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SUMMARY

Uniformly sampled images are often used to interpolate other data ac-
quired more sparsely with an entirely different mode of measurement.
For example, downhole tools enable geophysical properties to be mea-
sured with high precision near boreholes that are scattered spatially,
and less precise seismic images acquired at the earth’s surface are used
to interpolate those properties at locations far away from the bore-
holes. Image-guided interpolation is designed specifically to enhance
this process.
Most existing methods for interpolation require distances from points
where data will be interpolated to nearby points where data are known.
Image-guided interpolation requires non-Euclidean distances in metric
tensor fields that represent the coherence, orientations and shapes of
features in images. This requirement leads to a new method for inter-
polating scattered data that I call blended neighbor interpolation. For
simple Euclidean distances, blended neighbor interpolation resembles
the classic natural neighbor interpolation.

INTRODUCTION

Interpolation of spatially scattered data is a common task in geophysics.
Assume that we have obtained a set F = { f1, f2, . . . , fK} of K known
sample values fk ∈R that correspond to a set X = {x1,x2, . . . ,xK} of
K known sample points xk ∈ Rn. Together these two sets comprise a
set

K = {( f1,x1),( f2,x2), . . . ,( fK ,xK)} (1)

of K known samples. These samples are scattered in the sense that
the n-dimensional sample points in the set X may have no regular
geometric structure. The interpolation problem is to use the known
samples in K to construct a function q(x) : Rn→R, such that q(xk) =
fk .

This problem has no unique solution, as there exist an infinite number
of functions q(x) that satisfy the interpolation conditions q(xk) = fk .
We therefore may also require that the interpolant q(x) be smooth,
bounded, and fast to compute. Because tradeoffs exist among such
criteria, a variety of methods for interpolating scattered data are com-
monly used today. Foster and Evans (2008) provide a recent evaluation
of several methods in the context of a geophysical application.

Most interpolation methods define (perhaps implicitly) each value of
the interpolant q(x) as a weighted sum of known sample values fk ,
where the weights depend in various ways on the Euclidian distances
‖x− xk‖ between the point x and known sample points xk . The sim-
plest example is the nearest neighbor interpolant, which sets q(x) equal
to the value fk corresponding to the sample point xk nearest to the in-
terpolation point x.

In image-guided interpolation, I replace distance with time or, more
precisely, a non-Euclidean distance defined for a metric tensor field.

Metric tensor fields
I compute a metric tensor field D(x) from structure tensors S(x), which
are smoothed outer products of image gradients (van Vliet and Ver-
beek, 1995). Figure 1 illustrates a tensor field D(x) computed for a
seismic image. Intuitively, tensors in D(x) alter the simple constant-
velocity time-distance relationship so that known samples within a ge-
ologic layer are nearer (in time) than are samples in different layers or
in locations or directions where coherence is low.

Figure 1: A tensor field D(x) computed for a 2D seismic image. El-
lipses here represent only a small subset of the tensors computed for
every image sample; they indicate the coherence, orientations and lin-
earity of image features.

In this example, I computed the tensor field D(x) = S−1(x)/[1−c(x)],
where the function c(x) is a measure of coherence, 0≤ c(x) < 1, here
computed from structure tensors S(x) using the method suggested by
Fehmers and Höcker (2003). Locations and directions of high coher-
ence within layers correspond to elongated ellipses in Figure 1.

IMAGE-GUIDED BLENDED NEIGHBOR INTERPOLATION

Given a tensor field D(x), image-guided blended neighbor interpola-
tion is a two-step process:

Step 1: solve the eikonal equation

∇ t(x) ·D(x)∇ t(x) = 1, x /∈X ;

t(x) = 0, x ∈X (2)

for

t(x): the minimum traveltime from x to the nearest (in
time) known sample point xk , and

p(x): the value fk corresponding to the sample point xk
nearest (in time) to the point x.

Step 2: solve the smoothing equation

q(x)− 1
2

∇ · t2(x)D(x)∇q(x) = p(x), (3)

for the interpolant q(x).

