CWP-634

Image-guided blended neighbor interpolation

Dave Hale

Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA

(b)

Figure 1. A seismic image (a) and scattered data (b) used in image-guided blended neighbor interpolation (c).

1 INTRODUCTION

ABSTRACT

Uniformly sampled images are often used to interpolate other data acquired
more sparsely with an entirely different mode of measurement. For example,
downhole tools enable geophysical properties to be measured with high preci-
sion near boreholes that are scattered spatially, and less precise seismic images
acquired at the earth’s surface are used to interpolate those properties at lo-
cations far away from the boreholes. Image-guided interpolation is designed
specifically to enhance this process.

Most existing methods for interpolation require distances from points where
data will be interpolated to nearby points where data are known. Image-guided
interpolation requires non-Euclidean distances in metric tensor fields that rep-
resent the coherence, orientations and shapes of features in images. This re-
quirement leads to a new method for interpolating scattered data that I call
blended neighbor interpolation. For simple Euclidean distances, blended neigh-
bor interpolation resembles the classic natural neighbor interpolation.

Key words: seismic image interpolation interpretation

ues while computing a second transparent image overlay
with a continuous spectrum of colors. The color yellow,

Interpolation of spatially scattered data is a classic
problem. In the example shown in Figure 1, I guided
this interpolation to conform to buried channels in a
uniformly-sampled seismic image of the earth’s sub-
surface. The 76 scattered sample values are repre-
sented by just three colors cyan, red and blue. Image-
guided blended neighbor interpolation honors these val-

not represented in the scattered data, corresponds to
a value between the values for red and cyan; features
painted yellow therefore lie between those painted red
and cyan. In this example, I painted the scattered data
values interactively.

More generally, the scattered data that we seek to

2 D. Hale

interpolate are a set

f:{f17f27"'7fK} (1)

of K known sample values fi; € R that correspond to a
set

X ={x1,%x2,..., XK} (2)

of K known sample points x; € R"™. Together these two
sets comprise a set

IC:{(f17X1)7(f27x2)v"'7(fK7xK)} (3)

of K known samples. These samples are scattered in the
sense that the n-dimensional sample points in the set X
may have no regular geometric structure. The classic
interpolation problem is to use the known samples in
K to construct a function g(x) : R" — R, such that
q(xk) = fr-

This problem has no unique solution, as there ex-
ist an infinite number of functions g(x) that satisfy the
interpolation conditions ¢(xx) = fr. Additional criteria
may include measures of smoothness, robustness, and
efficiency. Because tradeoffs exist among such criteria,
a variety of methods for interpolating scattered data are
commonly used today. Foster and Evans (2008) provide
a recent evaluation of several methods in the context of
a geoscience application.

In this paper I add the requirement that the inter-
polation should somehow conform to a uniformly sam-
pled image, as in the example of Figure 1. Mindful of
this additional requirement, I first review some popu-
lar interpolation methods, before combining elements
of them to construct a new method for image-guided
interpolation.

1.1 PDE methods for interpolation

One popular family of interpolation methods is derived
from partial differential equations (e.g., Gaspdr, 1999).
For example, the harmonic interpolant is the solution
to

Vi(x) =0, x¢X;
q(xk) = fk’ X € X. (4)

The biharmonic interpolant is defined similarly as the
solution to

(V*)?q(x) =0,
q(xk) = f’ﬁ

x ¢ X;
xp € X. (5)

Examples of both interpolants are illustrated in
Figure 2. Intuitively, these interpolants are made
smooth by zeroing high-order derivatives of the inter-
polating function ¢(x) at points x ¢ X.

Both the harmonic and biharmonic interpolants are
defined explicitly to satisfy the interpolation conditions
q(xx) = fr. Moreover, because the Laplacian of any
linear function is zero, both interpolants have linear

precision; they will exactly recover a linear function
f(x) = fo + gl (x —xo) (for some constants fo, go and
Xo) from samples fr = f(xx).

However, as shown in Figures 2a and 2b, the har-
monic interpolant has sharp cusps at the sample points.
In contrast, the biharmonic interpolants in Figures 2c
and 2d are much smoother; if smoothness were our only
desirable feature, then we would certainly favor bihar-
monic interpolation.

Unfortunately, the increased smoothness of bihar-
monic interpolation is obtained at the cost of decreased
computational efficiency. To understand why, first note
that we cannot analytically solve equations 4 or 5 for
arbitrary sets K of scattered data. Instead, we must
discretize these equations for some region of interest
and thereby obtain a large sparse system of linear equa-
tions to be solved numerically. The number of equations
equals the number of points x at which we want to in-
terpolate. Because that number is typically large (105 or
higher), iterative methods are most efficient in solving
these equations.

When the number of known samples is much less
than the number of samples to be interpolated, a simple
iterative conjugate-gradient solver requires many itera-
tions to converge to a sufficiently accurate numerical
solution to equations 4 and 5. The number of iterations
required is roughly proportional to the largest distance
|[x — xg||. If I iterations are required to solve the har-
monic equations 4, then roughly I? iterations are re-
quired to solve the biharmonic equations 5. Therefore,
more efficient iterative solvers such as multigrid meth-
ods (Géspar, 1999) are typically used for biharmonic
interpolation.

In the context of image-guided interpolation, meth-
ods based on solutions to partial differential equations
are tempting because they can be easily modified for
metric tensor fields D(x) derived from images. We sim-
ply replace the homogeneous and isotropic Laplacian
operator V? in equations 4 and 5 with the anisotropic
and inhomogeneous operator V -D(x) V. For example,
the biharmonic interpolant becomes

(V-D(x) V)*q(x) =0,
Q(Xk) = fk’7

x ¢ X;
X € X. (6)

Unfortunately, most of the efficiency of multigrid
methods may be lost for equation 6 with inhomogeneous
and anisotropic coefficients. While significantly more
difficult to implement, a multigrid method may for this
case be no more efficient than the simplest conjugate-
gradient method.

