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Fault surfaces and fault throws from 3D seismic images
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a) b)

Figure 1. Roughly planar (a) and conical (b) fault surfaces and fault throws computed automatically from a 3D seismic image.

Vertical and horizontal image slices are shown in the background. Vertical fault throws are measured in ms because the vertical

axis of the image is time. Each quadrilateral intersects exactly one edge in the 4 ms by 25 m by 25 m image-sampling grid.

ABSTRACT
A new method for processing 3D seismic images yields images of fault likelihoods

and corresponding fault strikes and dips. A second process automatically ex-

tracts from those images fault surfaces represented by meshes of quadrilaterals.

A third process uses di↵erences between seismic image sample values alongside

those fault surfaces to automatically estimate fault throw vectors. While some

of the faults found in one 3D seismic image have an unusual conical shape, dis-

plays of unfaulted images illustrate the fidelity of the estimated fault surfaces

and fault throw vectors.
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1 INTRODUCTION

Fault surfaces like those displayed in Figure 1 are an im-
portant aspect of subsurface geology that we can derive
from seismic images. Fault displacements, also shown in
Figure 1, are important as well, as they enable correla-
tion across faults of subsurface properties.

In the context of exploration geophysics, fault
throw, relative displacement up or down the dip of a
fault, is usually more significant than fault heave, dis-
placement along the strike of a fault. Moreover, fault
throw vectors are usually more perpendicular to geo-
logic layers, and therefore easier to estimate, than are
fault heave vectors.

As described by Luo and Hale (2012), we can use
estimated fault throw vectors to undo faulting. Figure 2
displays multiple fault surfaces and corresponding fault
throws computed for a 3D seismic image, before and
after this unfaulting process. After unfaulting, seismic
reflections are more continuous across faults, suggesting
that estimated fault throws are generally consistent with
true fault displacements.

Before this unfaulting, we must first compute im-
ages of faults, extract fault surfaces from those images,
and estimate fault throws.
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a)

b)

Figure 2. Fault surfaces and fault throws for a 3D seismic image before (a) and after (b) unfaulting.
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1.1 Fault images

Several methods for highlighting faults, that is, for com-
puting 3D images of faults from 3D seismic images,
are commonly used today. Some compute a measure of
the continuity of seismic reflections, such as semblance
(Marfurt et al., 1998) or other forms of coherence (Mar-
furt et al., 1999). Others compute a measure of discon-
tinuity, such as variance (Randen et al., 2001; Van Be-
mmel and Pepper, 2011), entropy (Cohen et al., 2006),
or gradient magnitude (Aqrawi and Boe, 2011). All of
these methods are based on the observation that faults
may exist where continuity in seismic reflections is low
or, equivalently, where discontinuity is high.

However, in small regions within 3D seismic images,
continuity may be low for reasons unrelated to faults.
Stratigraphic features such as buried channels are well
highlighted in seismic images by low continuity. Low
continuity is also be caused by incoherent noise that
is stronger than weak seismic reflections. Even when
a fault is present, seismic events may appear to be
highly continuous when fault throws are approximately
equal to the dominant period (or wavelength) of those
events. Event continuity alone is insu�cient to distin-
guish faults.

For these reasons, Gersztenkorn and Marfurt (1999)
noted that any measure of continuity or discontinuity
must include some form of averaging within vertical win-
dows that should be longer when detecting faults than
when detecting stratigraphic features. In e↵ect, these
averaging windows smooth together small regions of low
continuity that are vertically aligned along faults with
significant vertical extent. More recently, Aqrawi and
Boe (2011) noted that such vertical smoothing of im-
age gradient magnitudes (computed via Sobel filters) is
desirable when highlighting faults.

However, faults are seldom vertical. When averag-
ing any seismic attribute used to highlight faults, we
should vary the orientation of this averaging to coin-
cide with the strikes and dips of those faults. Ne↵ et al.
(2000) and Cohen et al. (2006) do this in their com-
putation of fault images, as they scan over a range of
fault orientations for each sample in a 3D seismic im-
age. The computational cost of such scans can be high
when, for each 3D image sample and for each possible
fault orientation, one must process many samples [over
1300, in the example of Cohen et al. (2006)] within some
box-shaped neighborhood.

