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1 INTRODUCTION

ABSTRACT

Reliable estimates of vertical, inline and crossline components of apparent dis-
placements in time-lapse seismic images are difficult to obtain for two reasons.
First, features in 3-D seismic images tend to be locally planar, and components
of displacement within the planes of such features are poorly resolved. Sec-
ond, searching directly for peaks in 3-D cross-correlations is less robust, more
complicated, and computationally more costly than searching for peaks of 1-D
cross-correlations.

We estimate all three components of displacement with a process designed to
mitigate these two problems. We address the first problem by computing for
each image sample a local phase-correlation instead of a local cross-correlation.
We address the second problem with a cyclic sequence of searches for peaks
of correlations computed for lags constrained to one of the three axes of our
images.
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shown in Figure 2 tend to be downward (positive), even

Tiny displacements we observe in 3-D time-lapse seis-
mic images are vectors, with three - vertical, inline, and
crossline - components. These apparent displacements
can be caused by reservoir compaction and are espe-
cially sensitive to related changes in strains and seismic
wave velocities above reservoirs.

By “tiny”, we mean displacements that may be
only a fraction of a sampling interval. Figures 1-4
show an example from time-lapse seismic imaging of a
high-pressure high-temperature reservoir in the North
Sea. Here we estimated vertical apparent displacements
roughly equal to the time sampling interval of 4 ms.
In the inline and crossline directions, we estimated hor-
izontal apparent displacements of approximately 5 m,
which is much less than the 25 m inline and crossline
sampling intervals.

Though small, the most significant inline and
crossline displacements appear to be correlated with the
geometry of the target reservoir. The point of intersec-
tion of the three orthogonal slices in each of Figures 1-4
lies just beneath that reservoir.

Apparent vertical (time) displacements like those

when physical reservoir boundaries are displaced up-
wards. This difference between physical and apparent
vertical displacements has been observed and explained
by Hatchell and Bourne (2005).

Apparent horizontal displacements are less well un-
derstood, although these too have been measured here
and by others (e.g., Hall, 2006). Figures 3 and 4 show
apparent displacements that are generally smaller in the
inline direction than in the crossline direction.

Figure 4 implies that, near the reservoir, 3-D seis-
mic images are pulling apart in the crossline direction as
fluids are extracted. This apparent horizontal stretching
is the opposite of the compaction that we might expect
if we interpreted such displacements as physical move-
ments of reservoir rocks. However, the apparent stretch-
ing we observe here is reasonable if we consider the effect
of a mild low-velocity lens above the reservoir induced
by compaction. If not accounted for in seismic migration
(as it was not here), such a change in seismic velocity
could explain these apparent crossline displacements.

Such speculation notwithstanding, our understand-
ing of apparent vector displacements today remains in-
complete and beyond the scope of this paper. Our goal
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Figure 1. Three orthogonal slices of a 3-D seismic image recorded in 2002. A second image (not shown) was recorded in 2004.
Crosshairs in each slice show the locations of the other two slices.
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Figure 2. Vertical components of apparent displacement measured in ms.
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Figure 3. Inline components of apparent displacement measured in m.
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Figure 4. Crossline components of apparent displacement measured in m.
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(a) (b)

Figure 5. Vertical (a) and horizontal (b) components of a
synthetic vector displacement field representing compaction
of an image towards its center. Dark red denotes three sam-
ples of vertical displacement (a) downward or (b) toward the
right. Dark blue denotes three samples of vertical displace-
ment (a) upward or (b) toward the left.

here is to describe the process by which we obtained
these estimates of apparent vector displacements from
time-lapse seismic images.

Estimation of all three components of displace-
ments is difficult. One difficulty is that displacements of
image features are poorly resolved in directions paral-
lel to those features. Therefore, in seismic images where
features are often more or less horizontal, we tend to
estimate only the vertical component of displacement,
because only that component is well resolved.

A second difficulty is that some processing tech-
niques used to estimate only a single vertical compo-
nent of displacement do not extend easily to estima-
tion of all three components. For example, estimating
the locations of peaks of cross-correlations of images is
straightforward when those correlations are functions
of only vertical lag. A simple quadratic interpolation of
correlation values near a peak may suffice. An exten-
sion of this processing to finding peaks in correlations
that are a function of two or three components of lag is
more complicated and less robust, partly because of the
resolution problem described above.

Finally, estimation of three components of displace-
ment requires more computation, and the increase in
cost can be significant when estimating a complete field
of displacement vectors for every sample in 3-D images.

In this paper we illustrate these difficulties and de-
scribe a process that addresses them.

