
CWP-567

Local dip filtering with directional Laplacians

Dave Hale

Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA

ABSTRACT
Local dip filters attenuate or enhance features with a specified dip that may vary
for each image sample. Because these multi-dimensional filters change with each
sample, they should have a small number of coefficients that can be computed
efficiently from local dips. They should handle features that are vertical as
well as horizontal. They should have efficient and stable inverses that facilitate
the design and application of more discriminate notch filters. Local dip filters
constructed from approximations to directional Laplacians have these properties
and are easily implemented in any number of dimensions.

Key words: seismic image processing

1 INTRODUCTION

In seismic imaging of the earth’s subsurface, we often
describe the orientations of locally planar features by
dip angles θ and, for 3-D images, azimuthal angles φ.
Dip filters attenuate or enhance planar features based
on their dips and azimuths, and local dip filters are those
that can adapt locally to sample-to-sample changes in
those parameters.

Orientations of locally planar features may also be
described by reflection slopes. Fomel (2002) describes
a method for implementing plane-wave destruction fil-
ters with numerous applications, including estimation
of local slopes σ. Most of the applications described by
Fomel are for images that have not been migrated, for
which the vertical axis is time, and for which slopes are
limited by seismic wave velocities.

After migration, slopes of features in seismic images
may be infinite. Consider the dip of the flank of a salt
dome or a fold or the dip of a fault plane. Robust local
dip filters discriminate among features that are vertical
as well as horizontal, without special handling of infini-
ties. They are best parameterized by dips θ instead of
slopes σ.

Local dip filters should be invertible. From inverses
we can construct better dip filters and notch filters
that surgically remove features with a specified local
dip without attenuating other coherent features having
slightly different dips.

Figures 1 show an example. I first applied a local

dip filter to the image of Figure 1a to obtain the image
of Figure 1b. To this image I then applied the inverse
of a slightly modified local dip filter to create a notch
filter and the image of Figure 1c. Whereas both dip and
notch filters have removed strong coherent events, the
notch filter has preserved weaker but interesting coher-
ent features in Figure 1c.

Inverses of local dip filters are also useful for regu-
larization in seismic inverse problems. Instead of simply
requiring that solutions to such problems be smooth,
we may require that they be smooth in some spatially
varying directions. For example, those directions might
correspond to geologic dip (Clapp et al., 2004; Fomel
and Guitton, 2006). Figure 1d shows an example of such
anisotropic smoothing.

In this paper I describe invertible local dip filters
that are based on approximations to directional deriva-
tives of images. These robust filters handle features that
are vertical as well as horizontal, and have inverses that
can be used to construct notch filters. The directions
for the derivatives and, hence, coefficients of the filters
depend on estimates of dips of locally planar features.

1.1 Estimating local dips

To apply a local dip filter or its inverse, we need esti-
mates of local dips. In all of the examples of this paper, I
estimate local dips using local structure tensors, which
are also called gradient-square tensors (van Vliet and

2 D. Hale

(a) (b)

(c) (d)

Figure 1. A seismic image (a) after local dip-filtering to

remove the dominant locally linear feature found at each

sample. Filtering a broad range of dips (b) eliminates these
features and many others as well, leaving only high spatial

frequencies. Local notch filtering (c) is more discriminate,

preserving many weaker but locally coherent features of in-
terest. Applying the inverse of a local dip-filter to random

noise yields a texture (d) that shows the local orientation

estimated for each sample in (a).

Verbeek, 1995). For 2-D images, a structure tensor is a
2× 2 matrix:

G =

[
< g2

1 > < g1g2 >

< g1g2 > < g2
2 >

]
, (1)

where g1 and g2 denote vertical and horizontal compo-
nents of the gradient of an image, and < · > denotes
2-D Gaussian smoothing.

As shown by van Vliet and Verbeek (1995), the
orthogonal unit eigenvectors û and v̂ of the positive-
semidefinite matrix G describe the orientation of locally
linear features. Specifically, for each sample the vector
û corresponding to the largest eigenvalue is orthogonal
to the locally dominant linear feature at that sample.

Figures 2 show examples. The components of the
unit vectors û and v̂ are related to local dips θ by

u1 = cos θ and u2 = − sin θ,

v1 = sin θ and v2 = cos θ.

By convention the vertical component u1 of û is non-
negative; that is, −π/2 ≤ θ ≤ π/2.

-

?

x2

x1

û

v̂

û

v̂

(a) (b)

Figure 2. Unit vectors û and v̂ (a) define a coordinate sys-
tem aligned with the dominant dip estimated for every image

sample. By convention vertical components u1 (not shown)

of the local normal vectors û are always non-negative and in
this example are close to one for most samples. Horizontal

components u2 (b) are positive (white) for features dipping

upward to the right (θ < 0), and negative (black) for features
dipping downward to the right (θ > 0).