1.2 Fault surfaces

To extract fault surfaces like those shown in Figures 1
and 2 from 3D images of faults requires additional pro-
cessing, which again has been performed in various
ways.

For example, Pedersen et al. (2002, 2003) and Ped-
ersen (2007, 2011) developed the method of ant tracking

to merge together small regions of low continuity in 3D
fault images into larger fault surfaces.

Gibson et al. (2005) propose a multistage method
of constructing larger fault surfaces by merging smaller
ones, beginning with small surfaces that correspond to
“local discontinuities” in 3D seismic images. Di↵erent
methods for growing large fault surfaces from small ini-
tial surfaces have also been proposed by Admasu et al.
(2006) and Kadlec et al. (2008); Kadlec (2011). In such
methods, seismic interpreters can specify seed points
from which to begin growing fault surfaces.

In a more general context, Schultz et al. (2010) de-
scribe a direct method for extracting so-called crease
surfaces from 3D images without seed points. In one
example, they extract surfaces corresponding to ridges
in a 3D image of fractional anisotropy, which is com-
puted from 3D di↵usion tensor magnetic resonance im-
ages (DT-MRI) of the human brain. Their method of
extracting surfaces works well for 3D images with ridges
that are well-defined and continuous.

1.3 Fault throws

Methods for computing fault surfaces lead naturally to
the problem of estimating relative displacements of ge-
ologic layers alongside such surfaces. Solutions to this
problem are not trivial, in part because of the sinu-
soidal character of seismic waveforms alongside faults,
which can cause apparent horizontal alignment of seis-
mic events across faults even when fault throws are sig-
nificant. Another di�culty is that fault throws typically
vary within the spatial extent of any fault surface. Nev-
ertheless, several authors have described solutions to the
problem of estimating fault throws.

For example, Aurnhammer and Tönnies (2005)
demonstrate the use of local crosscorrelations computed
in rectangular windows and a genetic algorithm with ge-
ological and geometrical constraints to match horizons
extracted from both sides of faults in 2D seismic images.

Liang et al. (2010) also used local crosscorrelations
to estimate fault throws, while simultaneously scanning
over fault dips to determine the locations and orienta-
tions of faults in 2D seismic images.

Admasu (2008) addressed the problem of estimat-
ing fault throws from 3D images through a Bayesian
matching of seismic horizons extracted alongside faults
in vertical 2D image slices, with the matching for one
2D slice used as a guide for the matching in adjacent
slices. This method requires that faults surfaces are ap-
proximately orthogonal to the 2D image slices used to
compute the fault throws.

In a 3D solution to the problem, Borgos et al. (2003)
correlated seismic horizons across faults by clustering
into classes local extrema in various attributes com-
puted from 3D seismic images. Carrillat et al. (2004)
and Skov et al. (2004) show examples of analyzing fault
displacements computed using this method. In another
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3D solution, Bates et al. (2009) demonstrated a “geo-
model time di↵erential analysis method” for computing
fault throws after automatic horizon tracking.

1.4 This paper

This paper contributes to solutions of all three of the
problems described above: (1) computing 3D fault im-
ages, (2) extracting fault surfaces, and (3) estimating
fault throws. The sequence of solutions proposed here
was used to compute the fault surfaces and throws dis-
played in Figures 1 and 2. Although each of these three
solutions was designed in conjunction with the others
in the sequence, aspects of any one of them could be
adapted to enhance other methods summarized above.

I first compute 3D fault images of an attribute I
call fault likelihood. Much like Cohen et al. (2006), I
scan over multiple fault strikes and dips to maximize
this semblance-based attribute. However, the computa-
tional cost of the algorithm I use to perform this scan
is independent of the number of samples used in the
averaging performed for each fault orientation. In other
words, I improve computational e�ciency by eliminat-
ing the factor (of 1300 or more) equal to the number
of samples in the windows described by Cohen et al.
(2006).

