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Figure 1. Slices of a 3D seismic image (a) with P-wave velocities measured in boreholes and an image-guided 3D interpolation

(b) of those measured velocities.

ABSTRACT

A blended neighbor method for image-guided interpolation enables resampling

of borehole data onto a uniform 3D sampling grid, without picking horizons

and without flattening seismic images. Borehole measurements gridded in this

way become new 3D images of subsurface properties. Property values conform

to geologic layers and faults apparent in the seismic image that guided the

interpolation.

The freely available Teapot Dome data set, which includes a 3D seismic image,

horizons picked from that image, and numerous well logs, provides an ideal

demonstration of image-guided interpolation of borehole data. In this example,

seismic horizons picked by others coincide with thin layers apparent in the new

3D images of interpolated borehole data, even though the horizons were not

used in the interpolation process.
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1 INTRODUCTION

Seismic images are often used to guide the interpola-
tion of subsurface properties that are measured more
directly and (usually) more precisely in boreholes. Fig-
ure 1 provides an example for a 3D seismic image and
sonic (P-wave velocity) logs from the Teapot Dome oil-
field in Wyoming. These data are provided by the Rocky
Mountain Oilfield Test Center, a facility of the U.S. De-

partment of Energy (Anderson, 2009). Figure 1b shows
interpolated velocities, displayed with translucent color
so that the corresponding three slices of the 3D seismic
image are visible as well. At depths where sonic logs are
available, the interpolation of velocities is guided by the
seismic image.

In a more conventional seismic interpretation, we
might first pick horizons corresponding to coherent re-
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Figure 2. Two low-velocity layers in the 3D interpolated velocity image conform to the Crow Mountain (a) and Tensleep (b)
horizons that were picked interactively (by others) from the 3D seismic image. Only the seismic image, not the horizons, was
used to guide the 3D interpolation of the velocity logs.

flections in the seismic image. Two examples are shown
in Figure 2. These two horizons correspond to the Crow
Mountain and Tensleep formations, and are provided as
part of the Teapot Dome data set. Typically, we would
pick horizons like these interactively, with or without
help from automatic event-tracking software. One rea-
son we might construct horizon surfaces like these is to
facilitate interpolation of properties measured in bore-
holes.

I interpolated the velocities shown in Figure 2 (and
in Figure 1b) without using horizons. Instead, I used
the seismic image to automatically and more directly
guide 3D interpolation of the velocity logs. Although
the horizons in Figure 2 were not used, they coincide
with low-velocity layers apparent in the 3D interpola-
tion shown in Figure 1b.

An obvious advantage of image-guided interpola-
tion without horizons is that we save the time and ef-
fort of picking horizons. The savings may be significant,
as seismic processing and interpretation have become
interwoven parts of an iterative seismic imaging and in-
version process. Another advantage in using a 3D seis-
mic image directly is that we simultaneously interpolate
at all locations between and on horizons that we might
have picked. A third advantage is that our interpolation
may be guided by images of geologic features, including
unconformities and diapirs, that may be di�cult to rep-
resent accurately and e�ciently with picked surfaces.

Some of these advantages may be obtained by first
flattening a seismic image (Stark, 2004; Lomask et al.,
2006). By removing structure from a 3D image, flatten-
ing creates a stack of simpler 2D interpolation problems,
like those we today solve routinely for 2D maps corre-
sponding to picked horizons. However, automatic flat-
tening as described by Stark (2004) and Lomask et al.
(2006) is perfomed using vertical shifts that may dis-
tort distances measured within horizontal slices of a flat-

tened image (Lee, 2001). Moreover, vertical shifts often
cannot account for intrusions, such as overhanging salt
diapirs; and flattened images are at best ambiguous in
the presence of unconformities caused by erosion. Fi-
nally, flattening highlights stratigraphic features, such
as channels, in 3D seismic images; and we may wish to
use those features to guide the sequence of 2D interpo-
lations. In other words, image-guided interpolation may
be desirable even after flattening.

The purpose of this paper is to demonstrate image-
guided interpolation of borehole data, without flatten-
ing and without picking horizons. I first review the
blended neighbor interpolation method described by
Hale (2009) using a 2D seismic image. I then describe
the application of this method to the 3D seismic im-
age and well logs from the Teapot Dome data set, and
illustrate the method with several examples. Finally, I
discuss current limitations and potential extensions of
image-guided interpolation.