2 FOUR BASIC FILTERS

I begin by describing four basic local dip filters. The
second and third filters are derived from the first filter,
which was proposed by Claerbout (1992). The fourth fil-
ter is Fomel’s (2002) plane-wave destruction filter, which
I describe here for comparison and also because its im-
plementation is almost identical to that of the third fil-
ter.

2.1 Claerbout’s wavekill filter A

Let f denote a sampled image like that in Figure 2a, and
let g denote the output of a local dip filter A applied to
f . In directions parallel to the vectors v̂ in Figure 2a,
the image f changes slowly, and so derivatives in those
directions will be small. Hence, a simple local dip filter
A can be constructed from a local directional derivative:

g = v̂ · ~∇f,

or

A = v̂ · ~∇ = v̂T ~∇.

A simple finite-difference approximation to the gradient
~∇ has components

∂

∂x1
≈
− 1

2
− 1

2

1
2

1
2

and
∂

∂x2
≈
− 1

2
1
2

− 1
2

1
2

where x1 denotes the vertical spatial coordinate increas-
ing downward and x2 denotes the horizontal spatial co-
ordinate increasing to the right. The filter A is then

A =
− v1+v2

2
− v1−v2

2

v1−v2
2

v1+v2
2

,

Local dip filtering 3

where v1 and v2 are vertical and horizontal components
of the unit vector v̂ aligned with the features that we
wish to attenuate.

Alternatively, we can express the filter A in terms of
vertical and horizontal components of the normal vector
û:

A =
−u1−u2

2
u1+u2

2

−u1+u2
2

u1−u2
2

. (2)

This is the stencil for the wavekill filter proposed by
Jon Claerbout (1992). When applied to an image f , this
filter attenuates features that are parallel to the vector
v̂ and perpendicular to the vector û.

2.1.1 Implementing A

As the vectors û and v̂ vary from sample to sample, so
do the coefficients of this filter. The computational cost
of computing those coefficients for each sample is small,
due to their simplicity and the filter’s compact 2 × 2
stencil.

If we let

m =
u1 − u2

2
and p =

u1 + u2

2
, (3)

(m for minus, p for plus) then the wavekill filter stencil
becomes

A =
−m p

−p m
. (4)

An equation that implements this local dip filter is

g[i1, i2] = m[i1, i2]× f [i1, i2]

+ p[i1, i2]× f [i1 − 1, i2]

− p[i1, i2]× f [i1, i2 − 1]

− m[i1, i2]× f [i1 − 1, i2 − 1] (5)

for all image sample indices i1 and i2.
In this implementation I have chosen the lower-

right corner of the filter stencil as the output sample for
the filter. My choice is somewhat arbitrary. The sten-
cil has no sample about which it is symmetric, so any
corner will do.

Choosing the lower-right corner makes A a causal
quarter-plane filter in the sense that the output g[i1, i2]
depends only on present and past input samples in the
upper-left quarter plane.

2.1.2 Implementing A−1

If a causal filter has a causal and stable inverse, then
we say it is minimum-phase. (For an extension of the
minimum-phase concept to multi-dimensional filters, see
Claerbout, 1998.) The filter A is not minimum-phase; its

causal inverse is unstable. We obtain that causal inverse
by rewriting equation 5 to solve recursively for

f [i1, i2] =
(
g[i1, i2]

− p[i1, i2]× f [i1 − 1, i2]

+ p[i1, i2]× f [i1, i2 − 1]

+ m[i1, i2]× f [i1 − 1, i2 − 1]
)
/m[i1, i2]. (6)

A necessary (but insufficient) condition for stability is
that the divisor m[i1, i2] is never zero. For a dip θ = −45
degrees this inverse filter is clearly unstable, for then
u1 = u2 and m = 0. In fact this causal inverse filter is
unstable for all negative dips for which m < p.

2.1.3 Amplitude spectra of A

To assess the fidelity of the forward filter A we may look
at its 2-D amplitude spectra for various dips, as shown
in Figure 3.

For small wavenumbers less than half-Nyquist,
these filters have the desired amplitude response, with
the greatest attenuation along a (dark blue) line in the
direction of the normal vector û. For higher wavenum-
bers, contours of constant amplitude are no longer lin-
ear, and the wavekill filter attenuates dips that are not
parallel to v̂. This dispersion is caused by the finite-
difference approximation to the gradient ~∇.

2.2 Symmetric filter ATA

From the simple wavekill filter A = v̂ · ~∇ = v̂T ~∇ we can
construct a symmetric filter

ATA = ~∇T v̂v̂T ~∇
= ~∇T (I − ûûT)~∇, (7)

where I = ûûT + v̂v̂T is a 2× 2 identity matrix. Since
A is a directional derivative, ATA is like a directional
second derivative, or a directional Laplacian. More pre-
cisely, ATA is the negative of a directional Laplacian,
because ~∇T ~∇ = −~∇2.

