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Figure 1. An input seismic image (a), the output of structure-oriented bilateral filtering (b), and the di↵erence (c) between
input and output images. For visibility, the input-output di↵erence is displayed for a smaller gray-scale range of amplitudes.

ABSTRACT
Bilateral filtering is widely used to enhance photographic images, but in most

implementations is poorly suited to seismic images. A bilateral filter consists of

two filter kernels. By replacing one of those kernels with a smoothing filter that

conforms to image structures, we obtain a bilateral filter suitable for seismic

image processing. Examples and comparison with conventional edge-preserving

smoothing illustrate both advantages and disadvantages of structure-oriented

bilateral filtering.
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1 INTRODUCTION

Bilateral filters (Tomasi and Manduchi, 1998) are to-
day widely used to smooth photographic images while
preserving significant edges. Paris et al. (2008) provide
a thorough review of bilateral filters and their applica-
tions, which include denoising, image abstraction, and
texture and tone adjustment. Despite such widespread
application to photographic images (and to medical CT
and MRI scans), bilateral filters are seldom used to en-
hance seismic images. Why not?

One reason is that edges in seismic images di↵er
significantly from those in photographic images (and in
medical CT or MRI scans). Consider for example the
seismic image displayed in Figure 2. The most obvious
edges in this image are the alternating black and white
features that correspond to seismic horizons. However,
these sinusoidal features are unlike the edges apparent in
most photographs. Rather, these features correspond to

Figure 2. A seismic image used as the input p to various

filters described in this paper.
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reflections of seismic waves caused by changes in seismic
impedance. Edges in images of seismic impedance, when
such images are available, more closely resemble edges
in photographs.

Also important are edges corresponding to lateral
discontinuities in seismic reflections, the chaotic struc-
tures at about 1.2 s and the geologic faults below 1.5 s
in the image of Figure 2. In processing seismic images,
we seek to denoise (enhance the continuity of) coherent
reflections, while preserving these lateral discontinuities.

The anisotropic di↵usion filter (Weickert, 1999;
Fehmers and Höcker, 2003) is one example of a filter
that does this for seismic images, as well as for photo-
graphic images. However, although the anisotropic dif-
fusion filter has been compared with the bilateral filter
in applications to other types of images (e.g., Barash,
2002), I have found no such comparison in their appli-
cation to seismic images.

In this paper I provide this comparison, for a mod-
ified bilateral filter that accounts for the di↵erent types
of edges apparent in typical seismic images. I used this
modified bilateral filter in the example of Figure 1, for a
small subset of the image in Figure 2. I show that bilat-
eral filtering of seismic images, like that of photographic
images, preserves edges without any prior detection of
those edges using coherence or semblance attributes.

Like any denoising filter, the modified bilateral fil-
ter proposed in this paper attempts to remove noise
while preserving signal. Here, I define noise to be any-
thing removed by a filter; signal is what remains. In
other words, if q (Figure 1b) denotes the output image
obtained by filtering an input image p (Figure 1a), then
noise is the di↵erence p � q (Figure 1c) between input
and output. For coherency-enhancing filters, spatial cor-
relation in this di↵erence should be insignificant, when
compared with that in the input or output images.

2 SMOOTHING FILTERS

Let p[i] and q[i] denote input and output images, re-
spectively, where i = (i1, i2, . . . , in) is an n-dimensional
sample index with n integer components. Convolutional
smoothing filters have the form

q[i] =
X

j

p[j] s(i� j), (1)

where s(k) denotes the filter’s impulse response. (For
simplicity I omit summation limits in this paper; un-
less stated otherwise, sums include all indices for which
the summand is non-zero.) This filter is shift-invariant
(convolutional) because the filter coe�cients s(k) de-
pend only on the di↵erence k = i � j between output
and input sample indices.

2.1 Gaussian smoothing

In a smoothing filter the coe�cients s(k) are chosen
so that each output sample q[i] is some sort of weighted
average of input samples p[j]. In e↵ect, a smoothing filter
attempts to predict signal at sample index i from nearby
noisy input samples p[j].

One such smoothing filter, widely used in image
processing, has a Gaussian impulse response

s(k) = s0 e
� k·k

2�2 , (2)

where � denotes the filter half-width or radius.
The scale factor s0 is chosen so that

P
k

s(k) = 1.
This condition ensures that the smoothing filter does
nothing to an input image p that is constant, an image
that is already as smooth as it can be.