A second potentially undesirable feature of bihar-
monic interpolation is the overshoot of sample values
fr illustrated in Figure 2c. Unlike the harmonic in-
terpolant, the biharmonic interpolant is unbounded by
minimum and maximum sample values in the set F,
and it is generally impossible to predict the minimum
and maximum interpolated values of ¢(x) before solving

Image-guided interpolation 3

(b)

(c)

(d)

Figure 2. Harmonic (a and b) and biharmonic (c and d) interpolation of scattered samples of rough and smooth functions.

the biharmonic equations 5. In this respect, biharmonic
interpolation is less robust than harmonic interpolation.

To reduce the amount of overshoot, we may con-
struct a weighted combination of the harmonic equa-
tions 4 and the biharmonic equations 5. The weight in
this combination is sometimes called tension (MitdSova
and Lubog, 1993), and for any given set K of scattered
data it is difficult to know what tension is appropriate
before solving the equations.

1.2 RBF methods for interpolation

The harmonic and biharmonic interpolants are closely
related to another family of interpolants of the form

q(x) = > wid(|x — xul]), (7
k=1

where ¢(r) : R — R is a radial basis function (RBF) of
distance r (Dyn, 1987; Carr et al., 1997). For example,
in two dimensions, the thin-plate spline (Duchon, 1977)
corresponds to the RBF ®(x) = #(||x||) = ||x||* log||x]|,

which is a fundamental solution of the biharmonic equa-
tion (V?)?®(x) = 0.

To determine the weights wy in equation 7, we use
the interpolation conditions ¢(xx) = fr to obtain a sys-
tem of K linear equations for the K unknown weights.
For an RBF without compact support this system of
equations is dense, not sparse, and the computational
cost of solving them is O(K?).

In other words, the cost of RBF interpolation
grows quickly with the number K of known samples, in
part because each interpolated sample depends through
equation 7 on every known sample. Like the PDE meth-
ods described above, RBF methods for interpolation
are global. If a known sample (fr,xx) in the set K
is added, removed, or modified, all interpolated values
¢(x) must be recomputed, no matter how great the dis-
tance ||x — xx/|.

To reduce this cost we might use an RBF with com-
pact support (Franke, 1982; Schaback, 2005) to obtain
a sparse system of equations. But the resulting interpo-
lation methods raise a new question. For what distance
||lx — xx]|| should the RBF ®(x — xx) go to zero? That

4 D. Hale

(b)

Figure 3. In natural neighbor interpolation at point x, the
weight for sample value f}, is proportional to the area ay(x)
of intersection of (a) the Voronoi polygon for x; in V and
(b) the Voronoi polygon for x in V1.

is, for a given point x, which nearby samples should be
used in equation 7 to construct the interpolant g(x)?
The answer to this question may depend in a compli-
cated way on the distribution of the sample points X

1.3 Natural neighbor interpolation

An alternative local method that specifically answers
the question of which nearby samples are relevant is Sib-
son’s (1981) natural neighbor interpolation. Sibson de-
fined his interpolant ¢(x) in terms of Voronoi diagrams,
as illustrated for R? in Figure 3. In n dimensions, a
Voronoi diagram decomposes R™ into convex neighbor-
hoods of points x that are nearer to one known sample
point x; than to any other.

The Voronoi diagram is therefore closely related to
nearest neighbor interpolation. For any x, the nearest
neighbor interpolant p(x) is simply the value fi corre-
sponding to the nearest sample point xi. That is,

p(x) = fiu | k= "5 x — x| (8)

Note that nearest neighbor interpolation is well defined
for only those points x with a single nearest sample
point x;. At points x that are equidistant from two or
more sample points, the nearest neighbor interpolant
p(x) is discontinuous and undefined.

Natural neighbor interpolation is more complex.
Let V denote the Voronoi diagram of the set X =

{x1,X2,...,xx} of sample points, and let Yt denote
the Voronoi diagram of the augmented set XT =
{x,X1,X2,...,XK}. As illustrated in Figure 3 for R?

each point in the Voronoi diagrams V and V' has a
corresponding Voronoi polygon.

Now let ay(x) denote the area of intersection of the
polygon for x in V' with the polygon in V for a sample
point xj. The natural neighbor interpolant is then

_ 2 a0 fe
S an ()

When the number K of known samples is large,

q(x) (9)

most of the areas ax(x) in equation 9 are typically zero,
and the sum can be limited to only a subset of neigh-
bor samples. These natural neighbors can be found ef-
ficiently using a Delaunay triangulation, which is the
geometric dual of the Voronoi diagram of the sample
points.

For points x that lie outside the convex hull of the
set X of sample points, areas ax(x) in equation 9 become
infinite, which makes computation of the natural neigh-
bor interpolant difficult. In practice, this difficulty is
sometimes overcome by adding additional ghost points
(Bobach et al., 2008) to create a convex hull outside the
region of interest.

Figure 4 illustrates nearest and natural neighbor
interpolation for sparsely sampled rough and smooth
functions. In natural neighbor interpolation, four ghost
points have been added at the corners of a square out-
side the region displayed in Figures 4c and 4d.

Whereas discontinuities in the piecewise-constant
nearest neighbor interpolants are clearly apparent, the
natural neighbor interpolants appear to be continuous.
Indeed, as shown by Sibson (1981) and others (e.g.,
Farin, 1990), natural neighbor interpolants are continu-
ous everywhere and have continuous gradients every-
where except at the sample points x = xi. More-
over, like harmonic and biharmonic interpolation, nat-
ural neighbor interpolation has linear precision.