2.2.1 Implementing ATA

An obvious way to apply this filter is to first apply the
linear filter A and then apply its transpose AT . The
transpose filter AT is easy to implement if we think of
equation 5 as multiplication by a sparse matrix, with
the columns of the input and output images f and g
arranged end to end in tall column vectors.

Thinking of the filter AT in this way leads us to the
following observation. Whereas equation 5 gathers four
weighted input samples f to compute one output sample
g, its transpose scatters one input sample into four out-
put samples with the same weights. This gather-scatter
symmetry can be seen in any software that carefully
implements the transpose of a linear filter.

4 D. Hale

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 3. 2-D amplitude spectra of Claerbout’s (1998)

wavekill filters A for dips of (a) 20, (b) 40, (c) 60, and (d)
80 degrees, and for −π ≤ k1 ≤ π and −π ≤ k2 ≤ π. Dark

blue denotes zero. Dark red denotes the maximum amplitude,

which varies for different filters.

Because the stencil for the filter A is small, the
stencil for the filter ATA is only slightly larger

ATA =

−m2 2mp −p2

−2mp 1 −2mp

−p2 2mp −m2

, (8)

where m and p are defined by equations 3. This stencil
is simply the 2-D auto-correlation of that in equation 4.

I have momentarily assumed that m and p are con-
stants. When they vary spatially the coefficients in this
stencil are not centrosymmetric (not symmetric about
its center) and the central coefficient may not equal one.

It might be tempting to implement this filter by us-
ing m[i1, i2] and p[i1, i2] for the indices i1 and i2 of the
central sample in this stencil to compute the filter coeffi-
cients for the eight adjacent image samples. But this ap-
proach does not yield a symmetric positive-semidefinite
composite filter ATA.

As described above, one proper way to implement
ATA is to first apply the filter A for variable coefficients,
and then to apply the filter AT for variable coefficients.
The impulse response of the composite filter ATA will
vary with the location of the impulse, but it will not gen-
erally be centrosymmetric like the stencil of equation 8
above.

A more efficient way to achieve ATA is suggested
by equation 7. We may first apply the gradient filter ~∇,
then multiply by the 2× 2 matrix v̂v̂T = I − ûûT , and
finally apply the transpose of the gradient filter ~∇T .

These three steps can all be performed in a single
pass over the input and output images. Here is a frag-
ment of a C, C++ or Java computer program that im-
plements the filter of equation 7 in one-pass:

for (int i2=1; i2<n2; ++i2) { // i2=0?

for (int i1=1; i1<n1; ++i1) { // i1=0?

float u2i = u2[i2][i1];

float u1i = sqrt(1.0f-u2i*u2i);

float a11 = 1.0f-u1i*u1i;

float a12 = -u1i*u2i;

float a22 = 1.0f-u2i*u2i;

float fa = f[i2][i1]-f[i2-1][i1-1];

float fb = f[i2][i1-1]-f[i2-1][i1];

float f1 = 0.5f*(fa-fb);

float f2 = 0.5f*(fa+fb);

float g1 = a11*f1+a12*f2;

float g2 = a12*f1+a22*f2;

float ga = 0.5f*(g1+g2);

float gb = 0.5f*(g1-g2);

g[i2][i1] = ga;

g[i2-1][i1-1] -= ga;

g[i2][i1-1] -= gb;

g[i2-1][i1] += gb;

}

}

This simple fragment does not compute the first row
i1 = 0 or first column i2 = 0 of the output image g;
those cases are easily handled by assuming zero values
outside array bounds.

2.2.2 Implementing (ATA)−1

In applications requiring inverse filters, a symmetric
positive-semidefinite ATA is especially useful. For if we
try to apply (ATA)−1 = A−1A−T using a cascade of
fast recursions as in equation 6, we encounter the same
instability that we have seen before.

However, because ATA is symmetric positive-
semidefinite and sparse, we can apply inverse filters by
solving systems of equations ATAf = g by the iterative
method of conjugate gradients. This method requires
only three extra arrays, each the size of the images f
and g. For 3-D images, this relatively low memory re-
quirement can be an important consideration.

An alternative to conjugate-gradient iterations is
Cholesky decomposition of ATA. For variable coeffi-
cients this matrix decomposition may be more costly
than the method of conjugate gradients.

However, an approximation to Cholesky decompo-
sition may be adequate. The approximation is Wilson-
Burg factorization (Fomel et al., 2003), a method
for computing a minimum-phase filter from its auto-
correlation. The Wilson-Burg method computes a
minimum-phase filter Ã such that

Local dip filtering 5

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 4. 2-D amplitude spectra of symmetric filters ATA

for dips of (a) 20, (b) 40, (c) 60, and (d) 80 degrees, and
for −π ≤ k1 ≤ π and −π ≤ k2 ≤ π. These amplitudes are

the square of those in Figures 3. Dark blue denotes zero.

Dark red denotes the maximum amplitude, which varies for
different filters.

