4 LOCAL PREDICTION FILTERING

To account for variations of multi-dimensional signals
in space and time, we compute seamless local prediction
filters from local auto-correlations. Figure 2 displays lo-
cal auto-correlations for the 2-D seismic image shown
in Figure 1. The method described by Hale (2006) com-
putes a local auto-correlation for every sample in that
image. Figure 2 shows 225 = 15⇥ 15 lags of each auto-
correlation, but for only 1/225 of the auto-correlations
computed.

Let f [i1, i2] denote the 2-D image in Figure 1. Then
each of the 2-D local auto-correlations displayed in Fig-
ure 2 corresponds to a windowed image:

f [i1, i2; k1, k2] ⌘ f [i1, i2]⇥ w(i1 � k1, i2 � k2),

where

w(x1, x2) ⌘ e�(x2
1+x

2
2)/2�

2

defines the Gaussian window.
Gaussian windowing yields auto-correlations in Fig-

ure 2 that contain local information about the image of
Figure 1. And for each of these local auto-correlations
we can use Algorithm 1 to compute a local prediction
filter.

Solution of the normal equations in line 11 of Algo-
rithm 1 for every sample in an image may be costly. The
computational complexity of solving arbitrary symmet-
ric positive-definite linear systems for M unknowns is
O(M3). For Toeplitz systems, that complexity is only
O(M2), but our systems are generally not Toeplitz.

i1

i2

Figure 1. A 2-D seismic image, with 315⇥ 315 samples.

Figure 2. A subset of the local auto-correlations of the image

in Figure 1. Shown here are 225 = 15⇥15 lags for only 1/225
of the local auto-correlations computed. The Gaussian half-

width is � = 8 samples. Each auto-correlation is normalized

by its value at lag [0, 0].

Therefore, instead of solving the normal equations di-
rectly, we solve them using an iterative conjugate-
gradient method.

The method of conjugate gradients is ideal for local
prediction filtering. First, the normal equations are sym-
metric and positive-definite as required by the method.
Second, as with any iterative method, a good initial
guess can significantly reduce the number of iterations
required for convergence to a solution.

In seamless local prediction filtering, we compute
a prediction error filter for every sample in our signal.
Therefore, a good initial guess for each sample is simply
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i1

i2

Figure 3. Predicted image for a single prediction filter with
three coe�cients. Compare with Figures 1 and 5.

i1

i2

Figure 4. Prediction errors for a single prediction filter with
three coe�cients. Compare with Figure 6.

the prediction filter computed previously for a nearby
sample.

That initial guess is best when the system of normal
equations is well-conditioned and changes only slightly
from one sample to the next. Although the normal equa-
tions are positive-definite, systems that are only weakly
so may yield prediction filters that vary significantly
from one sample to the next. In such cases, convergence
to a conjugate-gradients solution may be slow.

5 EXAMPLES

For comparison with local prediction filtering below,
we first show the result of computing and applying a

i1

i2

Figure 5. Predicted image for three-coe�cient local predic-
tion filters. Compare with Figures 1 and 3.

i1

i2

Figure 6. Prediction errors for three-coe�cient local predic-
tion filters. Compare with Figure 4.

single global prediction filter, using only a single auto-
correlation of the entire image in Figure 1. Figures 3
and 4 display the predicted image f̃ [i1, i2] (equation 5)
and prediction errors e[i1, i2] (equation 6), respectively.

In this example, the prediction filter is that of equa-
tion 9, with only three coe�cients:

a[1, 1] a[1, 0]

a[0, 1] X
=
�0.40 0.55

0.84 X
.

This stencil shows the weights used in the linear com-
bination of three image samples to obtain a predicted
sample in the lower-right corner marked by X.

Di↵erences between the original image in Figure 1
and the predicted image in Figure 3 are di�cult to see,
because the prediction errors are relatively small. The
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i1

i2

Figure 7. The coe�cient a[1, 0] of the local prediction filters
used to obtain the predicted image of Figure 5.

prediction errors in Figure 4 have roughly 1/10 of the
amplitude of the images in Figures 1 and 3.

Although relatively small, these prediction errors
contain a significant amount of correlated signal that is
lost in prediction filtering. Correlated signal appears in
the prediction errors for two reasons. First, the predic-
tion filter used here has too few coe�cients to predict
all of the correlated signal in the image. With only three
coe�cients, some correlated signal is unpredictable. Sec-
ond, a single global prediction filter cannot account for
even the mild variations in bandwidth and orientation
of features apparent in this image. To account for such
variations, we may use local prediction filters.

Figures 5 and 6 show the predicted image and pre-
diction errors, respectively, after local prediction filter-
ing of the image of Figure 1. The Gaussian half-width in
this example is � = 4 samples, which enables the local
prediction filters used here to vary rapidly.