An alternative to normalizing the filter coe�cients
in this way would be to scale each output sample q[i] by
the sum of the weights:

q[i] =

P
j

p[j] s(i� j)
P

j

s(i� j)
. (3)

However, for shift-invariant filters, the denominator
(with a simple change of summation index)

P
j

s(i�j) =P
k

s(k) is a constant, independent of the output sam-
ple index i. For such filters we must compute the scale
factor 1/

P
k

s(k) only once.
Applying the Gaussian smoothing filter with radius

� = 16 samples (0.064 s vertically, 0.4 km horizontally)
to the input seismic image p shown in Figure 2, I ob-
tained the output image q shown in Figure 3a. This
output image is everywhere nearly zero! The estimate
of the noise p� q displayed in Figure 3b (with a di↵er-
ent gray scale) is nearly identical to the input image p
displayed in Figure 2, and is anything but uncorrelated.
This poor result is not surprising because, within any
Gaussian window with radius � = 16 samples, the input
image p has nearly zero mean.

For consistency, all filters shown in this paper have
a maximum smoothing half-width of � = 16 samples.
If we use a smaller filter radius, the isotropic Gaussian
filter will perform less smoothing in all directions, and
the output will not be so nearly zero.

However, for images p like that in Figure 2, simple
shift-invariant filters, such as Gaussian filters or dip fil-
ters, will be ine↵ective, because the shapes and orienta-
tions of image features vary spatially. For such images, a
more e↵ective alternative is a filter with an anisotropic
and spatially varying impulse response, one that con-
forms to image structures.

2.2 Structure-oriented smoothing

To smooth along structures apparent in images, with-
out smoothing across those structures, I solve a discrete
approximation to the following partial di↵erential equa-
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a)

b)

Figure 3. The output q of Gaussian smoothing (a) and the

input-output di↵erence p�q (b). For the input p in Figure 2,
the output q is everywhere nearly zero.

tion:

q(x)� �2

2
r •D(x) •rq(x) = p(x) (4)

for tensor-valued filter coe�cients D(x). Here, x rep-
resents coordinates in space or space-time that when
sampled become indices i and j in equations 1 and 3.

As shown by Hale (2009), solution of this equation
approximates Gaussian smoothing with half-width � in
the directions of eigenvectors of D(x) for which corre-
sponding eigenvalues equal one. By choosing those di-
rections to to be tangent to structures apparent in an
input image p, and by choosing eigenvalues for orthog-
onal directions to be much less than one, smoothing is
oriented along image structures.

Solving equation 4 is similar to filtering with
coherence-enhancing anisotropic di↵usion (Weickert,
1999; Fehmers and Höcker, 2003). As for that process, I
derive the tensor-valued coe�cients D(x) from struc-
ture tensors computed for the input image. An e�-
cient method for solving equation 4 is described by Hale
(2009).

Figure 4 shows an example of structure-oriented
smoothing by solving equation 4 for � = 16 samples. Al-
though smoothing has been performed primarily along

a)

b)

Figure 4. The output q of structure-oriented smoothing (a)

and the input-output di↵erence p� q (b).

structures apparent in the input image p shown in Fig-
ure 2, significant details have not been preserved in the
output image q shown in Figure 4a. In particular, faults
in the lower part of the image are poorly resolved, as are
sharp discontinuties in chaotic structures just below 1.2
s. Moreover, significant spatial correlation is apparent
in the input-output di↵erence displayed in Figure 4b.

2.3 Edge-preserving smoothing

To preserve edges while smoothing, we may scale the
tensors D(x) in equation 4:

q(x)� �2

2
r • c2(x)D(x) •rq(x) = p(x), (5)

where c(x) denotes some normalized measure of coher-
ence that is nearly zero near discontinuities and nearly
one where image features are coherent.

In e↵ect, coherence c(x) in equation 5 reduces
the maximum half-width � of the structure-oriented
smoothing filter by a factor that varies spatially.
Fehmers and Höcker (2003) describe one way to com-
pute the scale factors c(x), using a measure of coher-
ence that requires the computation of two structure ten-
sor fields. Here I compute coherence c(x) as structure-
oriented semblance (Hale, 2009) raised to the power 8.
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a)

b)

Figure 5. Structure-oriented semblance (a) and coherence

(b). Coherence (here, semblance to the power 8) scales ten-
sors used in edge-preserving smoothing.

(This simply formula makes small values of semblance
even smaller; only those image features with semblance
near one have high coherence. Experimentally, I found
that smaller powers do not su�ciently inhibit smooth-
ing across faults.) Both semblance and coherence are
displayed in Figure 5.