ÃT Ã ≈ ATA. (9)

In my approximations I computed minimum-phase fil-
ters Ã with 14 non-zero coefficients such that ÃT Ã ap-
proximates ATA in the stencil of equation 8 above.

I have tabulated such filters as a function of dip θ,
and then applied Ã for variable coefficients by select-
ing for each output sample the most appropriate filter
from the table. Because each of the tabulated filters Ã
is minimum-phase, both Ã and ÃT have stable inverses,
and those inverses Ã−1 and Ã−T can be implemented
efficiently as recursive filters.

In practice the differences between ATA and ÃT Ã
are insignificant; the approximation in equation 9 is ad-
equate. Differences in the inverses however may be more
significant. Even then the filter Ã−1Ã−T is useful as a
preconditioner (approximate inverse) in the method of
conjugate gradients when applying (ATA)−1.

2.2.3 Amplitude spectra of ATA

For constant coefficients we may compute amplitude
spectra of the centrosymmetric stencil ATA of equa-
tion 8 for different dips. These are shown in Figures 4.

Amplitude spectra for ATA are simply the square

of those for A. (Compare Figures 3 and 4.) Squaring
the amplitudes broadens the valleys of attenuation. The
filter ATA attenuates the specified dip but significantly
attenuates many nearby dips as well. In this respect, the
filter ATA is less discriminant than A.

2.3 Folded filter B

A better filter would have the amplitude spectrum of
A and a stable inverse that does not require solution of
a sparse system of linear equations. I obtained such a
filter by folding the stencil of ATA in equation 8 from
right to left symmetrically about its center:

B =

−2m2 2mp

−4mp 1

−2p2 2mp

.

In folding, I centrosymmetrically added coefficients on
the right side of the stencil for ATA to those on the
left side, leaving the central column of coefficients un-
changed.

To understand why such folding might provide a
useful dip filter, imagine a dipping feature that passes
through the central sample of the stencil for ATA. Be-
cause this stencil is centrosymmetric, the products of
the dipping feature and coefficents on the right are the
same as products obtained for coefficients on the left. So
we can simply double the left-side products and omit the
right-side products.

Another way to derive the stencil for B is to con-
struct a weighted sum of wavekill filters with the goal of
making that sum invertible. Recall that the inverse filter
of equation 6 is unstable for m = 0. In other words, for
m = 0, the filter of equation 5 is not invertible. In this
case, that wavekill filter has zero weight in the weighted
sum:

B = 2m×

−m p

−p m

0 0

+ 2p×

0 0

−m p

−p m

.

In this sum, the left-hand stencil handles the positive
dips θ > 0 for which u2 < 0 and m 6= 0, while the right-
hand stencil handles the negative dips θ < 0 for which
u2 > 0 and p 6= 0. The scale factor 2 makes this sum
the same as the stencil obtained by folding:

B =

−2m2 2mp

−4mp 1

−2p2 2mp

. (10)

6 D. Hale

2.3.1 Implementing B

Implementation of the folded filter B with six coeffi-
cients is much like that for the wavekill filter A with
four coefficients. We let the middle-right coefficient with
value 1 in this stencil be the central sample for the filter
B. Then, for each output sample, we simply multiply co-
efficients in this stencil by corresponding input samples
and sum the products.

When the coefficients vary spatially this operation
is not convolution; but it is linear, and we may again
think of B as a large sparse matrix with which we com-
pute an output image g = Bf from an input image f .

2.3.2 Implementing B−1

Because the central sample for the filter B is 1, and
therefore never 0, we might hope that this filter is easily
inverted. Indeed, this potential motivated the weighted
sum used to derive B. However, unlike the wavekill
quarter-plane filter A, the folded half-plane filter B is
not causal, due to the non-zero lower-right coefficient
2mp that is generally non-zero.

Therefore, given g[i1, i2] we cannot simply solve for
the central sample f [i1, i2] in terms of previously com-
puted adjacent samples, as I did in equation 6. Specifi-
cally, the sample f [i1, i2] is coupled by the right column
of the stencil for B to the samples above and below it.

However, if we have already computed f [i1, i2 − 1]
for all indices i1, then we may compute f [i1, i2] for all
i1 by solving a tridiagonal system of equations. Unlike
more general sparse systems, tridiagonal systems can be
solved efficiently without iterations.

In summary, we may apply the inverse filter B−1 to
an image by recursively solving tridiagonal systems of
equations from left to right. We begin with i2 = 0 and
assume that f [i1,−1] = g[i1,−1] = 0. We then solve
recursively for f [i1, 0], f [i1, 1], and so on.

2.3.3 Amplitude spectra of B

Amplitude spectra for the filter B are shown in Fig-
ures 5. Let us again focus our attention on small
wavenumbers near the centers of these spectra, where
the filters should be most accurate.

For small dips the amplitude spectra for B resem-
ble those for the wavekill filter A in Figures 3. For the
largest dip θ = 80 degrees the amplitude spectrum of B
is more like that for ATA in Figure 4d.