Also apparent in Figure 4 is that the minimum and
maximum values of the interpolants ¢(x) are bounded
by minimum and maximum values fj of the known sam-
ples. In this sense natural neighbor interpolants are ro-
bust, with no unpredictable oscillation or overshoot.

When implemented with appropriate data struc-
tures, including the Delaunay triangulation mentioned
above, natural neighbor interpolation is efficient. Much
of this efficiency is due to its local property. As noted
above, most of the areas ax(x) in equation 9 are typi-
cally zero and need not be computed. (A pathological
exception would be the case where all sample points
X, lie on the convex hull of the set X.) In contrast to
PDE and RBF interpolants, the natural neighbor inter-
polant at some point x typically does not depend on
every known sample in K.

In development of a method for image-guided in-
terpolation, I seek to retain the desirable properties —
linear precision, smoothness between sample points, ro-
bustness, and locality — of natural neighbor interpo-
lation cited above. This development leads to a new
method for blended neighbor interpolation that com-
bines elements of both natural neighbor and PDE meth-
ods.

2 BLENDING NEAREST NEIGHBORS

Suppose that, for a set K of known samples, we have
constructed two functions defined as follows:

'l

Y

Image-guided interpolation 5

iy || —umlluullllll il
nimy ;

|| gl
ol FIWHI
L |||Im\\\\ i (-

(b)

(c)

(d)

Figure 4. Nearest neighbor (a and b) and natural neighbor (¢ and d) interpolation of scattered samples.

d(x) : R™ — R is the distance ||x — x| from x to the
nearest known sample point xj, and

p(x) : R® — R is the value fi corresponding to the
sample point x; nearest to the point x.

In other words, d(x) is the distance map and p(x) is the
nearest neighbor interpolant for the scattered data K.
With these two functions, the natural neighbor in-
terpolant is defined by
_ Jhxy)p(y)d"y

1) = ey (10)

where

Loif x —yll < d(y);
0, otherwise.

h(x,y) = { (11)

This definition of natural neighbor interpolation is
equivalent to Sibson’s (1981) definition in equation 9.
For any interpolated point x, the function h(x,y) de-
fined in equation 11 restricts the integrals in equation 10
to precisely the shaded polygon illustrated in Figure 3b.

We may interpret equation 10 in two different ways.
The first and perhaps most obvious interpretation is
that numerous p(y)-weighted infinitesimal elements d™y
are gathered into a single interpolated value ¢(x). The
second interpretation is that a single p(y)-weighted in-
finitesimal element d"y is scattered into numerous in-
terpolated values ¢(x). These two interprations are il-
lustrated in Figure 5.

Both the gather and scatter interpretations of equa-
tion 10 imply that the natural neighbor interpolant g(x)
is obtained by smoothing the nearest neighbor inter-
polant p(x). And in both interpretations the smoothing
filter h(x,y) varies spatially according to equation 11.
However, the circular region of support for h(x,y) used
in scattering is simpler than the polygonal region used
in gathering.

In a discrete approximation of natural neighbor in-
terpolation (Park et al., 2006), scattering may be more
efficient than gathering. In this approximation, the func-
tions in equations 10 and 11 are sampled uniformly and
the integrals become sums. Gathering then implies an
outer loop over sampled x and an inner loop over sam-

6 D. Hale

gather into x scatter from y

(a) (b)

Figure 5. Natural neighbor interpolation as defined by equa-
tions 10 and 11 is either (a) for each g(x) a gathering of many
p(y), or equivalently (b) a scattering of each p(y) into many
q(x) within a circle of radius d(y).

pled y. Because d(y) in equation 11 varies inside the
inner gathering loop over y, it may be costly to deter-
mine the range of sampled y for which the smoothing
filter h(x,y) is non-zero. Scattering instead of gathering
interchanges the loops, so that the range of sampled x
for which h(x,y) is non-zero is circular and can there-
fore be computed more efficiently.

The computational complexity of the digital
smoothing filter is O(LM), where L is the average num-
ber of non-zero samples in h(x,y) and M is the number
of sampled values in p(x) and ¢(x). Equation 11 im-
plies that the factor L grows with distances in the map
d(x). In two dimensions, L grows with distance squared,
proportional to the area of circles like that shown in
Figure 5b. In three dimensions, L grows with distance
cubed, proportional to the volume of spheres. The total
O(LM) cost of discrete natural neighbor interpolation
therefore grows quickly with distances in d(x).

2.1 Blending with PDEs

To reduce this potentially high cost, I propose an alter-
native smoothing filter, one with a factor L that grows
only linearly with distance d(x). To apply this filter, we
solve the partial differential equation

o)~ 5 VX Va) =p(x), (12)

with some suitable (e.g., zero-slope) boundary condi-
tions for the domain of interest.

At known sample points x, for which d(x) = 0, the
solution to equation 12 is clearly q(xx) = p(xx) = f&.
At these known sample points the nearest neighbor and
natural neighbor interpolants are equal to the known
sample values; the interpolation conditions are satisfied.

To show that elsewhere ¢(x) is a continuous
smoothed version of p(x), let us assume momentarily
that the distance d is constant and then consider the

Fourier transform of equation 12:

Q) = %)

= 13
14 1d2k? (13)

The factor k? = k - k in the denominator implies atten-
uation of high frequencies. This attenuation increases
with distance d so that (now ignoring our assumption
of constant d) smoothing is most significant at points x
for which distances d(x) to the nearest known sample
points are largest.