Figure 6 shows the e↵ect of edge-preserving
structure-oriented smoothing with equation 5, using
coherence c(x) displayed in Figure 5b. Near discon-
tinuities, such as faults, coherence is low and little
smoothing is performed. This smoothing near but not
across discontinuities appears to enhance the definition
of faults in the output image q of Figure 6a.

The input-output di↵erence in Figure 6b shows that
little smoothing is performed near the middle of the
image, at times near 1.4 s, where features in the in-
put image p are least coherent. Note, however, that the
largest di↵erences in Figure 6b exhibit significant spa-
tial correlation, and that these di↵erences coincide with
high-amplitude features in the input image.

2.4 Generalized smoothing filters

As for the Gaussian smoothing filter described ear-
lier, solution of equation 4 when the input image p is

a)

b)

Figure 6. The output q of structure-oriented edge-

preserving smoothing (a) and the input-output di↵erence
p� q (b).

constant yields an identical output image q = p, be-
cause the term in that equation with gradient opera-
tors is zero. In other words, like Gaussian smoothing,
structure-oriented smoothing is normalized, and can be
expressed as follows:

q[i] =

P
j

p[j] s(i, j)
P

j

s(i, j)
. (6)

Note that structure-oriented smoothing cannot be
represented by the shift-invariant filter of equation 1.
The filter coe�cients s(i, j) vary spatially; they depend
on both the output index i and input index j, not merely
on their di↵erence. In practice we will never explicitly
compute these filter coe�cients, because it is more e�-
cient computationally to solve partial di↵erential equa-
tions 4 or 5. However, as we next consider bilateral fil-
tering, let us remember that solving equations 4 or 5 is
equivalent to filtering with equation 6, for some unspec-
ified filter coe�cients s(i, j).

3 BILATERAL FILTERS

The name bilateral filter (Tomasi and Manduchi, 1998)
was chosen to imply that the kernel of this filter is a
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combination of two filter kernels, one a function of the
input image’s spatial domain and the other a function
of its range. The basic idea is simple. We modify the
shift-invariant filter equation 3 to scale the coe�cients
s(i� j) by a range function r(p[i]�p[j]) of the di↵erence
between two input sample values:

q[i] =

P
j

p[j] r(p[i]� p[j]) s(i� j)
P

j

r(p[i]� p[j]) s(i� j)
. (7)

The range function r(p) should be chosen to de-
crease monotonicially with increasing |p|. In practice
(Durand and Dorsey, 2002), a simple and e↵ective
choice is Tukey’s biweight function, defined by

r(p) ⌘
(
[1� (p/�

p

)2]2 if |p| < �
p

,

0 otherwise.
(8)

The half-width �
p

of the range function r controls
the scaling of the spatial filter coe�cients s in equa-
tion 7.

The definition of the range function in equation 8
implies that the choice of �

p

should depend on the range
of values in the input image p. In practice, I find that a
good choice is

�
p

=

p
5
2

(p75 � p25) (9)

where p25 and p75 denote the 25’th and 75’th percentiles
(1st and 3rd quartiles), respectively, of the sample val-
ues in the input image p. The factor

p
5/2 ⇡ 1.1 is an

artifact of my tests for di↵erent types of range functions
(as in Durand and Dorsey, 2002). Specifically, Tukey’s
biweight function with half-width �

p

=
p
5 is compara-

ble to a Gaussian function with half-width �
p

= 1.
Figure 7 illustrates for a synthetic example the ef-

fect that the half-width �
p

has on bilateral smoothing.
For small values of �

p

, little smoothing is performed,
because then only values p[j] ⇡ p[i] are averaged by
equation 7 when computing the output value q[i]. For
large values of �

p

, scaling by the range function has
little e↵ect, and the bilateral filter is merely a spatial
smoothing filter, one that does not preserve edges. For
a range of intermediate values 2 < �

p

< 6, the bilat-
eral filter attenuates noise while more or less preserving
edges in the signal. This synthetic example highlights
the e↵ectiveness of the bilateral filter when applied to
photographs or medical images with similar step edges.

Recall, however, that edges most apparent in seis-
mic images are reflections with sinusoidal waveforms,
which are not step functions. Figure 8 shows the result
of using a shift-invariant isotropic Gaussian (with half-
width � = 16 samples) for the spatial smoothing filter
kernel s in equation 7, in bilateral filtering of the seis-
mic image of Figure 2. The output image q shown in
Figure 8a is no longer nearly zero (as in Figure 3a), but
significant spatial correlation remains apparent in the
input-output di↵erence shown in Figure 8b. The bilat-
eral filter preserves faults and other discontinuties, but

a)

b)

c)

d)

e)

Figure 7. Bilateral filtering of a blocky signal (dashed lines)
contaminated with additive random noise. The smoothing
filter kernel is Gaussian with half-width � = 20 samples.