These differences in amplitude spectra are caused
by folding in one direction. Folding horizontally makes
the horizontal part of the directional second-derivative
ATA more like a first-derivative, but leaves the vertical
part like a second-derivative.

One might wonder whether folding both horizon-
tally and vertically would reduce these differences. How-
ever, the resulting quarter-plane filter would treat fea-

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 5. 2-D amplitude spectra of folded filters B for dips

of (a) 20, (b) 40, (c) 60, and (d) 80 degrees, and for −π ≤
k1 ≤ π and −π ≤ k2 ≤ π. Dark blue denotes zero. Dark red

denotes the maximum amplitude, which varies for different

filters.

tures with positive dips differently than those with neg-
ative dips. Therefore I folded only horizontally to obtain
the half-plane filter B.

2.4 Fomel’s plane-wave destruction filter C

Our search for a filter with a stencil like that in equa-
tion 10 was motivated by Fomel’s plane-wave destruc-
tion filter (2002), which has a similar stencil:

C =

− (1+σ)(2+σ)
12

(1−σ)(2−σ)
12

− (2+σ)(2−σ)
6

(2+σ)(2−σ)
6

− (1−σ)(2−σ)
12

(1+σ)(2+σ)
12

. (11)

where σ = v1/v2 = −u2/u1 = tan θ is the slope of the
feature to be attenuated.

The coefficients in the left and right columns of this
stencil approximate quadratic interpolations of three
samples with indices i1 − 1, i1, and i1 + 1, evaluated
at i1 − σ/2 and i1 + σ/2, respectively. By subtracting
the interpolated value on the right from the one on the
left, this filter annihilates features with slope σ.

The accuracy of the interpolation decreases with
increasing |σ|. For vertical features, σ and the coeffi-
cients of C in equation 11 are infinite, and this filter is
unstable.

Local dip filtering 7

Fomel describes higher order interpolations that
could be used instead, but these too will fail for ver-
tical or near vertical features. The problem here lies in
choosing one direction for interpolation, the vertical x1

direction. For features with slopes |σ| > 1 we should
instead be interpolating in the horizontal x2 direction.

2.4.1 Implementing C

Implementation of the plane-wave destruction filter for
any slope is the same as that for filterB described above,
and vice-versa. Indeed, one of my motives for designing
filter B was to make it easy to insert B into any existing
implementation of filter C.

Infinities for vertical features can be eliminated by
simply multiplying the coefficients of this filter by u1 to
obtain

C2 =

− (u1−u2)(2u1−u2)
12

(u1+u2)(2u1+u2)
12

− (2u1−u2)(2u1+u2)
6

(2u1−u2)(2u1+u2)
6

− (u1+u2)(2u1+u2)
12

(u1−u2)(2u1−u2)
12

. (12)

Coefficients of this normalized filter are finite for all
dips.

2.4.2 Implementing C−1

I have not used the normalized filters C2 in the exam-
ples shown in this paper, partly because they are not
the more familiar filters proposed by Fomel (2002), and
also because normalization does not help with the im-
plementation of inverse filters.

For slopes |σ| < 1 we can implement inverse filters
C−1 the same way we implement B−1. That is, we can
recursively construct and solve tridiagonal systems of
equations from left to right when applying C−1.

However, for slopes |σ| > 1, the corresponding tridi-
agonal matrix is not diagonally dominant, and this left-
to-right recursion becomes unstable.

2.4.3 Amplitude spectra of C

Amplitude spectra for the plane-wave destruction filter
C of equation 11 are shown in Figures 6. For smaller
dips, the amplitudes resemble those of the other filters
described above.

For larger dips, these amplitude spectra are aliased.
This aliasing may be useful when attempting to remove
aliased dipping events from images, but in such cases
the filter C will for some wavenumbers also remove un-
aliased events having different smaller dips.

3 EXAMPLES

Qualities of the four local dip filters described above are
best illustrated with examples. To compare and contrast

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 6. 2-D amplitude spectra of Fomel’s plane-wave de-

struction filters C for dips of (a) 20, (b) 40, (c) 60, and (d)
80 degrees, and for −π ≤ k1 ≤ π and −π ≤ k2 ≤ π. Dark

blue denotes zero. Dark red denotes the maximum amplitude,

which varies for different filters.

these filters, I applied them to images with small dips,
large dips, and a test image with a complete range of
all possible dips.

In all examples, I first estimated local dips from lo-
cal structure tensors, and then used those dips to com-
pute the coefficients for all four filters.

3.1 Small dips

The first example is the input image of Figure 1a (also
Figure 2a). Dips of dominant features in this image are
small, with |θ| < 45 degrees.

Output images for all four filters — A, B, C and
ATA — are displayed in Figures 7. All filters attenuate
the locally planar events in these images. The output
images for filters A, B and C are almost identical as
we would expect from similarities in their amplitude
spectra for small dips.