2 IMAGE-GUIDED INTERPOLATION

Let us assume that spatially scattered data to be inter-
polated are a set

F = {f1, f2, . . . , fK} (1)

of K known sample values fk 2 R that correspond to a
set

X = {x1,x2, . . . ,xK} (2)

of K known sample points xk 2 Rn. Together these two
sets comprise a set

K = {(f1,x1), (f2,x2), . . . , (fK ,xK)} (3)

of K known samples. These samples may be scattered
such that the n-dimensional sample points in the set
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X may have no regular geometric structure. The classic
interpolation problem is to use the known samples in
K to construct a function q(x) : Rn ! R, such that
q(xk) = fk.

As stated, this problem has no unique solution;
there exist an infinite number of functions q(x) that sat-
isfy the interpolation conditions q(xk) = fk. Additional
criteria may include measures of smoothness, robust-
ness, and e�ciency. Because tradeo↵s exist among such
criteria, a variety of methods for interpolating scattered
data are commonly used today.

In this paper I add the requirement that the in-
terpolation should conform to features in a uniformly
sampled image, as in Figures 1 and 2. That is, the in-
terpolation must be image-guided.

2.1 Blended neighbor interpolation

The blended neighbor method (Hale, 2009) was devel-
oped specifically to facilitate image-guided interpola-
tion. This process consists of two steps:

Step 1: solve the eikonal equation

r t(x) ·D(x)r t(x) = 1, x /2 X ;

t(xk) = 0, xk 2 X (4)

for

t(x): the minimal time from x to the nearest
known sample point xk, and

p(x): the value fk corresponding to the sample
point xk nearest to the point x.

Step 2: solve the blending equation

q(x)� 1
2
r · t2(x)D(x)r q(x) = p(x), (5)

for the blended neighbor interpolant q(x).

Here, time is simply a short word for non-Euclidean
distance. By this measure of distance, a sample point xk

is nearest to a point x if the time t(x) along some path
to xk is less than that for any other sample point. In step
(1), I compute this minimal-time map t(x) by solving
the eikonal equation 4.

The metric tensor field D(x) provides the
anisotropic and spatially varying coe�cients of that
eikonal equation. Intuitively, we must choose the ten-
sor field D(x) so that, by our time measure of non-
Euclidean distance, two points within the same geologic
formation are near, while two points in di↵erent forma-
tions are much farther away. In this way, known sam-
ple values fk for sample points xk that are geologically
nearby are given the most weight in any interpolated
value q(x).

In step (1), as I compute the time t(x) from each
point x to the location xk of the nearest known sample,
I also record the value p(x) = fk of that nearest known

sample. The function p(x) is therefore a nearest neighbor

interpolant.
In step (2), I compute the blended neighbor in-

terpolant q(x) by smoothing the nearest neighbor in-
terpolant p(x), and the extent of smoothing is con-
trolled by the time map t(x). At any known sample
point xk, equation 4 states that t(xk) = 0, so that no
smoothing is performed, and equation 5 becomes simply
q(xk) = p(xk) = fk. In other words, the function q(x)
interpolates exactly the known sample values.

Figure 3 illustrates the process of blended neigh-
bor interpolation guided by a 2D seismic image. In this
example I specified the 21 known samples illustated in
Figure 3a. (For clarity, each sample is plotted with an
opaque disk larger than the image pixel that represents
the sample value.) The values fk 2 [0, 1] in this example
are arbitrary; I chose them to alternate vertically, while
generally decreasing from left to right.

Figure 3b shows the time map t(x) computed in
step (1) for these known samples. The time map is dis-
played with translucent color on top of the seismic image
displayed with shades of gray. Times are smallest near
the known sample points xk and largest in the corners
that are farthest from any of those points. Contours of
constant-time are not circular, because they are warped
by the metric tensor field D(x). As described below, I
computed this tensor field so that times would increase
slowly in directions in which the seismic image is most
coherent, while increasing rapidly near strong reflections
and faults.

While computing the times t(x) in step (1), I also
computed the nearest neighbor interpolant p(x) shown
in Figure 3c. As expected, this interpolant conforms to
structure in the seismic image, but it is discontinuous at
locations x for which times t(x) to two or more nearest
known sample points xk are equal.

These discontinuities are removed by solving the
blending equation in step (2), which yields the contin-
uous blended neighbor interpolant q(x) shown in Fig-
ure 3d. Contours of constant color are well aligned with
structures and faults in the seismic image, and interpo-
lated values (colors) match the known sample values fk
at the known sample points xk.