Half-widths �
p

of the Tukey range filter kernel are (a) 1/100,
(b) 1/2, (c) 1, (d) 3/2, and (e) 10 times the value �

p

⇡ 4
given by equation 9.

it removes coherent signal from the seismic image as it
attenuates incoherent noise.

3.1 Structure-oriented bilateral filtering

Although the coe�cients s[i� j] of the smoothing filter
kernel in equation 7 are shift-invariant, the composite
bilateral filter is not; the coe�cients r(p[i]� p[j]) s[i� j]
of the composite filter depend on both indices i and j,
not merely on their di↵erence. Therefore, we may as well
generalize equation 7 by writing:

q[i] =

P
j

p[j] r(p[i], p[j]) s(i, j)
P

j

r(p[i], p[j]) s(i, j)
. (10)

This bilateral filter resembles equation 6, with the coef-
ficients s(i, j) of the smoothing filter kernel again scaled
by coe�cients r(p[i], p[j]) of the range filter kernel. This
observation leads to the key idea of this paper.
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a)

b)

Figure 8. The output q of bilateral filtering (a) and the

input-output di↵erence p� q (b).

For structure-oriented bilateral filtering, simply re-

place the smoothing filter kernel with structure-oriented

smoothing.

Remember that the spatial filter coe�cients s(i, j)
are unknown. We apply the spatial smoothing filter by
solving the partial di↵erential equation 4. Because the
range filter kernel r is a function of both output and in-
put indices i and j, an e�cient implementation of equa-
tion 10 may not be obvious.

My implementation is similar to that of Durand
and Dorsey (2002). First, for any value of p[j], and for
p1  p[i]  p2, let us use simple linear interpolation to
approximate

r(p[i], p[j]) ⇡ (p[i]� p1)r(p2, p[j]) + (p2 � p[i])r(p1, p[j])
p2 � p1

.

(11)
Of course, for any value of p[j], r(p[i], p[j]) is not a
linear function of p[i]. Therefore, I use a piecewise-
linear approximation for a finite number N

p

of values
p
k

= p
min

+ k�p, for k = 0, 1, . . . , N
p

� 1, where

N
p

= 2 +

�
p
max

� p
min

�
p

⌫
(12)

and

�p =
p
max

� p
min

N
p

� 1
. (13)

a)

b)

Figure 9. The output q of structure-oriented bilateral filter-

ing (a) and the input-output di↵erence p� q (b).

For this piecewise-linear approximation of the range
function r, equation 10 becomes

q[i] =

P
k

⇤(p[i]� p
k

)
P

j

p[j] r(p
k

, p[j]) s(i, j)
P

k

⇤(p[i]� p
k

)
P

j

r(p
k

, p[j]) s(i, j)
, (14)

where ⇤(p[i]�p
k

) is a shifted version of the hat function
defined by

⇤(p) ⌘

8
<

:
1� |p|

�p
if |p| < �p,

0 otherwise.
(15)

Note that the
P

j

terms in the numerator and de-
nominator of equation 14 resemble those in equation 6.
In equation 6 these terms represent structure-oriented
smoothing of the images p[j] and 1 (a constant im-
age). In equation 14 these terms imply exactly the same
smoothing of images p[j]r(p

k

, p[j]) and r(p
k

, p[j]). For all
of these images, we perform spatial smoothing by solv-
ing the partial di↵erential equation 4.

Figure 9 displays the result of structure-oriented
bilateral filtering of the image in Figure 2. Faults and
other discontinuities are well-preserved in the output
image shown in Figure 9a; and the noise shown in
Figure 9b exhibits the least spatial correlation, when
compared with the noise for other filters demonstrated
above.
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Structure-oriented bilateral filtering preserves
faults and other sharp discontinuities in Figure 9a,
without using any prior estimate of semblance or
coherence. The range function of the bilateral filter
inhibits smoothing across a fault where values on each
side of the fault di↵er significantly. As others have
noted (e.g., Paris et al., 2008), this simplicity of the
bilateral filter is one of its advantages.