The output for filter ATA is notably different, as
it effectively differentiates the input image twice in-
stead of once. This filter therefore further amplifies high
wavenumbers while attenuating a broader swath of dips
for low wavenumbers. Again this output is consistent
with the amplitude spectra for small dips shown in Fig-
ures 4a and 4b.

To test the inverses of the four filters for small dips,
I applied them to an image containing isotropically ban-

8 D. Hale

(a) (b)

(c) (d)

Figure 7. Output images for local dip filters (a) A, (b) B,

(c) C and (d) ATA applied to the image of Figure 1a. All

filters attenuate locally coherent dipping features, but leave
only features with dips that differ significantly from the pre-

dominate dip. For small dips, the outputs for the folded filter

B and Fomel’s plane-wave destruction filter C appear almost
identical to that for the wavekill filter A.

dlimited random noise. Inverses that are unstable for
such random images are also unstable for real images,
because pseudo-random rounding errors are created in
the application of inverse filters to any real image.

The causal recursive inverse A−1 is unstable and
produces no output. For the small dips in this example,
the recursive tridiagonal inverses B−1 and C−1 produce
almost identical textures.

Dips in the texture for the inverse (ATA)−1 are less
well defined than those for B−1 and C−1. Because the
filter ATA attenuates a wider range of dips, its inverse
(ATA)−1 amplifies a wider range of dips instead of a
single sharply defined dip at each sample.

3.2 Large dips

A simple way to test local dip filters for large dips is
to transpose the image used in the previous examples,
so that horizontal features become vertical. This trans-
posed image is shown in Figure 9a.

Figure 9b shows a synthetic test image with small
and large, negative and positive dips. For any sample
in this image, there exists only one coherent event with
one local dip, and the output for an ideal local dip filter
should be zero.

(a) (b)

(c) (d)

Figure 8. Application to a random-noise image of inverses

of local dip filters (a) A, (b) B, (c) C and (d) ATA. Causal

inverses of wavekill filters A are unstable. Inverses for the
folded filter B and Fomel’s filter C are obtained by recur-

sively solving tridiagonal systems of equations from left to

right. The inverse of the symmetric filter ATA is computed
by conjugate-gradient iteration.

(a) (b)

Figure 9. Test image (a) with vertical features is the trans-
pose of the image of Figure 1a. Test image (b) is a synthetic

image with all dips.

Filter outputs for the transposed input are shown
in Figures 10. For this example, the coefficients of the
plane-wave destruction filter C approach infinity, and
this accounts for the high amplitudes in Figure 10c.

The similarity of the outputs for the folded filter B
(Figure 10b) and the symmetric filter ATA (Figure 10d)
is consistent with their amplitude spectra for the largest
dip in Figures 4d and 5d. For dips near 90 degrees, both

Local dip filtering 9

(a) (b)

(c) (d)

Figure 10. Output images for local dip filters (a) A, (b)

B, (c) C and (d) ATA applied to the transposed image in

Figure 9a. For large dips, the output for Fomel’s filter C goes
to infinity.

of these filters approximate a second derivative in the
vertical direction.

I applied the inverses of these four filters to a
random-noise image to obtain the textures shown in
Figures 11. The inverse A−1 for the wavekill filter is
again unstable, as is the inverse C−1 for the plane-wave
destruction filter.

For near-vertical events the inverses B−1 and
(ATA)−1 exhibit similar textures in Figures 11b
and 11d, consistent with the similarity of the filters out-
puts in Figures 10b and 10d.

Outputs for the circular synthetic input with all
dips are shown in Figures 12. The most obvious dif-
ference in these output images is the instability of the
plane-wave destruction filter C for large dips.

Textures for the four inverse filters are shown in
Figures 13. The inverses A−1 and C−1 are again unsta-
ble. Texture for the inverse (ATA)−1 is most consistent
for all dips.

4 USEFUL COMBINATIONS

We can combine basic filters like B and ATA and their
inverses to obtain notch filters or dip filters that are
more useful than the basic filters alone.

To simplify notation, let H denote the filter ATA

(a) (b)

(c) (d)

Figure 11. Application to a random-noise image of inverses

of local dip filters (a) A, (b) B, (c) C and (d) ATA for dips

obtained from the transposed image in Figure 9a. Causal
inverses of wavekill filters A are unstable. Inverses for the

folded filter B and Fomel’s filter C are obtained by recur-

sively solving tridiagonal systems of equations from left to
right. The inverse of the symmetric filter ATA is computed

by conjugate-gradient iteration.

defined by equation 7:

H ≡ ATA = ~∇T v̂v̂T ~∇
= ~∇T (I − ûûT)~∇.

If we neglect errors due to finite-difference approxima-
tions of derivatives, then the Fourier transform of this
basic filter is

H(k1, k2) = (v1k1 + v2k2)2.