As in the eikonal equation 4, the coe�cients D(x)
in the blending equation 5 are anisotropic and spatially
varying. Therefore, the direction and extent of blending
of the nearest neighbor values in step (2) depend on the
metric tensor field D(x), in addition to the time map
t(x) computed in step (1).

2.2 Computing the metric tensor field

As discussed above, both steps (1) and (2) of blended
neighbor interpolation are guided by a metric tensor
field D(x). Blended neighbor interpolation becomes
image-guided when we compute this tensor field from
an image.
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Figure 3. A simple example of image-guided 2D interpolation. For a set K of known (here, painted) samples (a), we first

use equation 4 to compute the time map (b) and nearest neighbor interpolant (c), and then solve equation 5 for the blended
neighbor interpolant (d).

I compute the metric tensor field D(x) from a seis-
mic image by first computing structure tensors S(x). As
described by van Vliet and Verbeek (1995) and Fehmers
and Höcker (2003), these structure tensors are spatially
smoothed outer products of image gradient vectors. In
n dimensions, each structure tensor S is a symmetric
positive-definite (SPD) n⇥ n matrix, e.g., 2⇥ 2 for 2D
images, and 3 ⇥ 3 for 3D images. I compute the eigen-
vectors of the metric tensors D(x) to be the same as
those in the structure tensors S(x), but I modify the
eigenvalues.

Equations 4 and 5 imply that the eigenvalues of
D(x) have units of velocity squared. I scale the tensor
field D(x) so that the maximum eigenvalue (maximum
velocity squared) for any of these tensors is one. Eigen-
values less than one therefore imply slower velocities and
larger times in directions of the corresponding eigen-
vectors. Times will be smaller in directions for which
velocities (eigenvalues) are faster (larger).

In the 2D example of Figure 3, I computed the met-
ric tensor field D(x) from a structure tensor field S(x)

by

D(x) = s

S�1(x)
1� c(x)

. (6)

I computed the constant scale factor s so that the max-
imum eigenvalue in the metric tensor field D(x) is one.
The function c(x) is a measure of coherence or sem-
blance (e.g., Bahorich and Farmer, 1995), computed for
each image pixel along the slope of the most linear
feature at that pixel. Any such measure in the range
0  c(x) < 1 could be used. The e↵ect of the divisor
1� c(x) is to increase the eigenvalues of D(x), thereby
decreasing times t(x), between locations where features
in images are most coherent.

Note that each matrix D in the metric tensor field
D(x) is SPD, because the eigenvalues of each inverse
matrix S�1 in equation 6 are reciprocals of the corre-
sponding positive eigenvalues of an SPD matrix S.

I chose the values and colors in Figure 3 to highlight
the ability of image-guided interpolation to conform to
structures and faults apparent in a seismic image. In
practice we might interactively paint values that are
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more realistic. Alternatively, the known samples might
correspond to geophysical data, such as well logs.

3 TEAPOT DOME EXAMPLE

The freely available Teapot Dome data set, which in-
cludes a time-migrated 3D seismic image and hundreds
of well logs (Anderson, 2009), enables a realistic demon-
stration of image-guided 3D interpolation of borehole
data.

3.1 Seismic image

To reduce the large number of zero traces in the 3D
seismic image, I rotated and trimmed the seismic sur-
vey coordinate rectangle, as shown in Figure 4. As illus-
trated by the constant-time slice shown there, roughly
half of the traces in the original 3D seismic image are
zero. After resampling to a spatial grid aligned with
the solid (red) coordinate rectangle, a smaller fraction
of traces are zero, and the spatial coordinate axes are
more nearly aligned with the anticlinal structure appar-
ent in the image. The original spatial sampling intervals
are 110 ft in both inline and crossline directions. I used
2D sinc interpolation to interpolate traces on the resam-
pled grid with spatial sampling intervals of 25 m in both
directions.

In the original seismic survey coordinate system,
the (east-west) axis is the inline direction, and the longer
(north-south) axis is the crossline direction. Although
the original and resampled coordinate grids are not
aligned (because of the rotation in the coordinate trans-
formation), I hereafter refer to the shorter (northeast-
southwest) resampled coordinate axis as the inline di-
rection and the longer (northwest-southeast) one as the
crossline direction.