I use the name blended neighbor interpolation to
describe the solution of equation 12, because it blends
nearest neighbors much like equation 10 does in nat-
ural neighbor interpolation. The difference lies in the
smoothing filter h(x,y), defined explicitly by equa-
tion 11, but implicitly by the partial differential equa-
tion 12. Both filters produce a continuous interpolant
q(x) by smoothing the discontinous nearest neighbor in-
terpolant p(x), and the amount of smoothing increases
with distances d(x) to known sample points.

Figure 6 illustrates discrete natural neighbor and
blended neighbor interpolants. As expected, these in-
terpolants are similar but not identical. Small ridges,
grooves and bumps in the discrete natural neighbor in-
terpolants are caused by discretization on a rectangular
grid of circles like that in Figure 5b. These artifacts and
the circular creases in Figures 6a and 6b are not ap-
parent in the discrete blended neighbor interpolants in
Figures 6¢ and 6d.

Discrete approximation of the blending equation 12
yields a large sparse system of equations that are best
solved by an iterative method. The number of simple
conjugate-gradient iterations required to converge to a
solution is roughly proportional to the maximum dis-
tance d(x). For any dimension n of points x € R",
the computational complexity of discrete blended neigh-
bor interpolation grows only linearly with distance. For
sample points scattered at large distances, this linear
dependence contrasts favorably with the quadratic de-
pendence in 2D (or cubic dependence in 3D) for discrete
natural neighbor interpolation via equations 10 and 11.

The factor and exponent 2 in d”(x) of equation 12
were chosen carefully to ensure that the interpolant g(x)
has linear precision. Because the nearest neighbor inter-
polant p(x) is piecewise constant, it is easy to verify that
inside the Voronoi neighborhood of any sample point
Xk, where d(x) = ||x — xx|| and p(x) = fk, the linear
function

ar(x) = fr + gk (x — x) (14)

is a solution to equation 12. Therefore, if scattered
data are obtained by sampling a linear function f(x) =
fo + gd (x — x0), then the continous blended neighbor
interpolant ¢(x) [the union of all piecewise linear g (x)],
must equal that linear function.

Image-guided interpolation 7

(b)

(c)

(d)

Figure 6. Discrete natural neighbor (a and b) and blended neighbor (¢ and d) interpolation of scattered samples.

2.2 Alternative blending PDEs

We may obtain alternatives to the blending equation 12
by simply modifying its coefficients. For example, we
might restrict the variable coefficient d(x) in equation 12
to not exceed some specified maximum distance. This
maximum would limit the extent of smoothing and
thereby also limit the number of iterations required
to converge to a solution ¢(x). Linear precision of the
blended neighbor interpolant would be lost for large dis-
tances but maintained where perhaps most desirable, at
locations x where the density of known samples is high
and distances d(x) are relatively small.

A related alternative is to replace the constant co-
efficient % in equation 12 with a smaller value. In doing
so, we lose linear precision for all x, but gain smooth-
ness at the known sample points x, where V ¢(xx) = 0.
In effect, decreasing this coefficient reduces the amount
of smoothing performed by the blending equation 12.
Indeed, in the limit as this coefficient goes to zero, no
smoothing is performed and the blended neighbor in-
terpolant ¢(x) equals the nearest neighbor interpolant

p(x).

More generally, we may solve
1
g(x) =~ V- d*(x) V q(x) = p(x), (15)

for some constant e > 2. Figures 6¢ and 6d correspond
to the choice e = 2, for interpolants with linear preci-
sion.

Figure 7 displays blended neighbor interpolants for
e = 4 and e = 8. While smoother at the known sam-
ple points X, these interpolants have flat spots, small
plateaus at those points, and cannot precisely interpo-
late data sampled from linear functions.

The choice e = 3 is interesting because, inside the
Voronoi neighborhood of any known sample point x,
equation 15 then has the solution

gk (%) = fi + hillx — xkl], (16)

for some constant hy. Although the solution g (x) lacks
linear precision, its dependence on the radial distance
||x — xx|| reminds us of RBF methods for interpolation.
In particular, the RBF ¢(||x — x&||) = ||x — xx]| cor-
responds to the 3D biharmonic interpolant (Sandwell,
1987).

8 D. Hale

(a)

(b)

(c)

(d)

Figure 7. Blended neighbor of interpolation of scattered samples with equation 15 for e = 4 (a and b) and e = 8 (c and d).

An alternative blending equation that maintains
linear precision while admitting RBF-like solutions is

4x) = LX) V() V) = plo, (1)

for any constant e > 2. The special case e = 2 again
corresponds to equation 12 above.

The blending equation 17 may be useful because,
inside the Voronoi neighborhood of any known sample
point xy, it has a solution of the form

ar(x) = fio + gk (x — xx) + hallx — x|, (18)

for some constants gk, hr and r. Though not obvious,
this solution may be easily verified by substitution into
equation 17.

The constant exponent r in the radial term of equa-
tion 18 depends on the constant e in equation 17 and
on the dimension n of points x € R™. For example,

1D: r=1
2D: 7‘=%(\/62+4676)
3D: r:%(\/ez—l—ﬁe—l—l—e—l). (19)

These exponents r are not the same as those typi-
cally used in RBF methods, and we should not expect
blended neighbor interpolants to be as smooth as con-
ventional RBF interpolants.

For all equations 19, lime—oo = 1, so that the
radial term in equation 18 approaches the 3D RBF
o(|lx — xx||) = |lx — xx||- This limit suggests that we
might want to increase the constant e in equation 17
from e = 2 to e = 4 or e = 8. However, very large
constants e reduce the accuracy of finite-difference ap-
proximations to equation 17. In the examples shown in
this paper, I use only the simpler equation 15.