I then use the resulting 3D images of fault likeli-
hoods, dips and strikes to extract fault surfaces using a
method that is similar to that proposed by Schultz et al.
(2010). The fault surfaces shown in Figures 1 and 2 are
ridges in 3D images of fault likelihood, and are rep-
resented by meshes of quadrilaterals. I have made no
attempt to fill any of the small holes apparent in these
surfaces, although such a filling process would be easy
to implement because every quadrilateral is linked to its
neighbors. The fact that holes are small is due to the
continuity of ridges in the 3D images of fault likelihood.

Finally, I compute fault throws from di↵erences
in values of samples extracted from 3D seismic images
alongside fault surfaces. The algorithm I use to compute
fault throws is derived from a classic dynamic program-
ming solution (Sakoe and Chiba, 1978) to a problem in
speech recognition. That solution today is often called
dynamic time warping and is here extended to find a
spatial warping that best aligns samples of 3D seismic
images alongside faults, as illustrated in Figure 2.

2 FAULT IMAGES

Whereas seismic horizons appear in 3D seismic images
as coherent events, a fault appears less prominently as a
curviplanar surface on which seismic events are discon-
tinuous, yet correlated, with some displacement, from
one side of the fault to the other. Therefore, a use-
ful first step in extracting fault surfaces and estimating

a)

b)

Figure 3. A 2D seismic image g[i
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] (b) displayed in color.

fault throws is to first compute 3D fault images in which
faults are most prominent.

2.1 Semblance

The method I use for this first step is based on sem-
blance (Taner and Koehler, 1969), and is therefore sim-
ilar to methods proposed by Marfurt et al. (1998). Like
Marfurt et al. (1999), I compute semblances from small
numbers (3 in 2D, 9 in 3D) of adjacent seismic traces,
after aligning those traces so that any coherent events
are horizontal.

This process is illustrated for 2D seismic image
shown in Figure 3a. Let g[i

t

, i
x

] denote such an image,
an array indexed by two integers: i

t

, for time or depth,
and i

x

, for inline distance. To enhance the visibility of
weaker features in this image, I applied the gain func-
tion sgn(·) log(1 + | · |) to every image sample.

Using structure tensors (e.g., van Vliet and Ver-
beek, 1995; Weickert, 1999), I first compute for the
gained seismic image g a corresponding image of local
reflection slopes p, displayed in color in Figure 3b. I then
define and compute structured-oriented semblance as
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where h·i denotes some sort of smoothing (discussed be-
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Structure-oriented semblance is therefore simply the
square of an average of slope-aligned sample values g̃
divided by an average of the squares of those same val-
ues. The number of traces in the local windows used to
compute these averages is 2M

x

+1; I choose M
x

= 1 so
that only three traces must be aligned when computing
semblance numerators s

n

and denominators s
d

.
This definition of structure-oriented semblance is

easily extended to 3D images g[i
t

, i
x

, i
y

]. After comput-
ing local inline slopes p

x

and crossline slopes p
y

, I com-
pute semblance numerators and denominators using lo-
cal windows of 9 = 3⇥ 3 slope-aligned traces.

2.2 Smoothing

The smoothing denoted by h·i in equation 1 is an essen-
tial part of the semblance computation for two reasons.
First, without this smoothing, semblances are unstable
where the denominators in equation 1 are nearly zero,
that is, where slope-aligned values g̃ are nearly zero.

The second reason is that discontinuities in seis-
mic images corresponding to faults are most significant
for strong reflections that may be separated by multiple
periods or wavelengths. Some sort of smoothing is nec-
essary to link together these localized regions in which
semblance numerators s

n

are much smaller than sem-
blance denominators s

d

.
It is for this second reason that Gersztenkorn and

Marfurt (1999) recommend the use of longer verti-
cal smoothing windows when highlighting structural
features such as faults, and shorter windows when
highlighting stratigraphic features such as channels. In
proposing a di↵erent gradient-based measure of discon-
tinuity, Aqrawi and Boe (2011) likewise use a vertical
smoothing of that measure for the same reason.

Figure 4a shows structure-oriented semblances
computed using a vertical two-sided exponential
smoothing filter. This smoothing filter is e�cient and
trivial to implement. An implementation in the pro-
gramming language C++ (or Java) for input array x

and output array y, both of length n, is as follows:

float b = 1.0f-a;

float yi = y[0] = x[0];

for (int i=1; i<n-1; ++i)

y[i] = yi = a*yi+b*x[i];

y[n1-1] = yi = (a*yi+x[n1-1])/(1.0f+a);

for (int i=n1-2; i>=0; --i)

y[i] = yi = a*yi+b*y[i];

a)

b)

Figure 4. Semblances s (a) and fault likelihoods f (b).