For this example, I used N
p

= 19, which implies
that a total of 2N

p

= 38 structure-oriented smoothings
were performed, 19 for the numerator and 19 for the
denominator of equation 14. This rather large number
N

p

= 19 is necessary for the image of Figure 2 because
for this image p

min

⌧ p25 and p75 ⌧ p
max

. Specifically,
amplitudes of features at about 1.5 s are much higher
than for other features in this image. As shown by ex-
amples in the following section, the number N

p

is lower
for images with more balanced amplitudes.

In any case, structure-oriented bilateral filtering
generally requires significantly more solutions to equa-
tion 4 than the one solution of equation 5 required
for edge-preserving structure-oriented smoothing. Rel-
atively high computational cost is therefore a disadvan-
tage of my implementation of structure-oriented bilat-
eral smoothing.

It may be possible to decrease this cost. For ex-
ample, an iterative solution of the structure-oriented
smoothing equation 4 for index k in equation 14 may
begin with the solution for index k � 1. I have not yet
tested this or other optimizations.

4 FILTER COMPARISON

To facilitate comparison of structure-oriented bilat-
eral filtering with edge-preserving structure-oriented
smoothing, this section displays side by side the out-
puts and input-output di↵erences for these two filters.
For each example, bilateral filtering required 2N

p

so-
lutions of equation 4, and edge-preserving filtering re-
quired one solution of equation 5. The tensors D(x) in
these equations that guided the smoothing varied for
di↵erent input images, but the same tensors were used
for both types of filters. A smoothing half-width � = 16
samples was used for both filters in all examples.

Figure 10 is a collection of images already displayed
in several figures above. The input image p is displayed
in Figure 10a. The output image q and the di↵erence
p� q for bilateral filtering are displayed in Figures 10b
and 10c, respectively. Figure 10d displays coherence c
computed from the the input image p. I used this co-
herence to scale tensors in edge-preserving smoothing,
for which the output q and di↵erence p�q are displayed
in Figures 10e and 10f. In this example, N

p

= 19 for the
bilateral filter.

Figure 11 displays the same set of results for a dif-
ferent seismic image. As in the previous example, input-
output di↵erences for the bilateral filter exhibit less spa-

tial correlation and are more uniform in amplitude than
those for the edge-preserving filter. The bilateral fil-
ter appears to better preserve fine details in the signal,
while attenuating uncorrelated noise. The output of the
edge-preserving filter appears smoother; it has a more
cartoonish appearance, which may or may not be an
advantage, depending on how the output image is to be
used. In this example, N

p

= 8 for the bilateral filter.
Figure 12 displays the same set of results for a 2D

horizontal slice from a 3D seismic image. The output
images for both filters are similar. However, as for ex-
amples above, input-output di↵erences for the bilateral
filter are more uniform in amplitude, and less corre-
lated with input amplitudes, than those for the edge-
preserving filter. In this example, N

p

= 10 for the bilat-
eral filter.

5 CONCLUSION

As demonstrated by the examples above, a bilateral fil-
ter suitable for 2D or 3D seismic image processing may
be obtained by (1) replacing the smoothing filter ker-
nel in the usual bilateral filter with structure-oriented
smoothing and (2) using a piecewise-linear approxima-
tion of the range filter kernel.

2D image examples show that bilateral filtering is
comparable to edge-preserving smoothing for denois-
ing of seismic images. Both filters attenuate noise while
more or less preserving signal.

Edge-preserving smoothing is computationally
more e�cient, but requires an estimate of coherence
(or some other attribute) that highlights edges to be
preserved, such as faults. The e↵ectiveness of edge-
preserving smoothing depends on this prerequisite im-
age of coherence.

Bilateral filtering requires only the input image,
and the noise removed by the filter (the input-output
di↵erence), tends to be more uniformly distributed and
to exhibit less spatial correlation than that removed by
edge-preserving smoothing. Bilateral filtering preserves
fine-scale details within coherent image features, as well
as faults and other discontinuities.

The primary disadvantage of bilateral filtering is its
computational cost, which is relatively high compared
with that of edge-preserving smoothing.
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a) d)

b) e)

c) f)

Figure 10. The input p (a), with output q (b) and input-output di↵erence p � q (c) for the bilateral filter. For comparison,
coherence c (d) is used in the edge-preserving filter, with output (e) and input-output di↵erence (f).
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b) e)

c) f)

Figure 11. The input p (a), with output q (b) and input-output di↵erence p � q (c) for the bilateral filter. For comparison,
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a) d)

b) e)

c) f)

Figure 12. The input p (a), with output q (b) and input-output di↵erence p � q (c) for the bilateral filter. For comparison,
coherence c (d) is used in the edge-preserving filter, with output (e) and input-output di↵erence (f).