Figure 2 illustrates this process for the tensor field in Figure 1. In this
example, 21 scattered samples in Figure 2a have colors corresponding
to values that alternate vertically while decreasing from left to right.
I painted these samples interactively using a digital 3×3-pixel paint-
brush to make the sample points more clearly visible than if only one
pixel per sample were painted. Such interactive painting can be use-
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Figure 2: Image-guided blended neighbor interpolation. For a set K of known samples (a), we first solve equation 2 to compute the time map t(x)
(b) and nearest neighbor interpolant p(x) (c), and then solve equation 3 for the blended neighbor interpolant q(x) (d).

ful in geologic interpretation of seismic images, either with or without
additional scattered data obtained from borehole measurements.

In step 1, I computed the time map t(x) shown in Figure 2b by solv-
ing a finite-difference approximation to the eikonal equation 2. I used
an iterative algorithm similar to that proposed by Jeong et al. (2007).
Other suitable algorithms include variants of fast-marching methods
(Sethian, 1999; Sethian and Vladimirsky, 2005; Konukoglu et al.,
2007) and sweeping methods (Tsai et al., 2003; Qian et al., 2007),
but care must be taken to handle correctly the anisotropic and inho-
mogeneous coefficients D(x) in this equation. Ridges in the time map
t(x) are aligned with near-vertical faults in the seismic image, because
times increase rapidly where elements of the tensor field D(x) (the
ellipses displayed in Figure 1) are small.

While computing the time map t(x), I also computed the nearest neigh-
bor interpolant p(x) displayed in Figure 2c. It may be possible to
compute p(x) directly from t(x), but I have not found an efficient and
stable way to do so. Instead I compute p(x) as I solve for times t(x).

Step 2 requires the solution of another partial differential equation 3
for the desired interpolant q(x). Solution of this equation is equiva-
lent to smoothing the nearest neighbor interpolant p(x) computed in
step 1. In this sense, equation 3 blends nearest neighbor values, so
I call the complete two-step process image-guided blended neighbor
interpolation.

Note that smoothing or blending does not alter the values of known
samples. At known sample points xk for which t(xk) = 0, the solution
to equation 3 is clearly q(xk) = p(xk) = fk; the interpolation condi-
tions are satisfied.

In the example of Figure 2, I solved a finite-difference approxima-
tion to the blending equation 3 using an iterative conjugate-gradient
algorithm. With K = 21 scattered known samples and N = 251×357
image samples, I performed 709 iterations to converge to the blended
neighbor interpolant q(x) displayed in Figure 2d. More generally, the
number of iterations is proportional to the largest times t(x) computed
in step 1.

The blended neighbor interpolant in Figure 2d conforms to features in
the seismic image. Contours of constant color are aligned with both
near-horizontal features (geologic layers) and near-vertical discontinu-
ities (geologic faults).

For comparison, Figure 3 shows the result of blended neighbor inter-
polation for an isotropic constant tensor field D(x) = I, where I de-
notes the identity matrix. In this image-ignorant interpolation, time
t(x) computed in step 1 is simply Euclidean distance. The blended
neighbor interpolant q(x) shown in Figure 3d is therefore smooth, but
does not conform to image features. I used 243 conjugate-gradient
iterations in step 2 to converge to this interpolant.
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Figure 3: Image-ignorant blended neighbor interpolation, for D(x) = I. For a set K of known samples (a), we first use equation 2 to compute the
time (here, Euclidean distance) map (b) and nearest neighbor interpolant (c), and then solve equation 3 for the blended neighbor interpolant (d).

ALTERNATIVE INTERPOLATION METHODS

Table 1 lists several interpolation methods along with attributes that
best distinguish them. In developing blended neighbor interpolation, I
considered all of these methods, and rejected methods (including some
not listed) that would be more difficult to extend to efficient image-
guided interpolation in arbitrary tensor fields D(x). Figure 4 illustrates
four of these interpolants in the isotropic constant case, D(x) = I.
Among these methods, harmonic and biharmonic interpolation (e.g.,
Mitás̆ová and Lubos̆, 1993) are easiest to extend to interpolation in
tensor fields D(x), because they require no explicit computation of
distances or times. Unfortunately, as illustrated in Figure 4a, the har-
monic interpolant has sharp cusps at the known sample points xk .