Contours of constant amplitude H(k1, k2) are par-
allel lines corresponding to constant v1k1 + v2k2. These
parallel contours are apparent near the origins of the
spectra in Figures 4, where wavenumbers and finite-
difference errors are small.

4.1 Notch filters

To construct a notch filter, we first define a perturbed
basic filter

H(ε) ≡ ~∇T v̂v̂T ~∇+ εI.

Then a notch filter is the composite filter defined by

Hn = H−1(ε) H(0).

10 D. Hale

(a) (b)

(c) (d)

Figure 12. Output images for local dip filters (a) A, (b) B,

(c) C and (d) ATA applied to the test image in Figure 9b.

For large dips, the output for Fomel’s filter C goes to infinity.

(a) (b)

(c) (d)

Figure 13. Application to a random-noise image of inverses

of local dip filters (a) A, (b) B, (c) C and (d) ATA for dips
obtained from the synthetic test image in Figure 9b.

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 14. 2-D amplitude spectra of notch filters Hn for

dips of (a) 20, (b) 40, (c) 60, and (d) 80 degrees, and ε =
0.01. Dark blue and red denote amplitudes of zero and one,

respectively.

Neglecting finite-difference errors, the Fourier transform
of this notch filter is

Hn(k1, k2) =
(v1k1 + v2k2)2

(v1k1 + v2k2)2 + ε
.

Contours of constant amplitude Hn(k1, k2) are again
parallel lines corresponding to constant v1k1 + v2k2.

Amplitude spectra for notch filters with ε = 0.01
are displayed in Figures 14. Comparing these spectra
with those of Figures 4, we see how notch filters Hn can
be more discriminate than the basic filters H = ATA in
their attenuation of specified dips.

The parameter ε controls the width of each notch. If
we choose ε = 0, then Hn = 1 and the filters do nothing.
By increasing ε slightly we create a narrow notch at the
dip to be zeroed, and the width of this notch grows with
ε. Far from the notch, spectral amplitudes approach one.

A small positive ε has a side benefit. It increases
the eigenvalues of H(ε), thereby reducing the number of
iterations required when the method of conjugate gra-
dients is used to apply H−1(ε) in the notch filter Hn.
We can easily modify any implementation of H−1 to
implement H−1(ε).

The difference between the basic filter H = ATA
and the notch filter Hn is highlighted above in Fig-
ures 1b and 1c, respectively. Both filters attenuate the
stronger coherent events in the image of Figure 1a. The
basic filter H attenuates much more, leaving only high-

Local dip filtering 11

?

-

k1

k2

(a)
?

-

k1

k2

(b)

?

-

k1

k2

(c)
?

-

k1

k2

(d)

Figure 15. 2-D amplitude spectra of dip filtersHd for dips of

(a) 20, (b) 40, (c) 60, and (d) 80 degrees, and ε = 0.05. Dark
blue and red denote amplitudes of zero and one, respectively.

wavenumber and mostly incoherent energy. The notch
filter Hn is more discriminate, preserving many coher-
ent and interesting features, while surgically removing
the stronger events.

4.2 Better dip filters

To construct a better dip filter, we perturb our basic
filter H in a slightly different way:

H(ε) ≡ ~∇T
[
(1 + ε)I − ûûT

]
~∇.

Then the improved dip filter is the composite filter de-
fined by

Hd = H−1(ε) H(0).

Neglecting finite-difference errors, the Fourier transform
of this dip filter is

Hd(k1, k2) =
(v1k1 + v2k2)2

(v1k1 + v2k2)2 + ε(k2
1 + k2

2)
.

Contours of constant amplitude Hd(k1, k2) are lines ra-
diating from the origin. Amplitude is a function of only
the ratio k2/k1.

Amplitude spectra of this dip filter for ε = 0.05 are
displayed in Figures 15.

As their Fourier transforms suggest, our better dip
filters Hd are simply notch filters for which the width
of the notch grows with increasing wavenumbers k1 and

k2. The parameter ε controls the rate at which the notch
width grows or, equivalently, the range of dips attenu-
ated.

4.3 3-D filters

Much of the design of local dip filters above can be ex-
tended to three (or more) dimensions.

We can estimate dips θ and azimuths φ of locally
planar features from 3-D local structure tensors, 3 × 3
matrices computed from image gradients like those in
equation 1 for two dimensions. For each image sample,
the eigenvectors of these 3 × 3 matrices are orthogonal
unit vectors û, v̂ and ŵ. The vector û is normal to the
best-fitting plane and corresponds to the largest eigen-
value. The vectors v̂ and ŵ lie within that best-fitting
plane.

In three dimensions

ATA = ~∇T (I − ûûT)~∇,

which is identical to equation 7, except that vectors
now have three components instead of two, and I =
ûûT + v̂v̂T + ŵŵT is a 3 × 3 identity matrix. In any
number of dimensions, the directional Laplacian ATA
is the isotropic Laplacian ~∇T ~∇ minus the projection of
that Laplacian onto the normal vector û.