Figure 5 shows two sets of three orthogonal slices
of the resampled seismic image, after conversion of the
vertical axis from time to depth. (I discuss the time-
to-depth conversion process in the next section.) In a
typical 3D seismic image, many such slices are possible.
I chose these slices for their intersections with structural
features apparent in the image and with wells.

3.2 Well logs

Well logs in the Teapot Dome data set are provided in
two groups. The numerous so-called “shallow” wells do
not penetrate to the depths displayed in Figure 5. None
of the “deeper” wells extends to the bottom depth (2.2
km) shown there, and less than twenty of them extend
to the depth of the 1.5 km slice shown in Figure 5b. In
the examples shown in this paper, I ignored all borehole
data provided with the shallow wells. The velocity logs
displayed in Figure 1 are those available for the deeper
wells.

Figure 4. Original (dashed blue) and resampled (solid red)
coordinate rectangles for the Teapot Dome data set. The
(dotted green) polygon is the boundary of the Teapot Dome

oilfield. The constant-time (0.95 s) slice shown here illus-
trates the anticlinal structure apparent in the 3D seismic
image.

For the purpose of demonstrating image-guided in-
terpolation, I selected four types of well logs: P-wave
velocity, density, porosity and gamma ray.

Well logs are provided in LAS (Log ASCII Stan-
dard) format, and directional surveys are provided for
boreholes that are not vertical. I performed only mini-
mal pre-processing of the well logs. Specifically, I used
elevations (of the kelly bushing, derrick floor, etc.) and
directional survey data to convert distances measured
along boreholes to inline, crossline and depth coordi-
nates in the resampled seismic coordinate system. I dis-
carded all logs with missing or clearly invalid elevation
data, and all logs not entirely contained within the spa-
tial boundaries of the resampled seismic image volume
shown in Figure 5.

I also discarded entirely any well logs that contain
clearly erroneous values: velocities outside the range
[0.2, 20] km/s, densities outside the range [0.5, 10.0]
gm/cc, porosities outside the range [0, 0.8], and gamma
ray radioactivies outside the range [0, 300] API units.
These bounds are broad and were chosen to exclude
only those logs that contained data that are obviously
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(a) (b)

Figure 5. Two sets (a) and (b) of three orthogonal slices of the 3D seismic image used to guide interpolation of Teapot Dome
borehole data. The horizontal constant-depth slice at 1 km (a) is intersected by many more wells than is the deeper slice at 1.5

km (b).

invalid. As shown below, the remaining well logs cer-
tainly contain measurements with significant errors, and
those errors are especially apparent after image-guided
3D interpolation.

Whereas well logs are sampled every six inches
along the boreholes, the depth sampling interval for the
seismic image is 4 m. This di↵erence in spatial sampling
intervals (roughly a factor of 25) raises an important
question. How finely should we sample the interpolated
borehole data?

3.3 Initial gridding of well logs

Interpolation on a fine grid that would preserve all de-
tail in the well logs would be about 25 times more costly
than interpolation on the vertically coarser seismic grid.
This high cost might be reduced by interpolating for
only a subset of the seismic image and well data. For
computational e�ciency and convenience in this demon-
stration, I sampled interpolated values using the sam-
pling intervals of the seismic image: 25 m in both inline
and crossline directions, and 4 m in depth. Here the in-

terpolation grid is that of the 3D seismic image.
For each type of log — velocity, density, porosity

and gamma ray — I obtained the set of known samples
defined by equation 3 with a simple binning and averag-
ing procedure. First, I rounded the spatial coordinates
of each well log sample to the coordinates of the near-
est bin in the interpolation grid. Each known sample
location xk therefore corresponds to one such bin, and
each known sample value fk is the average of all well
log samples for which xk is the nearest bin. After this
binning and averaging procedure, only those bins in the
interpolation grid that are intersected by well logs of

the appropriate type have values. Values for other bins
in the grid are unknown and will be interpolated using
the two-step process of equations 4 and 5.

3.4 Computing the tensor field

Before solving equations 4 and 5, we must first specify
a metric tensor field D(x). As in the 2D example of
Figure 3, I derived D(x) from structure tensors S(x)
computed from the seismic image. For the 3D seismic
image displayed in Figure 5, each structure tensor S is
a 3⇥ 3 SPD matrix with eigen-decomposition

S = �uuu
T + �vvv

T + �wwwT
, (7)

where �u, �v and �w are the eigenvalues and u, v and
w the corresponding eigenvectors of S.