The extent of smoothing is controlled by the pa-
rameter a. In the example shown in Figure 4, a = 0.93,
which for low frequencies approximates a Gaussian filter
with half-width � = 20 samples. (In practice, I specify
� and compute the corresponding parameter a.) As for
a Gaussian filter, the impulse response for a two-sided
exponential filter is infinitely long but decays smoothly
to zero.

This vertical smoothing of semblance numerators
and denominators accounts for the vertical extent of
features with low semblance s apparent in Figure 4a.
To accentuate these features I define an attribute fault

likelihood f by

f ⌘ 1� s8. (3)

The choice of power 8 is somewhat arbitrary; it simply
increases the contrast between samples with low and
high fault likelihoods, as shown in Figure 4b.

Although features in semblance and fault likelihood
images shown in Figure 4 have significant vertical ex-
tent, these features are not well aligned with faults, be-
cause the faults are not vertical. To improve the fault
likelihood attribute f , we must instead smooth along
the faults. Our problem is that we have not yet deter-
mined the locations or orientations of the faults.

2.3 Scanning

This sort of problem is common in seismic data process-
ing, for example, when we must perform normal move-
out corrections without knowing the moveout velocities.
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a)

b)

Figure 5. Fault likelihoods computed for two di↵erent fault

dips ✓, one positive (a) and the other negative (b), in the

scan used to estimate fault dips.

A common solution is to perform a scan for multiple
velocities to find the velocities that maximize some (of-
ten semblance-based) measure of alignment. Here I scan
over fault dips ✓ to find those dips that maximize fault
likelihoods f .

Figure 5 illustrates the results of non-vertical
smoothing for two di↵erent fault dips ✓ in this scan.
These examples show that fault likelihoods tend to be
largest when smoothing of semblance numerators and
denominators is performed along the faults, which are
not vertical.

To perform this non-vertical smoothing e�ciently
for each fault dip ✓, I (1) shear both semblance numera-
tor and denominator images horizontally to make faults
with that dip appear to be vertical, (2) apply the sim-
ple vertical smoothing filter described above, and (3)
unshear the smoothed images before computing their
ratio.

A fault that is vertical after horizontal shearing is
shorter than it was before shearing. I therefore scale the
half-width � of the vertical smoothing filter by cos ✓, to
compensate for this shortening.

Note that the cost of the scan over fault dips does
not depend on the extent of smoothing, which is con-
trolled by the parameter a in the recursive smoothing
filter. This recursive filter is largely responsible for re-
ducing the computational cost of this scan, relative to
those described by Ne↵ et al. (2000) and Cohen et al.
(2006).

This cost reduction is especially significant when

scanning over both fault dips ✓ and strikes � for 3D
seismic images. In these scans smoothing of semblance
numerators and denominators must be two-dimensional,
within planes spanned by fault strike and dip vectors.

In scanning over fault strikes, for each strike angle
�, I rotate the semblance numerator and denominator
images, to align the fault strike direction with either of
the horizontal image axes. I then smooth the rotated
images once horizontally along the fault strike direction
before scanning over fault dips ✓. The computational
costs of rotation and horizontal smoothing for each fault
strike � are therefore negligible compared to the cost of
the scans over fault dips ✓. The cost of an entire scan
over fault strikes and dips for a 3D image is dominated
by a sequence of scans over fault dips for multiple 2D
images.

An alternative to the sequence of rotation, hori-
zontal smoothing, shearing and vertical smoothing de-
scribed above is to implement the smoothing filters h·i
with a fast Fourier transform (FFT). In my implementa-
tions, such FFT-based smoothing filters are simpler, but
about three times slower, than the sequence described
above.

Computational cost is also a factor in my choice
of semblance, which requires smoothing of only numer-
ator and denominator images s

n

and s
d

. Alternatives
such as the normalized correlation coe�cient (Rodgers
and Nicewander, 1988) or the eigen-structure-based co-
herence described by Gersztenkorn and Marfurt (1999)
would require smoothing of more images for each fault
strike and dip in the scan.