2 LOCAL CROSS-CORRELATIONS

Consider first only the two components of displacement
shown in Figure 5. The displacement vectors in this ex-
ample correspond to compaction or squeezing of an im-
age towards its center.

2.1 Displacements between images

Using the synthetic displacement vector field shown in
Figure 5, we can warp one seismic image to obtain an-
other. Specifically, let sampled functions f[ji,j2] and
glj1, j2] denote two images related by

fliv,do] = g (g1 +walir, jol, ja + walin, ja]), (1)

where w1 [j1, j2] and ua[j1, j2] represent the vertical and
horizontal components of the vector displacement field
ufji, j2|-

Throughout this paper we adopt the convention
that f[j1,j2] (with square brackets) is an image ob-
tained by uniformly sampling a continuous function
f(z1,z2) (with parentheses) for integer pixel indices ji
and j2. We also assume that f(x1,x2) is bandlimited
and that f[j1,J2] is not aliased, so that sinc interpola-
tion can reconstruct the continuous function f(z1,x2)
with any required precision.

Because components of displacement u; and wus
need not be integer values, the warping operation de-
scribed by equation 1 implies interpolation of the sam-
pled image g[j1, j2] to compute f[j1, j2].

Assume that we have two images f and g related
by the synthetic displacement vector field of Figure 5.
Can we recover the known displacement vectors u from
the images?

2.2 Local cross-correlations

Figure 6 illustrates an attempt to estimate the displace-
ment vector field u displayed in Figure 5 from two im-
ages f and g. The images are displayed in Figures 6a
and 6b and at this scale appear to be identical, because
maximum displacements are less than three samples in
both vertical and horizontal directions.

To estimate displacement vectors u, we search for
locations of peaks of local cross-correlations. We define
local cross-correlation of two images f and g by

crolkr, kasli, o) = Y flin,52] glia + l, G + o]
Ji,J2
xwlky — j1, ka — ja), (2)
where w[k1, k2] is a 2-D Gaussian window defined by
wlki, ko] = o~ (K1 +k3) /207 3)

for a specified radius o. (In the example of Figure 6, we
used o = 12 samples.) Summation indices ji and j2 are
limited by finite image bounds.

Equation 2 implies that for each pair of lag indices
[l1,12] we compute a local cross-correlation value for ev-
ery image sample indexed by [k1, k2]. In other words,
we compute a correlation image cy, as large as f and
g for each [l1,l2]. When we do this for many lags, the
resulting cyg [kl, ka; 1, lz] could consume large amounts
of storage. However, when estimating displacements, we
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Figure 6. Estimates of displacement vectors from two 315 x
315-pixel images. The two images f (a) and g (b) are re-
lated by equation 1 for the displacements shown in Figure 5.
The subset (c) of normalized local 2-D cross-correlations cor-
responds to the upper-left quadrant of these images, where
displacements are downward and rightward. The downward
shift is especially visible in one of these cross-correlations (d)
shown in detail. A straightforward search for peaks of such
cross-correlations yields estimates of both vertical (e) and
horizontal (f) components of displacements.

need to store for each image sample only those correla-
tion values required to locate correlation peaks.

The Gaussian window w makes the cross-
correlations local. For any lag [l1,[2], equation 2 repre-
sents convolution of this Gaussian window with a lagged
image product f[j1,j2] glj1 + 11,72 + l2]. We perform
this Gaussian filtering efficiently using recursive imple-
mentations (Deriche, 1992; van Vliet et al., 1998; Hale,
2006) with computational cost that is independent of
the window radius o.
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Local windows can make cross-correlations sensi-
tive to local amplitude variations. As we vary the lag
[l1,12] in equation 2, high-amplitude events in g may
slide in and out of the local Gaussian window, creat-
ing spurious correlation peaks that are inconsistent with
true displacements.

2.3 Normalized local cross-correlations

To avoid this problem, the cross-correlation values dis-
played in Figures 6¢c and 6d have been normalized.
Shown here are values of

clki, kojli,la] = cpglka, kasl, o]
1

X—
\/Cff[kl,kQ;0,0]

1
X .
\/ng[kj + 11, ko +12;0,0]

We compute the normalization factors 1/,/cyy and
1/,/cqq using special cases of equation 2:

cpplkn k230,00 = > f2[ju, ja] wlks — i, k2 = jo]

J1,J2

and

caglk, k230,01 = Y g°[j1, ja] wlky — ju, ko = o).
Ji,J2

These scale factors can be computed once and reused
for all lags [l1,l2]. With these definitions (and by
the Cauchy-Schwarz inequality), normalized local cross-
correlations have the property |c| < 1.