Let us label the eigenvalues and eigenvectors of S
so that �u � �v � �w � 0. Then, eigenvectors u, cor-
responding to the largest eigenvalues �u, indicate direc-
tions in which image gradients are highest, orthogonal
to features that are locally linear or planar. The eigen-
vectorsw, corresponding to the smallest eigenvalues �w,
will be aligned with locally linear features, such as chan-
nels and the intersections of geologic faults and layers,
in seismic images. Both eigenvectors v and w lie within
the planes of any locally planar features.

In other words, for each image sample, the or-
thonormal eigenvectors u, v and w specify the local ori-
entation of the predominant image feature. The corre-
sponding eigenvalues �u, �v and �w contain information
about the shape of that feature. For example, locally lin-
ear features correspond to eigenvalues �u ⇡ �v � �w.
For locally planar features, �u � �v ⇡ �w.

The eigenvalues �u, �v and �w of structure tensors
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Figure 6. Image-guided nearest neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices
here correspond to those displayed for the seismic image in Figure 5a.

S are proportional to the magnitudes of image gradi-
ents squared, and therefore depend on the amplitudes
of events in seismic images. Geologically, weak events
may be as significant as strong ones; important geologic
interfaces may or may not correspond to large contrasts
in acoustic impedance.

Therefore, in image-guided interpolation, I discard
the eigenvalues �u, �v and �w of the structure tensors
S and use normalized local measures of semblance (co-
herence) to compute metric tensors

D = �3uu
T + �2vv

T + �1wwT
, (8)

such that 0  �3  �2  �1  1.
Each eigenvalue �1 corresponds to a semblance of

image samples measured along a 1D curvi-linear trajec-
tory defined by eigenvectors w. Likewise, each eigen-
value �2 corresponds to a semblance of image samples

along a 2D curvi-planar surface defined by the eigenvec-
tors v and w. Finally, each eigenvalue �3 corresponds
to a semblance of image samples within a local isotropic
3D window.

Recall that the eigenvalues of D have units of ve-
locity squared. (See equation 4.) In equation 8 these
eigenvalues are semblances, normalized measures of co-
herence in the range [0,1]. Therefore, at locations and in
directions where semblance equals one, time in the map
t(x) is equivalent to Euclidean distance. Time exceeds
Euclidean distance at locations and in directions where
semblance is less than one, where image samples are less
coherent.

In regions with no seismic image, the dead traces
in Figure 5, I specified eigenvalues �1 = �2 = 1,
�3 = 0.01, and eigenvectors u, v and w aligned with
depth, crossline and inline coordinate axes, respectively.
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(a) (b)

(c) (d)

Figure 7. Image-guided nearest neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices
here correspond to those displayed for the seismic image in Figure 5b.

These default metric tensors D correspond to planar
horizontal layering.

3.5 Nearest neighbor interpolation

The known samples (fk,xk) obtained by initial gridding
of well log data and the tensor field D(x) computed
from the image are the parameters required for step (1)
of image-guided interpolation. In this step I simultane-
ously compute both the time map t(x) and the nearest
neighbor interpolant p(x) by solving a finite-di↵erence
approximation of the eikonal equation 4.

Recall that “nearest” here implies nearest in time,
based on a non-Euclidean distance that is defined by
the metric tensor field D(x). Because the eigenvalues of
D(x) are computed from semblances measured in local
(u,v,w) coordinate systems, times along paths of high

image semblance (within imaged layers) are relatively
small, while those along paths of low semblance (across
imaged faults or layers) are relatively large.

Figures 6 and 7 display the nearest neighbor inter-
polants p(x) for four di↵erent borehole measurements.
Again, interpolated values are displayed with translu-
cent color on top of the seismic image used to guide the
interpolation.

For each log type, black dots in the horizontal
constant-depth slices indicate the intersections of well
logs with those slices. These dots represent only a tiny
subset of the well log samples used to perform the 3D
interpolation.

Figure 6 shows that a relatively small number of
wells have velocity logs at a depth of 1 km, while a
much larger number of wells have density, porosity and
gamma ray logs at that depth. Well intersections plotted
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at a depth of 1.5 km in Figure 7 indicate, for all four log
types, that a much smaller number of well logs extend
to this depth.