The prediction errors in Figure 6 for local predic-
tion filtering appear to be less correlated than those in
Figure 4. As expected, local prediction filters can better
adapt to variations in characteristics of image features.

Each local prediction filter is again that of equa-
tion 9, with only three coe�cients. We compute these
local prediction filters by solving that equation with
auto-correlations computed for every image sample. Fig-
ures 7–9 illustrate the variations in their coe�cients.

The coe�cient a[1, 0] in Figure 7 tends to increase
from top to bottom, corresponding to a general increase
in dominant wavelength of features in Figure 1.

As expected, the coe�cient a[0, 1] in Figure 8 is
largest for features oriented horizontally in Figure 1.
This coe�cient is smallest in the lower-left portion of
the image, where steeply-dipping coherent signal ap-
pears in the image of Figure 1.

The coe�cient a[1, 1] in Figure 9 is generally nega-

i1

i2

Figure 8. The coe�cient a[0, 1] of the local prediction filters
used to obtain the predicted image of Figure 5.

i1

i2

Figure 9. The coe�cient a[1, 1] of the local prediction filters
used to obtain the predicted image of Figure 5.

tive, except near the steeply-dipping coherent signals in
the lower-left part of the image in Figure 1. For these
events dipping down to the right, the image sample in
the upper-left corner of the prediction filter stencil best
predicts the sample in the lower-right corner.

All of the prediction coe�cients shown in Figures 7–
9 vary significantly and seamlessly throughout the im-
age. Seamless adaptation enables local prediction filters
to predict locally correlated signal.

This adaptation is responsible for the reduction in
correlated signal observed in the local prediction errors
of Figure 6, when compared with the global prediction
errors of Figure 4. However, for the three-coe�cient lo-
cal prediction filters used here, some correlated signal
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i1

i2

Figure 10. Predicted image for a single prediction filter with
13 coe�cients. Compare with Figures 1 and 12.

i1

i2

Figure 11. Prediction errors for a single prediction filter
with 13 coe�cients. Compare with Figures 4 and 13.

remains unpredictable. To improve prediction, we must
use more coe�cients.

Figures 10 and 11 show the predicted image and
prediction errors for a single prediction filter with 13
coe�cients. The stencil for this prediction filter is

�0.092 0.056 �0.19 0.54 �0.25 0.024 �0.064

0.086 �0.006 0.41 X 0.41 �0.012 0.085
.

Figures 12 and 13 show the predicted image and
prediction errors for local prediction error filtering with
the same number of coe�cients and the same stencil. In
this example, we computed local prediction filters us-
ing a Gaussian window with half-width � = 8 samples.
An average of 4.1 conjugate-gradient iterations per im-
age sample were required to solve the normal equations

i1

i2

Figure 12. Predicted image for local 13-coe�cient predic-
tion filters. Compare with Figures 1 and 10.

i1

i2

Figure 13. Prediction errors for local 13-coe�cient predic-
tion filters. Compare with Figures 6 and 11.

Ra = r in Algorithm 1 for the coe�cients a of each local
prediction filter.

6 CONCLUSION

The examples of prediction filtering shown in this paper
are not dramatic, primarily because samples in these im-
ages are so highly predictable from neighboring samples.
Amplitudes of prediction errors are only about 1/10 the
amplitude of the original or predicted image samples.

Nevertheless, prediction errors obtained with lo-
cal prediction filters contain less correlated signal than
those obtained with a single global prediction filter. The
examples demonstrate that local prediction filtering can
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adapt to variations in signal characteristics, and is less
likely to attenuate locally coherent signal.

The rate of adaptation is controlled by the width
of Gaussian windows used to compute local auto-
correlations. That width and prediction filter stencil
(support) are parameters that we must specify.

We need not specify a number of windows or an
amount of window overlap. Such parameters are typical
of window-filter-blend methods for adaptive filtering. In
seamless local prediction filtering, each predicted sample
has a corresponding window centered on that sample,
and the amount of window overlap is almost as large as
the window itself.

The method for seamless local prediction error fil-
tering described here is certainly more costly than com-
puting and applying a single global prediction filter. For
each sample in an image, we must compute required lags
of a local auto-correlation and then solve a system of
linear equations. Because those equations are symmet-
ric and positive-definite, we can use e�cient conjugate-
gradient iterations to solve them.

These iterations are reminiscent of other forms of
seamless adaptive filtering (e.g., Widrow and Stearns,
1985), in which a prediction filter for one sample is
updated to obtain a prediction filter for a future sam-
ple. In our method, conjugate gradient updates are per-
formed using local auto-correlations that have been pre-
computed for every image sample.
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