Figure 6¢ shows a small subset of the 2-D normal-
ized local cross-correlations computed for the upper-
left quadrant of the two images in 6a and 6b; Fig-
ure 6d shows just one of these cross-correlations. We
compute cross-correlations like these for every image
sample. Each cross-correlation is local in the sense that
it depends on samples within a 2-D Gaussian window of
radius o = 12 samples. As the window slides across the
images, the local cross-correlations vary as in Figure 6c¢.

Figures 6¢ and 6d indicate a displacement of cross-
correlation peaks vertically downward, which is consis-
tent with the upper-left quadrant of Figure 5a. Horizon-
tal (rightward) displacements of those peaks are more
difficult to see. Displacements perpendicular to image
features are more well resolved than those parallel to
those features.

2.4 Quadratic interpolation

By simply searching over all sampled lags in Figure 6d,
we can easily find the integer indices [l1,l2] of the lag
with highest correlation value. We might then fit some
function to that value and others nearby to resolve the
correlation peak location with sub-pixel precision.

A common choice for the fitting function is a
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quadratic polynomial. For example, in one dimension,
this quadratic function has the form

c(u) = ao + a1u + asu?.

We can choose the three coefficients ag, a1 and as so
that this polynomial interpolates exactly three sampled
correlation values [l — 1], ¢[l] and c[l + 1]. If a lag I
is found such that ¢[l] is not less than the other two
correlation values and is greater than at least one of
them, then the quadratic polynomial has a peak at

cl=1] =l +1]
= 1]+ 2e[l + 1] — 4cl]’

u=1+ 5 (5)
It is both easy to prove and sensible that |u—I| < 3. The
correlation peak found by quadratic fit lies within half
a sample of the largest correlation value found by scan-
ning integer lags [. A scan of sampled correlation val-
ues provides a rough integer estimate of displacement;
quadratic interpolation simply refines that estimate.

Other fitting functions are possible. In particular,
a sinc function is most accurate for interpolating band-
limited sampled signals. But sinc interpolation does not
provide a simple closed-form expression like equation 5
for the peak location. Therefore, quadratic interpolation
is often used to find peaks.

Though small for bandlimited signals, the error in
quadratic interpolation is biased in both peak ampli-
tude and location. In addition to this error, two more
problems arise with quadratic interpolation in higher
dimensions.

2.5 Quadratic 2-D and 3-D interpolation

One problem is that the number of coefficients in a
quadratic polynomial in higher dimensions does not
equal the number of samples in any symmetric neigh-
borhood nearest a sampled maximum correlation value.
For example, in two dimensions the bi-quadratic poly-
nomial has six coefficients:

2 2
c(u1,u2) = ao + aru1 + azuz + asui + aauiuz + asuj.

This number exceeds the number of correlation values
in a five-sample neighborhood consisting of the values
clli, 2], clli £ 1,12], and c[l1,l2 £ 1]; it is less than the
number in a nine-sample neighborhood obtained by also
including c[l1 £1, 12 £ 1]. To resolve this inconsistency, a
bi-quadratic may be least-squares fit to the nine corre-
lation values in the nine-sample neighborhood, but this
fitted function does not generally interpolate any of the
sampled correlation values within that neighborhood.

Likewise, in three dimensions a tri-quadratic poly-
nomial has 10 coefficients, but symmetric neighbor-
hoods of correlation values nearest a sampled maxi-
mum have either 7 (too few), 19 or 27 (too many)
values. Quadratic polynomials in dimensions greater
than one are either under- or over-constrained by cross-
correlation values sampled at integer lags.

A second problem is that a peak location found
by least-squares quadratic fit in two (or higher) dimen-
sions need not lie within half a pixel of the integer lag
indices [l1,l2] corresponding to the maximum sampled
correlation value. Indeed, for sampled correlations like
those shown in Figures 6¢ and 6d, a least-squares-fit
bi-quadratic may have a saddle point instead of a peak.

In other words, in two (or higher) dimensions, a
peak may not exist for the least-squares quadratic fit to
nine (or more) correlation values nearest to a sampled
maximum value. And even when a quadratic peak does
exist, it may be far away from the integer lag indices
[l1,12] corresponding to the sampled maximum.

Such cases are pathological but not exceptional.
We have observed them often while fitting bi-quadratic
polynomials to the nine sampled values nearest the max-
imum value in correlations like those shown in Fig-
ures 6¢ and 6d.

These problems account for the most significant er-
rors in the estimated components u; and us of displace-
ment vectors shown in Figures 6e and 6f. In this example
errors are most significant for the horizontal component
u2, because the locations of correlation peaks in Fig-
ures 6¢ and 6d are least well resolved in that direction.