For example, Figure 7a indicates that only six ve-
locity logs extend to a depth of 1.5 km. However, the
velocity variation seen in the constant-depth slice at 1.5
km is not the result of interpolating only six logged ve-
locities. The interpolation is three-dimensional, so that
many logged velocities above and below this slice con-
tribute to the interpolated velocities shown there.

As in the 2D example of Figure 3c, all of the nearest
neighbor interpolants shown in Figures 6 and 7 exhibit
discontinuities. I chose the slices displayed in Figure 6
specifically to highlight some of those discontinuities.
Most of those discontinuities do not coincide with geo-
logic faults. Rather, they reflect inconsistencies among
properties measured within wells and those measured
within their nearest neighbor wells.

For example, anomalously low (light blue) porosi-
ties are apparent in the upper middle part of the verti-
cal crossline slice in Figure 6c. These low porosities are
suspect because they are inconsistent with those mea-
sured in wells that are nearby with respect to the non-
Euclidean metric tensor field D(x) computed from the
seismic image. Image-guided nearest neighbor interpo-
lation may lead us to look more closely at the porosity
logs of nearby wells, to look for possible sources of error.

In the same way, we may use consistency with near-
est neighbors as a measure of the fidelity of each well
log sample. For example, the three slices of interpolated
velocities shown in Figure 6 intersect an apparent high-
velocity anomaly. These high velocities are likely caused
by erroneous samples in the nearest velocity log. This
hypothesis is supported by the fact that the anomaly
coincides with the shallowest samples, which were ac-
quired last, for that log. In the well logs provided with
the Teapot Dome data set, the deepest (first recorded)
and shallowest (last recorded) samples often exhibit
anomalous values.

At depths greater than 1.9 km, large areas of con-
stant interpolated values are apparent in Figures 6
and 7. Because no wells extend to these depths, all of
the well log samples that lie in shallower geologic lay-
ers appear to be relatively far away, so that the nearest
neighbor sample value is a poor interpolant.

3.6 Blended neighbor interpolation

Step (2) of image-guided interpolation is the solution of
a finite-di↵erence approximation of the blending equa-
tion 5. Parameters in this equation include the metric
tensor field D(x), as well as the time map t(x) and
nearest neighbor interpolant p(x). Figures 8 and 9 show
slices of blended neighbor interpolants q(x) correspond-
ing to the nearest neighbor interpolants p(x) shown in
Figures 6 and 7.

As illustrated by these examples, the blending

equation 5 smooths the nearest neighbor interpolants,
and the extent of smoothing is controlled by the time
map t(x). Little smoothing is performed at locations
x near the known well log samples, where times t(x)
are small; more smoothing is performed where those
times are larger. In step (2) the metric tensor field D(x)
causes this smoothing to be performed along seismically
imaged geologic layers, but not across those layers or
across faults. In this sense, the blending step (2) is an
averaging of values from neighbors that are geologically
nearby.

When solving the blending equation 5, I clipped all
times in the time map t(x) to be less than 10. Recall
that, at locations and in directions where semblances
are highest (that is, where eigenvalues of D equal one),
one unit of time is equivalent to one spatial sample.

This time constraint limits the amount of smooth-
ing performed. Where well log samples are dense, times
are small anyway, and this limit has no e↵ect on blended
neighbor interpolants. In regions more sparsely sampled
by well logs, this limit causes the blended neighbor in-
terpolant to appear more like the nearest neighbor in-
terpolant.

Setting an upper bound on times in the map t(x) is
analogous to setting an upper bound on the distance at
which subsurface properties are correlated, as in kriging
(e.g., Cressie, 1993). The di↵erence here is that distance
is defined by the metric tensor field D(x).

This upper bound also reduces the computational
cost of solving the finite-di↵erence approximation of the
blended equation 5. For the conjugate-gradient solver
that I use, that cost grows linearly with times in the map
t(x). For this example, the computation time required
to solve the blending equation 5 is a few minutes on
a modern workstation, roughly one tenth of the time
required to solve the eikonal equation 4. If times had not
been clipped, this cost would have been much higher.

Finally, by limiting the times in the map t(x), we
limit the range of influence of anomalous well-log values.
After such values have been found and, if erroneous, cor-
rected or discarded, we might increase the upper bound
on times in t(x), and thereby permit smoothing over
greater non-Euclidean distances.

4 DISCUSSION

The Teapot Dome example demonstrates the process of
image-guided 3D interpolation of borehole data. Instead
of first picking horizons or flattening a seismic image,
we may use the image to define a non-Euclidean metric
tensor field that directly guides interpolation.