Sampling of fault strike and dip angles in the scan
requires computation of angle sampling intervals and
specification of lower and upper bounds. Because the
units for axes of seismic images are often di↵erent —
time versus distance — I measure angles in sample co-
ordinates, so that an angle of forty-five degrees corre-
sponds to a slope of one sample per sample.

Suitable sampling intervals that avoid undersam-
pling are �� = 1

2�
�

and �✓ = 1
2�

✓

, both measured

in radians, where �
�

and �
✓

denote half-widths of the
smoothing filters in the strike and dip directions, respec-
tively.

When scanning to compute fault likelihoods for all
examples shown in this paper, I chose �

�

= 4 samples
and �

✓

= 20 samples. These smoothing filter half-widths
yield sampling intervals �� ⇡ 7.2 degrees and �✓ ⇡ 1.4
degrees. Minimum and maximum fault strikes were -90
and 90 degrees, and minimum and maximum fault dips
(measured from vertical) were -15 and 15 degrees, so
that the numbers of fault strikes and dips scanned were
N

�

= 26 and N
✓

= 22, respectively. The size of the
product N

�

N
✓

= 572 highlights the practical need to
reduce the computational cost of computing fault likeli-
hoods for each of the fault orientations in the scan over
possible fault orientations.

Recall that fault dip angles are measured with re-
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a)

b)

Figure 6. Fault likelihoods computed by scanning over fault

dips ✓, before (a) and after (b) thinning.

spect to sample coordinates. Using the simple approx-
imation that one millisecond of time corresponds ap-
proximately to one meter of depth, the true magnitudes
of dips for many of the faults apparent in Figure 2 are
roughly 45 degrees. Using the same approximation, the
maximum fault dip scanned was roughly 60 degrees.

2.4 Fault likelihoods

The purpose of the scan over fault strikes and dips is
to find, for each image sample, the angles � and ✓ that
maximize the fault likelihood f . I begin with a fault like-
lihood image f = 0. Then, for each orientation (�, ✓)
in the scan, where the fault likelihood f(�,✓) exceeds
the maximum likelihood stored in f , I update f and
also save the corresponding strike � and dip ✓. When
complete, the results of this scan are images of max-
imum fault likelihoods and corresponding fault strikes
and dips.

Figure 6a shows fault likelihoods computed with a
scan over 22 fault dips for the 2D seismic image. Ridges
of fault likelihood in this fault image generally coincide
with faults apparent in the seismic image. These ridges
can be found by simply scanning each row of the fault
image, preserving only local maxima, and setting fault
likelihoods elsewhere to zero. In e↵ect, this process thins
the fault image, reducing the number of image samples
at which a fault might be considered to exist.

Figure 6b shows ridges extracted from the fault im-
age of Figure 6a, after discarding any ridges with fewer

than 2�
✓

= 40 adjacent samples. Parts of some ridges,
especially those with lower fault likelihoods, may not co-
incide with faults. At this stage I do not suppress these
parts, although one might easily suppress some of them
by thresholding fault likelihoods.

Instead, I keep all ridges with length su�cient to
reliably estimate fault throws. Then, faults can be as-
sumed to exist at locations where fault likelihoods are
high and fault throws are non-zero. Because, after thin-
ning, so few samples are involved, such filtering of fault
ridges can be performed interactively.

It is significant that the scanning process used to
compute images of fault likelihood also yields images of
fault strikes and dips for which fault likelihood is max-
imized. Those fault and strike and dip angles are espe-
cially useful when extracting fault surfaces from ridges
in 3D images of fault likelihoods.

3 FAULT SURFACES

One can easily imagine how to extract fault curves from
2D fault images like the one shown in Figure 6a. For
example, we might simply link together samples with
non-zero fault likelihood in the thinned fault image of
Figure 6b. We could then use samples of the seismic
image on the left and right sides of the extracted fault
curves to estimate fault throws.