Discontinuities in apparent displacement vectors
like those shown in Figure 6f are unreasonable, for they
imply infinite apparent strain.

One way to eliminate or at least reduce such dis-
continuities is to seek displacements that maximize a
weighted combination of image correlation and displace-
ment smoothness. As discussed and implemented by
Hall (2006), this approach implies a tradeoff. We must
choose relative weights for correlation and smoothness.
Rickett et al. (2006) discuss a similar correlation and
smoothing tradeoff in estimating only vertical (time)
shifts. These authors highlight the importance of not
smoothing too much.

We describe a different approach below. We im-
prove the accuracy of estimated displacements with a
process that includes improved image processing and a
more robust method for finding correlation peaks. With
this process we obtain more accurate and thereby more
continuous estimates of displacements without explic-
itly smoothing them.

3 LOCAL PHASE-CORRELATION

The first step in our process is to improve the spa-
tial resolution of cross-correlations in directions parallel
to features in seismic images. We do this by applying
spatially-varying multi-dimensional prediction error fil-
ters to both images before cross-correlating them. The
prediction error filters whiten the spectra of our images
in all spatial dimensions.

Figures 7 illustrate the effect that this spectral
whitening step has on our estimates of apparent dis-
placements. After whitening, cross-correlation peaks are
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Figure 7. Images (a) and (b) after whitening with local
prediction error filters. Peaks of local phase-correlations in
(c) and (d) are well resolved in both vertical and horizontal
directions. Estimates of vertical and horizontal components
of displacement in (e) and (f) are more reliable than those
without whitening. Visible patterns of errors and discontinu-
ities in these estimates are caused by fitting 2-D quadratic
functions to sampled correlation values nearest the peaks.

well resolved in both vertical and horizontal directions.
In Figures 7c and 7d we see horizontal displacements of
those peaks that are not apparent in Figures 6¢ and 6d.

3.1 Phase-correlation with Fourier transforms

Cross-correlation of whitened images is equivalent to
phase-correlation, a process that is widely used in the
context of image registration (Kuglin and Hines, 1975).

Phase-correlations are usually computed using
Fourier transforms. Let F' and G denote the Fourier
transforms of images f and g, respectively. Then the
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cross-correlation ¢ = f x g has Fourier transform C' =
F*G. Assume temporarily that f and g are related by
a constant displacement vector shift u such that

f(z1,@2) = g(z1 + u1, 2 + us).
Then

F(ky, k2) = G(ky, ko )e'F1vatikzuz

and

Clky, k2) = |F(k1, k2)||G(ky, k)|e Frua—thauz,

In phase-correlation we divide by the amplitude fac-
tors to obtain

F*(k1, ko) G(k1,k2) —ikyut —ikou
P(k1, ko) = = e MTrHATERZUZ
(k1o 82) = TPk, ko) Gk, o)
These divisions in the frequency domain whiten the am-
plitude spectra of our images f and g. After this division
the inverse-Fourier transform of P(k1,k2) is a shifted
delta function

p(x1,x2) = 0(x1 — w1, T2 — u2).

Note that the peak at (u1,u2) of the phase-correlation
delta function p is equally well-resolved in all directions.

In practice both p and P are sampled functions
and we compute the latter with fast Fourier transforms.
One method for then estimating the components of con-
stant displacement u; and w2 is to fit by least-squares
a plane to the sampled phase of P(k1,k2), perhaps re-
stricting the fit to those frequencies (k1,k2) for which
signal-to-noise ratios are high. The fitting parameters
are the unknown components u; and us. More sophisti-
cated frequency-domain methods are described by Hoge
(2003) and by Balsi and Foroosh (2006).

In our discussion of phase-correlations above we
temporarily assumed that the components of displace-
ment u; and us are constants. When displacements vary
spatially, Fourier-transform methods applied to local
windows are costly, especially when estimating appar-
ent displacement vectors for every image sample. To es-
timate a dense spatially varying vector field of appar-
ent displacements, we need an alternative space-domain
method.

3.2 Local prediction error filtering

Our alternative is to apply local prediction error filters
to the images f and g before computing local cross-
correlations. These filters approximately whiten the am-
plitude spectra of the images, much like frequency-
domain division by | F| and |G| in phase-correlation. The
difference is that the prediction error filters are local;
we compute and apply a different filter for every image
sample.