By subtracting the component of an isotropic
Laplacian that is orthogonal to a plane, we construct
local dip filters that attenuate features lying within that
plane.

As discussed above for two dimensions, the most ef-
ficient way to apply ATA for any number of dimensions
is to

(i) apply the gradient filter ~∇,
(ii) multiply by the matrix I − ûûT , and
(iii) apply the transpose of the gradient filter ~∇T .

Again, these three steps can be performed in a single
pass over the input and output images.

Having generalized directional Laplacian filters
ATA to three or more dimensions, we can generalize
composites of these filters as well. Definitions and im-
plementations of the notch filter Hn and the dip filter
Hd are almost identical in any number of dimensions.

Note that 3-D local dip filters constructed as direc-
tional Laplacians are not equivalent to a cascade of 2-D
filters. To understand the difference, consider a hypo-
thetical example in which we wish to remove horizontal
planar features from a 3-D image. For these features,
the normal vector û points vertically downward.

In this case, the amplitude spectrum of the required
directional Laplacian filter is k2

2 + k2
3, where k2 and k3

are wavenumbers corresponding to horizontal spatial co-
ordinates x2 and x3. As expected, this amplitude is zero
when both k2 = 0 and k3 = 0.

If we instead apply a 2-D filter in the x2 direction,
followed by a 2-D filter in the x3 direction, the amplitude

12 D. Hale

spectrum of the composite filter is k2
2k

2
3. This amplitude

is zero when either k2 = 0 or k3 = 0.
The difference between a 3-D directional Laplacian

and a cascade of two 2-D filters lies in the difference
between and and or. The filter cascade will attenuate
features that appear horizontal in either constant-x2

or constant-x3 slices of a 3-D image, even when those
features may be dipping in directions perpendicular to
those slices. The 3-D directional Laplacian will correctly
attenuate only truly horizontal features.

5 CONCLUSION

By constructing basic dip filters from directional deriva-
tives, we obtain filters that

• adapt easily to changes in local dip,
• handle robustly all (even vertical) dips,
• can be inverted to construct notch filters, and
• extend easily to any number of dimensions.

This paper highlights two such basic dip filters B and
ATA.

The folded filter B was designed to fit on the sten-
cil of Fomel’s plane-wave destruction filter C. Software
that uses filter C can easily be modified to use filter B,
which more robustly handles steeply dipping features
and has a stable and efficient inverse. The efficiency of
the inverse B−1 is due to the efficiency with which we
can solve tridiagonal systems of equations.

Folding to obtain the filter B from the symmetric
filter ATA is useful in two dimensions, but less so in
higher dimensions. The limitation is that folding works
for only one axis. In three or more dimensions, the in-
verse B−1 of a folded filter B requires solution of a
sparse system of equations that is not tridiagonal.

For 3-D images it may be simpler and more effi-
cient to use ATA instead. The symmetric filter ATA
has only a slightly larger stencil and can be implemented
efficiently in only one pass over input and output im-
ages. Inverse filters can be applied either by conjugate-
gradient iterations or with tables of minimum-phase fil-
ters precomputed by Wilson-Burg factorization.

Although the examples of this paper show only
2-D images, extension of the filter ATA to three and
higher numbers of dimensions is straightforward. We be-
gin with a finite-difference approximation to an isotropic
N -dimensional Laplacian, and then subtract away pro-
jections of that operator corresponding to the features
that we wish to preserve.

The filter ATA is not discriminate enough to be
useful by itself. However, by combining this filter with
inverses of slightly modified filters, we obtain notch fil-
ters and better dip filters. These combinations attenuate
strong coherent signals while preserving weaker signals
with slightly different dips. Such combinations may be
used to enhance as well as attenuate image features.

REFERENCES

Claerbout, J.F., 1992, Earth soundings analysis — processing

versus inversion: Blackwell Scientific Publications.
Claerbout, J.F., 1998, Multidimensional recursive filters via

a helix: Geophysics, 63, 1532–1541.

Clapp, R.G., B. Biondi, and J.F. Claerbout, 2004, Incorpo-
rating geologic information into reflection tomography:

Geophysics, 69, 533–546.

Fomel, S., 2002, Applications of plane-wave destruction fil-
ters: Geophysics, 67, 1946–1960.

Fomel, S., and P. Sava, J. Rickett, and J.F. Claerbout, 2003,

The Wilson-Burg method of spectral factorization with
application to helical filtering: Geophysical Prospecting,

51, 409–420.
Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse

problems by model reparameterization using plane-wave

construction: Geophysics, 71, A43–A47.
van Vliet, L.J., and P.W. Verbeek, 1995, Estimators for ori-

entation and anisotropy in digitized images: Proceedings

of the first annual conference of the Advanced School for
Computing and Imaging ASCI’95, Heijen (The Nether-

lands), 442–450.