It is more di�cult to construct fault surfaces from
3D fault images. One problem is how to best represent
a fault surface, which need not be aligned with any axis
of the sampling grid for the 3D seismic image. For ex-
ample, the roughly conical fault displayed in Figure 1b
cannot be projected onto a plane, and therefore can-
not be represented by a single-valued function (such as
distance) of coordinates within that plane.

Also, the resolution with which we sample fault sur-
faces will be important later, when we compute fault
throws. In that computation, we must be able to ef-
ficiently traverse upward and downwards along fault
curves of constant strike as we analyze seismic image
samples alongside fault surfaces. We must also be able
to e�ciently traverse left and right along fault traces for
which time (or depth) is constant.

For these reasons, I represent each fault surface
with an unstructured mesh of quadrilaterals (quads) like
those shown in Figure 1.

3.1 Extracting quads from fault images

My first step in constructing quad meshes is to extract
a set of quads, not yet connected, from the 3D image of
fault likelihoods. That 3D image is analogous to the 2D
image of fault likelihoods shown in Figure 6a.

As shown in Figure 7, each quad in a fault surface
intersects exactly one edge of the 3D sampling grid for
the fault image. Each of the four nodes of a quad lies
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quad node

quad-edge
intersection

image sample

crossline

inline

time or
depth

Figure 7. Four adjacent quads in a fault surface share a

node that lies within one cell of the 3D fault image sampling

grid. Spatial coordinates of the quad node are averages of the

coordinates of intersections of the fault surface and edges of

the image sampling grid.

within exactly one cell of that grid. The coordinates of
a quad node within any such cell are averages of the
coordinates of all quad-edge intersections for that cell.
This averaging enables representation of a fault surface
with sub-voxel precision. Therefore, to find the locations
of the quad nodes, we must first find the intersections
of the fault surface and edges of the 3D sampling grid.

I find edge intersections and compute their lo-
cations using a method similar to that described by
Schultz et al. (2010). I assume that fault surfaces are
ridges in 3D images of fault likelihoods, analogous to
the fault curves apparent in the 2D images shown in
Figure 6.

These ridges intersect edges of cells in the 3D sam-
pling grid, and can be found by considering all such
edges, one at a time. Each edge is defined by two adja-
cent samples in the 3D image of fault likelihood. Let f1
and f2 denote fault likelihoods for these two samples.
We may at this point choose a threshold fmin and as-
sume that faults can exist only if both f1 � fmin and
f2 � fmin. I chose fmin = 0.5 when extracting the fault
surfaces shown in this paper.

Following Schultz et al. (2010), let g and H denote
the gradient vector and Hessian matrix for either of two
adjacent samples in the fault likelihood image, like those
shown in Figure 7. I compute each gradient (vector of
1st derivatives) g and Hessian (matrix of 2nd deriva-
tives) H using simple centered finite-di↵erence approxi-
mations to partial derivatives, after Gaussian smoothing
(with radius � = 1 sample) of the fault image to attenu-

ate high frequencies for which those approximations are
poor.

Now let H = �
u

uuT + �
v

vvT + �
w

wwT denote
the eigen-decomposition of H, where the eigenvalues are
ordered so that �

u

� �
v

� �
w

. At locations of ridges,
the smallest eigenvalue �

w

should be negative, and I
assume that faults can exist only between two samples
for which this condition is true.

If this condition is indeed true, then the eigenvec-
tors w for these two samples should be orthogonal to
any ridge that may exist between them. Like Schultz
et al. (2010), I then compute for each of these two sam-
ples a vector h defined by

h = (1� �)wwTg, (4)

where

� =

(
0 if �

v

� �
w

> ✏,�
1� �

v

��

w

✏

�2
otherwise,

(5)

and ✏ is a small fraction of the square of the typical fault
image sample value. For fault likelihoods in the range
[0, 1], I use ✏ = 0.01. The purpose of this parameter is to
smooth the transition of the factor � from zero to one
where the eigenvalues �

v

and �
w

are nearly equal.
Recall that the scan used to compute the 3D fault

likelihood image yields corresponding estimates of fault
strike and dip angles for every image sample. I there-
fore make two significant modifications to the process
of computing vectors h.