For a sampled image f, the simplest 2-D prediction
error filter that could possibly work computes prediction
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errors

elji, J2; k1, k2] = flj1, jo]
—ai Uﬁ, kz]f[Jl - 17j2]
—az[ky, k2] flj1, 52 — 1],

where the coefficients ai[k1, k2] and az[k1, k2] are found
by minimizing a sum of squared prediction errors:

Blky, ko] = € [ju, ja; b, ke) wiky — g1, bz — jol.

J1,j2
Again, the Gaussian window w localizes our computa-
tion of the prediction coefficents a; and az. For each im-
age sample indexed by [k1, k2], we minimize this sum by
setting both 0FE/da1 and OE/Oas to zero, which leads
to the following system of equations:

Rll R12 ai T1
A ®

where
Rn = Z £l = 1, go] wlks — jr, ka — o]
Ji.J2
= > Pl da) wiks = 1= ja ka2 — o]
Ji.J2

= Cys(ki —1,k2;0,0),
and likewise
Riy = Cyp(ky — 1,ka; 1, 1),
Ry = Cyy(ki, k2 — 1;0,0),
r1 = Cyr(ki, k2;—1,0), and
ro = Cyr(ki, k2;0,—1).

We use equation 2 to compute the auto-correlation val-
ues Cyy(k1,ka;l1,l2). The 2 x 2 matrix in equations 6
is symmetric and positive-definite (for non-constant f),
as it is a Gaussian-weighted sum of outer products:

[ i — 1,32 ] (£l = 1,52) fljr, 52 — 1]
f[jlva - 1]

Therefore, this matrix is never singular and a solution
[a1 az] always exists.

In the 3-D example of Figures 1-4, we computed
three prediction coefficients a1, a2, and as in a straight-
forward extension of equations 6. We again used a 3-D
Gaussian window with radius o = 12 samples.

It is important that we evaluate the auto-
correlation values in equation 6 at the correct sample
indices. For example, the value R11 = Cyy¢lk1—1, k2;0, 0]
that we need to compute ailk1, k2] and az[ki, k2] typ-
ically does not equal the value Cyslki, k2;0,0]. If the
latter value is used, then the system of equations 6 may
not be positive-definite and solutions may not exist.

By computing and applying prediction error filters
for every sample of the images shown in Figures 6a
and 6b, we obtain the images shown in Figures 7a

and 7b. Although our local prediction error filters are
simple, with only two coefficients, the normalized lo-
cal cross-correlations shown in Figures 7c and 7d have
peaks that are more well-resolved than those in Fig-
ures 6¢ and 6d.

Unfortunately, resolution of the correlation peaks in
Figures 7c and 7d is now too high. A quadratic function
is inadequate for interpolation of broadband signals such
as the sampled correlation function shown in Figure 7d.
Errors in quadratic fitting are responsible for the dis-
continuities and patterns visible in the estimated com-
ponents of displacement displayed in Figures 7e and T7f.

3.3 Bandlimited local phase-correlations

To reduce errors in quadratic fitting, we apply a 2-D
low-pass smoothing filter to our images after spectral
whitening. This filter has an isotropic Gaussian impulse
response, like the 2-D window w that we use for local
cross-correlations, but with a smaller radius ¢ = 1 sam-
ple.

Figures 8 show the result of smoothing after whiten-
ing for our test images. Like those in Figures 7c and 7d,
the correlation peaks in Figures 8c and 8d remain well-
resolved and more isotropic than those in Figures 6¢c
and 6d, while smooth enough to reduce artifacts caused
by errors in quadratic fitting,.

In addition to improving the accuracy of quadratic
fitting, low-pass filtering has another benefit. Prediction
error filtering tends to enhance high-frequency noise.
Where this noise is not repeatable in time-lapse experi-
ments, it will degrade estimates of displacements. Gaus-
sian smoothing after prediction error filtering attenuates
the higher frequencies.

Smoothing after prediction error filtering is com-
mon practice in seismic data processing. For example,
spiking deconvolution, a form of prediction error fil-
tering, is often followed by low-pass filtering of seis-
mograms. We use the same processing here, but with
multi-dimensional prediction error filters computed and
applied seamlessly for each image sample.

3.4 Remaining problems

In all of the examples of Figures 6, 7, and 8, we com-
puted cross-correlation values for multiple integer lags
[l1,12], and then fit 2-D quadratic functions to correla-
tion peaks.

Recall that the fitted quadratic function need not
exactly interpolate any of the 9 samples nearest to the
sampled maximum correlation value, because the bi-
quadratic function has only six coefficients. Also recall
that this misfit may be greater in 3-D, as we fit 27 sam-
pled correlation values with only 10 tri-quadratic coef-
ficients. Errors in quadratic fitting have been reduced
but not eliminated in the example of Figures 8.