Recall that my goal in blended neighbor interpola-
tion with equations 12, 15 or 17 is not to approximate
RBF or biharmonic methods. Rather, I blend nearest
neighbors using these partial differential equations be-
cause they (1) yield an interpolant much like the nat-
ural neighbor interpolant, (2) can be solved efficiently
using a simple conjugate-gradient method, and (3) can
be readily extended to interpolation in tensor fields de-
rived from images.

2.3 Summary

Blended neighbor interpolation is a two-step process.

Blended neighbor interpolation
Step 1: solve
Vdx) - Vdx) =1, x¢X;
d(x)=0, xeX (20)
for

d(x): the distance ||x — x| from x to the nearest
known sample point xj, and

p(x): the known value fj corresponding to the
sample point Xj nearest to the point x.

Step 2: for a specified constant e > 2, solve

ax) — -V Vel =p(x), (21)

for the blended neighbor interpolant g(x).

When computing d(x) in step 1, it is straightfor-
ward to simultaneously compute the nearest neighbor
interpolant p(x). Finite-difference approximation of the
eikonal equation 20 is unnecessary, because efficient ex-
act solutions are possible. Park et al. (2006), suggest
using a kD tree for this purpose.

After computing d(x) and p(x) on a uniformly sam-
pled grid, I use an iterative conjugate-gradient method
to solve a finite-difference approximation of equation 21
for the blended neighbor interpolant g(x).

3 BLENDING IN TENSOR FIELDS

In image-guided interpolation I replace Euclidean dis-
tance with time, so that “nearest” corresponds to paths
of minimum time between points x and xj, not mini-
mum distance ||x — xx||. The result is again a two-step
process.

Image-guided blended neighbor interpolation
Step 1: solve

Vi(x) - D(x) Vt(x)

t(x) =

1, x¢X;
, XEX (22)
for

t(x): the minimum traveltime from x to the nearest
known sample point xx, and

p(x): the value fi corresponding to the sample
point xj nearest to the point x.

Step 2: for a specified constant e > 2, solve
1
q(x) = - V- *(x)D(x) V g(x) = p(x), (23)

for the blended neighbor interpolant g(x).

Image-guided interpolation 9

3.1 Computing the tensor field

The metric tensor field D(x) in equations 22 and 23 is
the link between distance and time. It represents the
coherence, orientation, and dimensionality of features
in the image that will guide interpolation. Intuitively,
this tensor field alters interpolation so that known sam-
ple values within spatially coherent image features are
given more weight than values on opposite sides of such
features or where the image is less coherent.

In some applications, a suitable D(x) is read-
ily available. For example, to track white matter in
diffusion-tensor magnetic-resonance images (DT-MRI),
Jbabdi et al. (2008) choose D(x) to be simply the
inverse of acquired tensor-valued images. For scalar-
valued images, including most seismic images, D(x)
may be computed from structure tensors S(x), which
are smoothed outer products of gradient vectors (van
Vliet and Verbeek, 1995).

In two dimensions, each tensor in the field D(x) is
a 2 X 2 symmetric positive-definite matrix

di1 di2
D= [dlz dm] : (24)
Equations 22 and 23 imply that the tensor elements di1,
di2, and da2 have units of velocity squared.

Because the units of time ¢ are arbitrary in equa-
tions 22 and 23, I scale the tensor field D(x) so that
the maximum eigenvalue (maximum velocity squared)
in any of these matrices is one. Eigenvalues less than
one therefore imply slower velocities in directions of the
corresponding eigenvectors.

In directions in which velocities are slow, two points
that are nearby in the Euclidean distance map d(x) may
be far apart in the time map ¢(x), the solution to equa-
tion 22 computed in step 1. Time, not distance, now
determines which neighboring known sample points xj
are nearest in step 1, and the amount of blending of
nearest neighbors performed in step 2.

Figure 8 shows examples of tensor fields D(x) com-
puted from two different 2D scalar-valued seismic im-
ages to guide interpolation of scattered data. Each el-
lipse represents one of the symmetric positive-definite
2 x 2 tensors that I computed for every sample in these
images.

For both images, I computed the displayed tensor
fields D(x) from a structure tensor field S(x) by

S (x)

D(x) = ST ™)’ (25)
where the constant scale factor s ensures that the max-
imum eigenvalue in D(x) is one. The function c¢(x) is
a measure of coherence computed from structure ten-
sors S(x) using the method suggested by Fehmers and
Hocker(2003).

Alternative measures of coherence (e.g., Bahorich
and Farmer, 1995) in the range 0 < ¢(x) < 1 could be
used instead. The significance of the divisor 1 — ¢(x) is

.

o o
N

.
?}

-
o

W

S o "Qus oo

000200590 03000000Q00=S80 0 o
0SS ? 00O N3 00300008000 OC00

Q=040 o"a s's o oo DOO o o

",

-,
Wy, Wl on o
S o

0o s 0oO0osc oMo PoOD0 O

"
= 00 Q o ©od%s

Q O
"'30

=

2. ON o
0 © 00O oo
e

O o

= -
o0 0 00000 8 s so

-
O 050, @ A WD SHo™ B0 scrS. Sl

-

QO OOV 0N 0 " o ggns, We' oo O Ny o

-
-

P

(]
o
S
o
(2]
°
Vi

0,
4
o
o
0
o
o
0
0
o
0
0
0
2
Q
Q

0 S auo’S o W s oo 0.2 000

anooOcQ.dOOoOo'\

© 0 0o O, o © O CHSSREOI

Q0 0V 00000 OSIOO0 =™ .-

S o QueB =" Sl O Ols 0= 0 0 o O
oaooo-OQOoQaqoa:

00 Qoo QOO0 O Ofone o Ml O o

0 Q") 0 0O OEMB o o O OIETNCIC) 6 cauts e
Ol 0 00 8 00 o0 0o 0@ 000D .0
OO e © 0 o 0 Or OGRS OGO " CINOM O L0
OO F0-:@:0-SHE 9r'c’'(O O o O EREERE TR a > O
QO (0 o=ogoio cc0o0QO 000000
QO00000D0 02,0000 ON0 s 0 s=(
0Q 080 0 ov rsooeco oSl s oo
Swo o 086 0 0 no 0 o S sy ¢ s .0 O
Q0 0P 071 B ooo0o0

(b)

Figure 8. Tensor fields D(x) computed from 2D seismic im-
ages. The upper image of subsurface channels (a) was used to
guide the interpolation in Figure 1. Geologic layers apparent
in the lower image (b) guide the interpolation of scattered
data in examples below.

that it increases eigenvalues of D(x), thereby decreas-
ing times t(x), at locations where features in images are
most coherent. Locations and directions of high coher-
ence correspond to large ellipses in Figure 8.

Eigenvalues and corresponding ellipses are smaller
where features are less coherent; e.g., near discontinu-
ities in laterally coherent features and in the noisy lower
part of the image in Figure 8b.

3.2 Tensor-guided interpolation

Given a set I of scattered data, tensor fields D(x) like
those displayed in Figure 8 guide blended neighbor in-

terpolation with the two-step process of equations 22
and 23. Figure 9 illustrates this process with an exam-
ple of interpolation guided by a seismic image.

In this example, 21 scattered samples in Figure 9a
have colors corresponding to values that alternate verti-
cally while decreasing from left to right. I painted these
samples interactively using a digital 3 x 3-pixel paint-
brush to make the sample points more clearly visible
than if only one pixel per sample were painted. Such
interactive painting can be useful in geologic interpreta-
tion of seismic images, either with or without additional
scattered data obtained from borehole measurements.

I computed the time map ¢(x) in Figure 9b by
solving a finite-difference approximation to the eikonal
equation 22 using an iterative algorithm similar to
that proposed by Jeong et al. (2007). Other suit-
able algorithms include variants of fast-marching meth-
ods (Sethian, 1999; Sethian and Vladimirsky, 2005;
Konukoglu et al., 2007) and sweeping methods (Tsai
et al., 2003; Qian et al., 2007). Ridges in the time map
t(x) are aligned with the near-vertical faults, because
times increase rapidly where the eigenvalues of the ten-
sor field D(x) (the ellipses displayed in Figure 8b) are
small.

While computing the time map t(x), I also com-
puted the nearest neighbor interpolant p(x) displayed
in Figure 9c. It may be possible to compute p(x) di-
rectly from ¢(x), but I have not found an efficient and
stable way to do so. Instead, I compute p(x) as I solve
for times ¢(x).

Specifically, I begin with a time map ¢(x) = oo.
Then, for each known sample point x; and value fg,
I use the eikonal equation 22 to compute times ¢y (x),
while ignoring any other known sample points. Where
tr(x) < t(x), I update the time ¢t(x) = ¢x(x) and the
value p(x) = fr. After all known samples have been
processed, t(x) is the time map and p(x) is the nearest
neighbor interpolant that we seek in step 1.

For efficiency in step 1, I processed the known sam-
ples in a random order and computed times tx(x) only
where those times could possibly be lower than the mini-
mum time maintained in the time map #(x). For the first
known sample, all times in ¢(x) must be updated. But
as more known samples are processed, the size of the re-
gion in which ¢5(x) < t(x) decreases. Randomizing the
order improves the rate of decrease in cases where the
scattered data may be ordered in some way, as for data
collected in boreholes.

The same randomizing technique is used in the clas-
sic quicksort algorithm for sorting a sequence of values
(Cormen et al., 2001). For N values, the randomized
quicksort algorithm has an O(N?) worst-case compu-
tational complexity, but for large N this worst case is
highly unlikely. The average-case complexity for a ran-
domized quicksort is O(N log N). Likewise, for K known
samples and N image samples, the worst-case complex-

Image-guided interpolation 11

(b)

(d)

Figure 9. Image-guided blended neighbor interpolation. For a set K of known samples (a), we first use equation 22 to compute
the time map (b) and nearest neighbor interpolant (c), and then solve equation 23 for the blended neighbor interpolant (d).

ity for my implementation of step 1 is O(NK), but the
average-case complexity is only O(N log K).

In step 2 I solved a finite-difference approximation
to the blending equation 23 with e = 4 using an itera-
tive conjugate-gradient solver. With K = 21 scattered
samples and N = 251 x 357 image samples, I performed
709 iterations to converge to the blended neighbor in-
terpolant ¢(x) displayed in Figure 9d. As expected, this
blended neighbor interpolant conforms to features in the
seismic image. Contours of constant color are aligned
with both near-horizontal features (geologic layers) and
near-vertical discontinuities (geologic faults).

To compare the image-guided process to one simi-
lar to a discrete natural neighbor interpolant (Park et
al., 2006), I solved equations 20 and 21 with e = 4 for
the same set of scattered data. In this isotropic and ho-
mogeneous case, 243 conjugate-gradient iterations were
required to converge to the blended neighbor interpolant
displayed in Figure 10.

As expected, without the tensor field D(x) to guide
the interpolation, the blended neighbor interpolant is
smooth between sample points but does not conform to

image features. Both image-guided and image-ignorant
interpolants honor the scattered data values, but the
image-guided interpolant is more accurate where the
values to be interpolated are correlated with image fea-
tures.