4.1 Two interpolants

In practice both the nearest neighbor and blended
neighbor interpolants may be useful. The nearest neigh-
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Figure 8. Image-guided blended-neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices
here correspond to those displayed for the seismic image in Figure 5a.

bor interpolant may be used to detect inconsistencies in
borehole data acquired within the same seismically im-
aged geologic layers. Well log sample values that are in-
consistent with those of geologically nearby log samples
may be erroneous and perhaps should be discarded.

For example, we might compute, for each well log
sample, the di↵erence between the sample value and the
mean of its nearest neighbor values. We might then dis-
card log samples for which that di↵erence exceeds some
multiple of the standard deviation of the nearest neigh-
bor values. We could also use more robust statistical
measures in similar ways.

The nearest neighbor interpolant is also a useful
first step toward computing the blended neighbor inter-
polant. Within seismically imaged layers, the blended
neighbor interpolant is continuous and therefore geolog-

ically more reasonable than the discontinuous nearest
neighbor interpolant.

The blended neighbor interpolants shown in Fig-
ures 8 and 9 are consistent with the borehole data
and structures apparent in the corresponding seismic
image. These interpolants are also consistent with ex-
pected trends. Velocities tend to increase with depth
and porosities tend to decrease with depth. Also evi-
dent are some significant deviations from those trends.

For example, the strong reflector at a depth of
about 1.5 km coincides with a significant change in both
velocity and density, the factors of acoustic impedance.
A thin layer at that depth with relatively low velocity,
low density, high porosity, and low gamma ray radioac-
tivity corresponds to the Crow Mountain sandstone for-
mation marked by the light-blue horizon displayed in
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(a) (b)

(c) (d)

Figure 9. Image-guided blended-neighbor interpolation of velocity (a), density (b), porosity (c) and gamma ray (d) logs. Slices
here correspond to those displayed for the seismic image in Figure 5b.

Figure 2a. The low (dark blue) density of this formation
is especially visible in the slices of interpolated densities.

As another example, the Tensleep sandstone for-
mation marked by the light-yellow horizon in Figure 2b
corresponds to the low-velocity (light yellow) layer ap-
parent at a depth of about 1.8 km/s in Figures 8 and 9.
At the depths of both the Tensleep and Crow Moun-
tain formations, the interpolated velocities shown here
depend on velocities logged in only six wells.

After interpolating relevant borehole data onto a
shared uniform 3D sampling grid, thereby creating 3D
images of subsurface properties, we can easily combine
them to create other images. For example, we might use
the velocity and density images to compute a 3D image
of acoustic impedance.

4.2 Time-to-depth conversion

Before seismic images can be used to guide interpola-
tion of borehole data, the vertical axis of those images
must be converted from vertical two-way time to depth.
This conversion requires a uniformly sampled function
⌧(x) = ⌧(x, y, z) that specifies, for each point with hor-
izontal coordinates x and y and depth coordinate z, the
corresponding vertical two-way time ⌧ . Given the uni-
formly sampled function ⌧(x, y, z), it is easy to convert
a time-migrated seismic image s⌧ (x, y, ⌧) from time to
depth using the mapping

sz(x, y, z) = s⌧ [x, y, ⌧(x, y, z)], (9)

where sz(x, y, z) is the seismic image after time-to-depth
conversion. The more di�cult task is to construct the
uniformly sampled function ⌧(x, y, z).
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In the Teapot Dome example, that function was
constructed in a typical manner, by correlating seis-
mic horizons picked on time-migrated images with cor-
responding features in well logs (D. Witte, personnel
communication, 2009). Specifically, for all well logs in-
tersecting a seismic horizon, points with horizontal co-
ordinates x and y and times ⌧ were chosen from the hori-
zon, and corresponding points with approximately the
same x and y coordinates and depths z were chosen from
the log. Depths z where then interpolated, first within
each horizon for all x and y, using a minimum-curvature
algorithm (Briggs, 1974), and then vertically between
horizons for all times, using a simple linear interpola-
tion, to obtain a uniformly sampled function z(x, y, ⌧).
A simple inverse linear interpolation was then used to
obtain the required function ⌧(x, y, z).