Another problem is the amount of memory needed
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Figure 8. Images (a) and (b) after whitening with local pre-
diction error filters and smoothing with a 2-D Gaussian filter.
Smoothing attenuates high-frequency noise that is amplified
by whitening, and facilitates location of the peaks of each
of the phase-correlations shown in (c) and (d). Estimates of
vertical and horizontal components of displacement in (e)
and (f) are more accurate than those without smoothing in
Figures 7e and 7f.

to hold all of the correlation values required for fitting.
Recall that we compute for each lag [l1,[2] an entire im-
age of cross-correlation values Cyq[k1, k2;11,12]. As sug-
gested by equation 2, this computation enables us to
implement Gaussian windowing with efficient recursive
filters.

As we iterate over lags, we must update for each im-
age sample indexed by [k1, k2] the lag [I1, 2] for which a
maximum sampled correlation value is found. For each
sample, if the current correlation value exceeds the max-
imum value found so far, we update that maximum
value and record the lag. After this first iteration over
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lags, the total number of correlation values computed is
the product of the number of image samples times the
number of lags.

This product can be a large number, especially for
3-D local correlations of 3-D images. Assuming that we
do not store all of the correlation values computed in
the first iteration, we must then recompute in a second
iteration the sampled correlation values for lags near-
est the lag with the maximum value. As we recompute
those correlation values, we must update and store the
coefficients of the quadratic polynomials required to lo-
cate correlation peaks. For 2-D images, 6 coeflicients are
required; for 3-D images, 10 coefficients.

Compared to memory required for other types of
3-D image processing, storage for 10 3-D volumes of
coefficients is large but not prohibitive. And this factor
of 10 is typically much less than the number of lags
[l1,12,13] scanned in the search for correlation peaks. We
need not store the correlation values for all lags scanned.

Nevertheless, as described in the following section,
we can significantly reduce both the memory required
and the number of correlation values computed, while
eliminating any errors due to quadratic fitting.

4 CYCLIC SEARCH

Following the whitening-and-smoothing step describe
above, the second step in our process is a cyclic sequence
of correlations and shifts along each of the axes of our
images.

4.1 Correlate-and-shift

We begin by cross-correlating two images in the verti-
cal direction and finding the locations of peaks of those
correlations. The peak locations that we find for each
image sample correspond to one component of the dis-
placement vectors that we wish to estimate.

We then shift one of the images using high-fidelity
sinc interpolation to compensate for our estimated ver-
tical components of displacements. This interpolation
aligns the two images by applying spatially varying ver-
tical shifts to one of them.

After compensating for vertical displacements,
alignment is incomplete where horizontal components
of displacement are non-zero. We therefore repeat this
correlation and shifting to estimate and compensate
for those horizontal components. After correlating and
shifting for each image axis, we repeat the entire se-
quence of vertical and horizontal correlations and shifts
until all shifts are negligible.

Figures 9 show estimated components of displace-
ment for a four-cycle sequence of correlations and shifts.
In each cycle we correlate and shift in both vertical and
horizontal directions.

As we cross-correlate for one component of lag, say,
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Figure 9. Four cycles of sequential estimation of two com-
ponents of displacement for the images in Figures 8a and 8b.
We first estimate vertical components of displacement (a).
After shifting the image in Figure 8b vertically to compen-
sate for these displacements, we estimate and compensate
for horizontal components (b). Repeating this process, we
obtain second (¢ and d), third (e and f) and fourth (g and
h) estimates of displacements. Compare these final estimates
with the known displacements in Figures 5.

l1, the other components of lag are zero. In other words,
we compute only the central column of normalized lo-
cal cross-correlation functions like that displayed in Fig-
ure 8d. The images and the Gaussian correlation win-
dows remain multi-dimensional; we use equation 2 just
as before. But we restrict our computation of cross-
correlation values to lags for which 2 = 0.

In the example of Figure 8d, the maximum corre-
lation value for [l1,l2 = 0] occurs for lag I1 = 3. So we
would use quadratic interpolation of the sampled corre-
lation values ¢[2,0], ¢[3,0], and c[4,0] with equation 5
to estimate the location of the correlation peak (some-
where between lags {1 = 2 and l; = 3) with sub-pixel
precision.

As we iterate over lags l1, we need only keep the
most recent three cross-correlation values for each im-
age sample. These values correspond to lags i1 — 1, 1,
and 1 + 1. When the correlation value for the middle
lag [1 exceeds the values for the other two lags, we use
equation 5 and quadratic interpolation to interpolate a
correlation peak value. If that peak value exceeds the
maximum peak value found so far, we update the max-
imum and the displacement u; at which the maximum
occurs.