Method Smooth Bounded Image-guided
Harmonic no yes fast
Biharmonic yes no slow
Nearest neighbor no yes fast
Natural neighbor fair yes slow
Blended neighbor fair yes fast

Table 1: Interpolation methods briefly compared. Examples for all but
the biharmonic method are shown in Figure 4.

The biharmonic interpolant (not shown) is much smoother, but in con-
trast to the interpolants shown in Figure 4, interpolated values q(x) are
not bounded by known sample values fk . Furthermore, biharmonic
interpolation is a relatively slow method in the image-guided case of
anisotropic and varying tensor fields D(x).

Nearest neighbor interpolation is relatively fast in that case, but the in-
terpolant is discontinuous, as shown in Figure 4b. Among all methods
listed in Table 1, nearest neighbor interpolation is the only one that
lacks linear precision; that is, it fails to interpolate precisely samples
( fk,xk) of any linear function f (x).

The natural neighbor interpolant (Sibson, 1981; Watson and Phillip,
1987; Sambridge et al., 1995) is most relevant here because, like the
blended neighbor interpolant, it can be computed by smoothing the
nearest neighbor interpolant. I computed the natural neighbor inter-
polant shown in Figure 4c using the discrete smoothing method of Park
et al. (2006). That smoothing method becomes relatively slow (as for
biharmonic interpolation) if extended to image-guided interpolation in
tensor fields D(x).

Indeed, this loss of efficiency inspired the more efficient smoothing
implied by solution of the blending equation 3. Blended neighbor
interpolation is most like discrete natural neighbor interpolation, but
with a different and faster smoothing method. It is therefore not sur-
prising that the blended neighbor interpolant in Figure 4d is similar to
the natural neighbor interpolant in Figure 4c.
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Figure 4: Four different interpolants — (a) harmonic, (b) nearest neighbor, (c) natural neighbor and (d) blended neighbor — of scattered data.

DISCUSSION AND CONCLUSION

When an image is available, the accuracy of image-guided interpola-
tion depends on the extent to which the property being interpolated is
correlated with image features. If no such correlation exists, then a
simpler and faster image-ignorant interpolation may be more accurate
than image-guided interpolation with an irrelevant image.

In many contexts, however, an isotropic and constant tensor field is in-
appropriate. And even when a useful image is unavailable, it may still
be possible to construct a more appropriate tensor field D(x) to guide
interpolation. The two-step process proposed here could more pre-
cisely be called tensor-guided blended neighbor interpolation, because
we actually use only the tensor field D(x), not the image.

However, in the example shown in this paper, I derived that tensor field
from a uniformly-sampled seismic image, and then interpolated scat-
tered data on the same uniform sampling grid. In some applications,
it may be desirable to interpolate scattered data with higher resolu-
tion, and nothing in the method prevents this. Image-guided blended
neighbor interpolation requires only that we provide a tensor D for all
uniformly sampled locations x where we interpolate.

Tensor fields used in image-guided blended neighbor interpolation are
analogous to spatial correlation functions (variograms) used in kriging,
a geostatistical interpolation method in which subsurface properties
are modelled as random variables (e.g., Goovaerts, 1997). But the two

interpolation methods are otherwise rather different. Where images
have less resolution than desired for geostatistical modeling, blended
neighbor interpolation may be used to provide image-guided trends for
kriging and other geostatistical methods.

Blended neighbor interpolation of scattered data is most similar to the
classic method of natural neighbor interpolation, in that both methods
smooth a nearest neighbor interpolant, and the extent of smoothing
grows with distance to the nearest known sample point. Smoothing in
blended neighbor interpolation is implied by the solution of a partial
differential equation, whereas smoothing in natural neighbor interpo-
lation is performed by explicitly computed weighted sums of nearest
neighbor sample values.

Compared with horizon-based methods commonly used today when
interpreting seismic images, image-guided blended neighbor interpo-
lation represents a new and more direct way to use such images to
interpolate scattered data. While the examples shown in this paper are
2D images, this process was designed to work as well for 3D images.
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