4 DISCUSSION

Assuming that an image is available, the accuracy of
image-guided interpolation depends on the extent to
which the property being interpolated is correlated with
image features. If no such correlation exists, then a
simpler and faster image-ignorant interpolation may be
more accurate than image-guided interpolation with an
irrelevant image. In this case, blended neighbor inter-
polation is an efficient alternative to discrete natural
neighbor interpolation.

In many contexts, however, an isotropic and con-
stant tensor field is inappropriate. Even when a useful
image is unavailable, it may still be possible to construct
an anisotropic and inhomogeneous tensor field D(x)
to guide interpolation. The proposed two-step process

(c)

(d)

Figure 10. Image-ignorant blended neighbor interpolation. For a set K of known samples (a), we first use equation 20 to
compute the distance map (b) and nearest neighbor interpolant (c), and then solve equation 21 for the blended neighbor

interpolant (d).

might more accurately be called tensor-guided blended
neighbor interpolation, because it requires only the ten-
sor field D(x), not the image.

However, in the examples shown in this paper, I de-
rived tensor fields from uniformly-sampled seismic im-
ages, and then interpolated scattered data on the same
uniform sampling grid. In some applications, it may
be desirable to interpolate scattered data with higher
resolution, and nothing in the method prevents this.
Image-guided blended neighbor interpolation requires
only that we provide a tensor D for all uniformly sam-
pled locations x where we interpolate.

The tensor fields used in image-guided blended
neighbor interpolation are analogous to spatial correla-
tion functions (variograms) used in kriging, a geostatis-
tical interpolation method in which subsurface proper-
ties are modelled as random variables (e.g., Goovaerts,
1997). But the interpolation methods are otherwise
rather different. Where images have less resolution than
desired for geostatistical modeling, blended neighbor

interpolation might be used to provide image-guided
trends for kriging and other geostatistical methods.

In developing blended neighbor interpolation I re-
tained most of the desirable features of natural neigh-
bor interpolation, but I gave up locality. That is, the
blended neighbor interpolant depends on all scattered
known samples, even those that are very far way, as
finite-difference approximations to the blending equa-
tions 21 or 23 yield a sparse system of linear equa-
tions that we must solve simultaneously. In practice,
the neighborhood in blended neighbor interpolation is
quite limited and errors in assuming a local region of
influence for each known sample may be less than those
due to the use of an iterative solver for the system of
blending equations.

But instead of solving the blending equation 23,
why not extend the strictly local scattering method of
discrete natural neighbor interpolation to handle ten-
sor fields? The computational cost of such an extension
would be high. In tensor fields the simple scattering disc
of Figure 5b becomes an irregularly shaped region that

must be computed numerically by solving an eikonal
equation 22 for every image sample. And even suppos-
ing that this region could be computed quickly for every
sample, the computational cost of scattering remains
proportional to the areas (or volumes) of such regions
in 2D (or 3D).

In contrast, the cost of solving the blending equa-
tions with the simplest conjugate-gradient method
grows only linearly with distances or times to nearest
known samples. The number of iterations required for
such an iterative solver to converge depends in part on
the accuracy required in the blended neighbor inter-
polant. The number of iterations might be reduced by
the use of preconditioners, including multigrid methods,
but in my experience these techniques have yielded only
moderate improvements in efficiency when tensor fields
are as inhomogeneous and anisotropic as those displayed
in Figure 8.

Closely related to the problem of image-guided in-
terpolation are the problems of computing geodesic dis-
tances and interpolation on surfaces embedded in a
3D space (Kimmel and Sethian, 1998; Boissonnat and
Flototto, 2004; Surazhasky et al., 2005) or manifolds in
higher dimensions (Bronstein et al., 2007). For example,
when interpolating scattered geophysical data acquired
on a global scale, one might use non-Euclidean distances
measured on the earth’s surface. Surfaces on which
geodesic distances are computed correspond to metric
tensor fields, but tensor fields computed as in equa-
tion 25 need not correspond to any surface. Neverthe-
less, improved algorithms for computing geodesic dis-
tances may lead to better algorithms for image-guided
interpolation.

5 CONCLUSION

Blended neighbor interpolation of scattered data is sim-
ilar to the classic method of natural neighbor interpola-
tion, in that both methods smooth a nearest neighbor
interpolant, and the extent of smoothing grows with dis-
tance to the nearest known sample point.

The interpolants are similar but not identical, and
the difference between the two methods lies in their
smoothing filters. In blended neighbor interpolation a
smoothing filter is implied by the solution of a partial
differential equation. In natural neighbor interpolation
the smoothing filter explicitly computes weighted sums
of nearest neighbor sample values.

When Euclidean distances are used, the weights in
natural neighbor interpolation are simply the areas of
polygons, and can be computed efficiently with suitable
data structures. However, in non-Euclidean metric ten-
sor fields, these areas must be computed numerically,
and for this case blended neighbor interpolation is an
efficient alternative to natural neighbor interpolation.

In image-guided interpolation we derive metric ten-
sor fields from images, so that the blended neighbor in-

Image-guided interpolation 13

terpolant conforms to image features, while retaining
many of the attractive features of the natural neighbor
interpolant.

ACKNOWLEDGMENTS

Thanks to Luming Liang for many thoughtful discus-
sions of the ideas presented in this paper, and to Myoung
Jae Kwon, Ken Larner, and Derek Parks for helpful re-
views. WesternGeco provided the seismic data displayed
in Figures 1 and 8a. The U.S. Department of Energy
provided the seismic data displayed in Figures 8b, 9
and 10.