The resulting estimates of displacement shown in
Figures 9g and 9h are the most accurate of all such
estimates shown in this paper. Compare these estimates
with the known displacements in Figures 5.

4.2 Why cyclic search is better

Several features make this cyclic sequence of correlations
and shifts attractive.

First, because only three (not six or ten) correlation
images are required to interpolate peaks, a cyclic se-
quence of one-dimensional searchs for correlation peaks
requires less memory than the direct multi-dimensional
search used for Figures 6, 7, and 8.

Second, each 1-D quadratic interpolation we per-
form to locate peaks is guaranteed to find a peak
value within one-half sample of the integer lag at which
the maximum sampled correlation value occurs. Recall
that no such guarantee exists for bi-quadratic and tri-
quadratic fitting of 2-D and 3-D correlation values; the
best-fitting quadratic polynomial may be a saddle with
no peak at all. In this aspect 1-D quadratic interpolation
is more robust.

Third, the cyclic sequence eliminates errors due to
quadratic interpolation, because those errors go to zero
as the shifts converge to zero. In each correlate-and-shift
cycle, we compute shifts with quadratic interpolation,
but we apply these shifts using sinc interpolation. (Sinc
interpolation is commonly used in seismic data process-
ing to apply one-dimensional shifts that vary with time
and space. An example is normal-moveout correction.)
Therefore, errors in quadratic interpolation do not ac-
cumulate and are gradually eliminated.



Finally, in a cyclic search for correlation peaks, we
may compute fewer correlation values than in an ex-
haustive search over all possible lags [I1, 2] (or, in 3-D,
[l1,12,13]) displayed in Figure 8d. In each correlate-and-
shift step of cyclic search, we compute only one column
or one row of cross-correlation values marked by blue
axes in Figure 8d.

Computational cost is proportional to the number
of correlate-and-shift cycles required to align the two
images, that is, for shifts to become negligible. When
displacements are small, convergence requires few itera-
tions. And as shifts decrease in later iterations, cost can
be reduced by limiting the range of lags for which we
compute correlation values.

Our cyclic search resembles iterative Gauss-Seidel
solution of large sparse systems of linear equations, in
which one iteratively solves one of many equations for
one variable while holding constant the other variables.
Cyclic search is also a well-known algorithm for opti-
mization of functions of several variables. In that sense
here we use cyclic search to maximize cross-correlation
functions computed for every image sample.

In the 3-D example of Figures 1-4, we used two
cycles of vertical-crossline-inline shifts. The shifts in the
second cycle were large enough to be worth applying,
but not so much as to warrant a third cycle.

4.3 Displacements from a sequence of shifts

As our cyclic search converges, the two images become
well aligned, and the shifts tend toward zero. How do we
estimate displacements from the shifts that we compute
and apply in each iteration of cyclic search?

Estimated components of displacements should not
be simple sums of shifts computed and applied in each
cycle.

To understand how to compute displacements from
a sequence of shifts, consider equation 1 for some un-
known components of displacement w1 and wus. Then
suppose that we have initial estimates u<10) and uém
(which may be zero) for these components and a cor-
responding shifted image
holj1,j2] = g(j1 + U<10) [71, 2], J2 + uéo) [jl,jz])-
Cross-correlating images f and ho for lags [l1,l2 = 0],
we estimate shifts s; that best align these two images
vertically. We then use sinc interpolation to compute

hilj1, jo] = ho(j1 + s1[41, j2, j2)

Cross-correlating images f and hi for lags [I1 = 0,12],
we estimate horizontal shifts s2, which we again apply
with sinc interpolation to obtain

haljr, j2] = b (1, ga + saljr, jal).-

Now suppose that this one cycle of two shifts has
aligned the two images, that our cyclic search has con-
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verged such that f[j1,72] = h2[j1,j2]. How do we com-
pute the components of displacements u1 and us?
Combining equations in the sequence above,

ha (1, j2
= M (jl, J2 + 82[j1,j2])
= ho (]1 + s1(j1, jo + s2[j1,42]), J2 + Sz[jl,jQ])
= g(s1 +wlir, g2, g2 +u2ljr, jo]),
where the components of displacements w1 and us are
u1[ji, j2] = s1 (j1, J2 + 82[j1,j2]) +
ul” (1 + 51031, g2 + s2lin, j2]), G + s2[j1, o))

and

uz2(j1, jo] = s2[j1, j2] +
us” (j1 + s1(j1, g2 + 8241, 4a]), o + s2ljr, 5l

It would be awkward and inefficient to compute dis-
placements in this way, only after our cyclic correlate-
and-shift sequence has converged. Instead we compute

ui i, go] = ul” (1 + s1lin, g2l G2) + salin, g

u(Ql)[jhjZ] = ué()) (]1 + 51[j17j2], j2>7

and then

uiP i1, 2] = u{” (41, g2 + sa2lji, o)

uS? i1, ja) = “gn(jh j2 + s2[j1,52]) + s2[ju, ja.