Image-guided interpolation suggests an alternative
to this procedure that does not require picking seis-
mic horizons. As in the typical procedure, we may first
choose points (x, y, ⌧) from the seismic image and corre-
sponding points (x, y, z) from the well logs. These points
comprise scattered known samples of z(x, y, ⌧) that we
may interpolate, using the time-migrated 3D seismic im-
age s⌧ (x, y, ⌧) to guide our interpolation. Again, inverse
linear interpolation would yield the required uniformly
sampled function ⌧(x, y, z).

Other alternatives include direct interpolation of
vertical traveltimes ⌧ measured in checkshot surveys or
vertical seismic profiles. In all of these alternatives, we
replace three steps — (1) horizon picking, (2) interpo-
lation within horizons, and (3) interpolation between
horizons — with image-guided 3D interpolation.

4.3 Other interpolation methods

I developed the two-step blended neighbor method for
image-guided interpolation to be both intuitive and
computationally e�cient. The method is intuitive be-
cause the blended neighbor interpolant is a smoothed
version of the simplest nearest neighbor interpolant.
The method is e�cient primarily because it does not
require the computation of times (non-Euclidean dis-
tances) from every interpolation grid point x to every
known sample point xk.

Blended neighbor interpolation requires only the
time t(x) to the nearest (smallest in time) known sample
point xk. Computation of the time map t(x) displayed
in Figure 3b does not require times from every interpo-
lation grid point x to every known sample point xk.

Some well-known alternative methods, such as in-
terpolation using Green’s functions or radial basis func-
tions (e.g., Wessel and Bercovici, 1998) or kriging (e.g.,
Cressie, 1993), require many more distance computa-
tions. For a constant metric tensor field D(x) = D, the
cost of computing these many distances is insignificant.
However, the cost of computing non-Euclidean distances
in a spatially varying metric tensor field D(x) is much

higher, requiring numerical solution of the eikonal equa-
tion 4. This high cost makes many well-known alterna-
tive methods impractical for image-guided 3D interpo-
lation of borehole data.

4.4 Limitations

When interpolating velocities and densities, properties
that determine acoustic impedance, we should use seis-
mic amplitudes to help estimate these properties be-
tween boreholes. However, as described here, image-
guided 3D interpolation uses only estimates of image
structure and semblance to guide interpolation of bore-
hole data. It does not directly use the amplitudes of
seismic reflections.

Seismic reflection amplitudes are especially use-
ful in quantifying rapid vertical variations in velocities
and densities. Those amplitudes are often less useful in
quantifying long-wavelength vertical variations, because
low frequencies are typically absent in recorded seismo-
grams. One possible use of image-guided 3D interpo-
lation would be to provide an a priori long-wavelength
model for a more sophisticated joint inversion of seismic
amplitudes and borehole data.

Another current limitation of image-guided inter-
polation is its reliance entirely on structure tensors S(x)
computed from seismic images. While such automatic
estimates of the orientations and shapes of subsurface
structures are typically more reliable than reflection am-
plitudes, seismic interpreters routinely pick reflectors in
noisy 3D seismic images for which automatic methods
would fail. Moreover, not all subsurface properties con-
form to reflectors in seismic images. In practice a semi-
automatic interpolation process, one guided by both
seismic images and human interpreters, is likely to be
optimal.

5 CONCLUSION

Notwithstanding its current limitations, image-guided
interpolation provides an attractive new method for us-
ing a 3D seismic image to interpolate subsurface proper-
ties measured in boreholes. The method requires only a
metric tensor field, which I compute automatically from
the image, and the borehole data to be interpolated. In
contrast to methods widely used today, image-guided
interpolation does not require picking seismic horizons
or faults; nor does it require image flattening.

The examples for the Teapot Dome data shown in
this paper illustrate that the method produces inter-
polants consistent with seismic horizons picked by oth-
ers. For depths where borehole data have been acquired,
the most significant errors in the interpolants likely cor-
respond to errors in well logs. The nearest neighbor in-
terpolant naturally highlights such errors, as they cause
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significant lateral discontinuities in interpolated subsur-
face properties at locations halfway (in time) between
well logs. This observation suggests that we might use
nearest neighbor interpolants to quantify the spatial
consistency and, hence, the fidelity of well log samples.

Unlike nearest neighbor interpolants, blended
neighbor interpolants are continuous, the latter being
simply smoothed versions of the former. The extent of
smoothing depends on times, non-Euclidean distances,
to the nearest borehole measurements. By limiting these
times to not exceed a specified maximum, we can reduce
both the influence of erroneous measurements and the
computational cost of image-guided interpolation.
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