REFERENCES

Bahorich, M.S., and S.L. Farmer, 1995, 3-D seismic co-
herency for faults and stratigraphic features: The coher-
ence cube: The Leading Edge, 14 1053-1058.

Bobach, T., G. Farin, D. Hansford and G. Umlauf, 2008,
Natural neighbor extrapolation using ghost points:
Computer-Aided Design, in press.

Boissonnat, J.-D., and J. Flototto, 2004, A coordinate system
associated with points scattered on a surface: Computer-
Aided Design, 36, 161-174.

Bronstein, A.M., M.M. Bronstein and R. Kimmel, 2007,
Weighted distance maps computation on parametric
three-dimensional manifolds: Journal of Computational
Physics, 225, 771-784.

Carr, J.C., W.R. Fright and R.K. Beatson, 1997, Surface in-
terpolation with radial basis functions for medical imag-
ing: IEEE Transactions on Medical Imaging, 16, 96—-107.

Cormen, T.H., C.E. Leiserson and R.L. Rivest, 2001, Intro-
duction to algorithms, second edition: MIT Press.

Duchon, J., 1977, Splines minimizing rotation-invariant semi-
norms in Sobolev spaces, in W. Schempp and K. Zeller,
eds., Constructive Theory of Functions of Several Vari-
ables, Lecture Notes in Mathematics 571, Springer-
Verlag, 85-100.

Dyn, N., 1987, Interpolation of scattered data by radial func-
tions, #n C.K. Chui and L.L. Schumaker and F. Utreras,
eds., Topics in Multivariate Approximation: Academic
Press, 47-61.

Farin, G., 1990, Surfaces over Direchlet tesselations: Com-
puter Aided Geometric Design, 7, 281-292.

Fehmers, G.C., C.F.W. Hécker, 2003, Fast structural inter-
pretations with structure-oriented filtering: Geophysics,
68, 1286-1293.

Foster, M.P., and A.N. Evans, 2008, An evaluation of inter-
polation techniques for reconstructing ionospheric TEC
maps: IEEE Transactions on Geoscience and Remote
Sensing, 46, 2153-2164.

Franke, R., 1982, Smooth interpolation of scattered data by
local thin plate splines: Computers & Mathematics with
Applications, 8, 237-281.

Gaéspér, C., 1999, Multigrid technique for biharmonic inter-
polation with application to dual and multiple reciprocity
method: Numerical Algorithms, 21, 165—183.

Goovaerts, P., 1997, Geostatistics for natural resources eval-
uation: Oxford University Press.

14 D. Hale

Jbabdi, S., P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-
Issac and H. Benali, 2008, Accurate anisotropic fast
marching for diffusion-based geodesic tractography: In-
ternational Journal of Biomedical Imaging, 2008, 1-12.

Jeong, W.-K., P.T. Fletcher, R. Tao and R.T. Whitaker,
2007, Interactive visualization of volumetric white mat-
ter connectivity in DT-MRI using a parallel-hardware
Hamilton-Jacobi solver: IEEE Transactions on Visualiza-
tion and Computer Graphics, 13, 1480-1487.

Kimmel, R., and J.A. Sethian, 1998, Computing geodesic
paths on manifolds: Proceedings of the National
Academy of Sciences, 95, 8431-8435.

Konukoglu, E., M. Sermesant, O. Clatz, J.-M. Perat,
H. Delingette and N. Ayache, 2007, A recursive
anisotropic fast marching approach to reaction diffusion
equation: application to tumor growth modeling: Infor-
mation processing in medical imaging, 20, 687-699.

Mitasové, H. and M. Lubos, 1993, Interpolation by regular-
ized spline with tension: I. theory and implementation:
Mathematical Geology, 25, 641-655.

Park, S.W., L. Linsen, O. Kreylos, J.D. Owens, B. Hamann,
2006, Discrete Sibson interpolation: IEEE Transactions
on Visualization and Computer Graphics, 12, 243-253.

Qian, J., Y.-T.. Zhang, and H.-K. Zhao, 2007, A fast sweep-
ing method for static convex Hamilton-Jacobi equations:
Journal of Scientific Computing, 31, 237-271.

Sandwell, D.T., 1987, Biharmonic spline interpolation of
GEOS-3 and SEASAT altimeter data: Geophysical Re-
search Letters, 14, 139-142.

Schaback, R., 2005, Multivariate interpolation by polynomi-
als and radial basis functions: Constructive Approxima-
tion, 21, 293-317.

Sethian, J.A, 1999, Fast marching methods: SIAM Review,
41, 199-235.

Sethian, J.A, and A. Vladimirsky, 2005, Ordered upwind
methods for static Hamilton-Jacobi equations: theory
and algorithms: STAM Journal of Numerical Analysis,
41, 325-363.

Sibson, R., 1981, A brief description of natural neighbor in-
terpolation, in V. Barnett, ed., Interpreting Multivariate
Data: John Wiley & Sons, 21-36.

Surazhsky, V., T. Surazhsky, D. Kirsanov, S.J. Gortler, and
H. Hoppe, 2005, Fast exact and approximate geodesics on
meshes, in J. Marks, ed., ACM SIGGRAPH 2005 Papers:
ACM, 553-560.

Tsai, Y.-H.R., L.-T. Cheng, S. Osher and H.-K. Zhao, 2003,
Fast sweeping algorithms for a class of Hamilton-Jacobi
equations: SIAM Journal of Numerical Analysis, 41, 673~
694.

van Vliet, L.J., and P.W. Verbeek, 1995, Estimators for ori-
entation and anisotropy in digitized images: Proceedings
of the first annual conference of the Advanced School for
Computing and Imaging ASCI’'95, Heijen (The Nether-
lands), 442-450.