And because this single cycle of sequential shifts has
converged,

uilj, ja] = u$? [j1, jo]

. . 2 . .
usjr, 2] = u$? i1, ja).

More generally, in the mth iteration of cyclic search,
we estimate shifts s,, from local cross-correlations of
images f and h,,—1. If m is odd, we then compute

hnlj1, j2] = han—1 (J1 + smlj1, j2, j2)

u{™ (1, 52) = wi™ Y (G1 + smlin g2l d2) + smlin, g

(m)[

ul (m=1)(

g, do) = uy™ "V (G1 + smlir, gal, g2 ) ;

otherwise, if m is even, we compute

hml[j1, 52] = han—1(j1, 52 + smj1, j2])

ul™ [, jo] = u{" Y (1, 2 + smlj1, 52])

(m) (mfl)(

uy [J1, J2] = uy g2 + smlji, jol) + smlir, jal.

We repeat this cyclic sequence of correlations and shifts
until s,, is negligible.

The least obvious result of this analysis is this: in
the mth iteration of cyclic search we should use the
computed shifts s, to interpolate not only the image
hm—1, but both estimated components of displacement
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u{m Y D as well, before adding those shifts to

(m—1)
5 .

and ul™"
either u{™ ™" or u

In this way we iteratively computed the two com-
ponents of displacement shown in Figures 9. We used a
straightforward generalization of this cyclic sequence to
estimate the three components of displacement shown
in Figures 2-4.

The significance of interpolating displacements be-
fore accumulating shifts depends on the spatial vari-
ability of the displacements. Where displacements are
constant, this interpolation is unnecessary. Where dis-
placements vary, as in the examples shown in this paper,
omitting their interpolation would yield biased errors.
Whether small or large, these errors can be eliminated
by the sequence of computations described above.

5 CONCLUSION

Our process for estimating apparent displacements from
time-lapse seismic images consists of two steps: (1) spec-
tral whitening and Gaussian low-pass filtering followed
by (2) a cyclic sequence of local correlations and shifts.

This process exploits readily available tools for
image processing. We use efficient recursive filters to
achieve seamlessly overlapping Gaussian windows in our
computation of local cross-correlations and for isotropic
low-pass filtering. We use local cross-correlations to esti-
mate displacements and to compute multi-dimensional
local prediction error filters

The combination of cross-correlation after spec-
tral whitening with prediction error filters approximates
phase-correlation, a well-known tool used for image reg-
istration. Our adaptation of this tool enables a local
phase-correlation function to be computed efficiently for
every image sample.

The cyclic sequence of correlations and shifts is
a natural extension of today’s common estimation of
vertical apparent displacements from time-lapse seismic
images. Indeed, we typically begin by correlating and
shifting in the vertical direction, because that direction
is likely to yield the largest shifts. We then apply re-
peatedly the same simple, accurate and robust process
commonly used today for the vertical dimension to all
three spatial dimensions of 3-D images.

The one parameter that must be chosen with care
in our process is the radius o of the Gaussian windows.
Computational cost is independent of this radius, but
the accuracy and resolution with which we can measure
apparent displacements depends on it. Local correla-
tions become less reliable as windows become smaller.
Our ability to resolve changes in these correlations de-
creases as windows become larger.

In all of the examples shown in this paper, we have
used 0 = 12 samples. If we assume that a Gaussian
is effectively zero for radii greater than 30, then each
of the 3-D correlation windows used for the example

shown in Figures 1-4 contains almost 200,000 samples.
This number implies extensive averaging, and accounts
in part for the smoothness in our estimated displace-
ments.

Large windows do not however guarantee smooth
displacements. For example, in Figure 6 estimated hori-
zontal components of apparent displacement are discon-
tinuous, implying infinite apparent strain. Where oth-
ers (e.g., Rickett et al., 2005; Hall, 2006) have imposed
smoothness constraints on estimated apparent displace-
ments (in addition to using local windows for correla-
tions) we have instead refined our processing to address
the sources of these discontinuities.

While there is no guarantee that this improved
processing will ensure sufficient accuracy or resolution,
there is also no reason why this same processing could
not be used in conjunction with the additional smooth-
ness constraints developed by others.
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