First, from the fault strike and dip I compute a fault
normal vector n. I then assume that a fault can exist
only between two samples for which |nTw| > 1/2. This
condition ensures some consistency between two di↵er-
ent estimates of the normal vector; the angle between n
and w must be less than 60 degrees. This upper bound
on angle is rather large because the eigenvector w of H
tends to be a poor estimate of the fault normal vector.

Therefore, in a second modification, if this condi-
tion is satisfied, I replace the eigenvectorw in equation 4
with the fault normal vector n computed from the es-
timated fault strike and dip. I experimented with using
the eigenvectors w instead, as in Schultz et al. (2010),
and found that the fault strikes and dips obtained dur-
ing the fault image scan yielded more consistent normal
vectors.

Finally, like Schultz et al. (2010), I assume that
ridges exist between two adjacent samples with vectors
h1 and h2 that point in opposite directions, so that
hT

1 h2 < 0. Letting x1 and x2 denote the spatial coor-
dinates of two samples for which this condition is true,
I compute the location x

e

where a ridge intersects the
edge between those two samples by linear interpolation:

x
e

=
[hT

2 (h2 � h1)]x1 � [hT

1 (h2 � h1)]x2

(h2 � h1)T (h2 � h1)
. (6)

The spacial coordinates of a quad node located within
any cell of the sampling grid are the average of coor-
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dinates x
e

computed for all quad-edge intersections in
that cell.

This interpolation and averaging yields quads that
coincide (with sub-voxel precision) with ridges in the
3D image of fault likelihoods, and implies that the four
nodes of a quad need not be coplanar. Also, while in-
terpolating and averaging to compute the spatial co-
ordinates of quad nodes, I interpolate and average the
corresponding fault likelihoods, strikes and dips.

By analyzing all edges in the sampling grid for 3D
images of fault likelihood, strike and dip, I extract quads
that intersect edges where faults may exist. Because
quads extracted in this way share nodes, they may ap-
pear to be parts of larger fault surfaces when displayed.
However, at this point in the process of fault surface ex-
traction, the quads are not yet linked together to form
a surface mesh. I have only a collection of quads, what
is sometimes called “quad soup.” In the example shown
in Figure 2, this soup contained 436111 quads.

Before linking quads together to form meshes that
represent fault surfaces, I perform one more test for con-
sistency. Each of the four nodes referenced by any quad
has associated estimates of fault strike and dip that de-
fine a fault normal vector n. If we let x

a

, x
b

, x
c

and x
d

denote the spatial coordinates of these four quad nodes
(in either clockwise or counterclockwise order), then the
vector cross product n

q

= (x
a

� x
c

)⇥ (x
b

� x
d

) should
be (approximately, because the quad nodes need not be
coplanar) normal to the quad. I keep only quads for
which the angles between the vector n

q

and each of the
normal vectors n for its nodes are all less than 30 de-
grees. I remove from the soup any quad that fails this
test. In the example shown in Figure 2, 337986 quads
remained after this test.

3.2 Linking quads

The next step in extracting fault surfaces is to link quads
together to form a mesh. Each quad in such a mesh may
have up to four quad neighbors, where two quads are
neighbors if they share an edge between two quad nodes.
In the illustration in Figure 7 each quad has exactly two
neighbors.

In the quad soup obtained using the process de-
scribed above, it is possible that some edges between two
quad nodes may be shared by more than two quads. Due
to the multiple tests for consistency used in that pro-
cess, this situation is rare; but where it occurs I choose
to link none of the quads that share such an edge. This
choice implies that two fault surfaces extracted in this
way cannot intersect precisely, although they may be
separated by only one grid sample.

Let us define the orientation of a quad such that its
normal vector n

q

points toward a viewer that sees the
quad nodes a, b, c and d labelled in counter-clockwise
order. From the opposite side, those same nodes would
appear to be labelled in clockwise order. We can then

define back and front sides of a quad such that the quad
normal vector n

q

points into the quad’s back side and
points out from its front side.

At this stage in the process of linking quads, there
is no guarantee that quad neighbors are oriented con-
sistently. The normal vectors of a quad and its quad
neighbors may point in opposite directions. However,
any di↵erence in the orientations of quad neighbors can
be easily detected and accounted for when determining
which quads share an edge between two of their nodes.

After all links between quads and their neighbors
have been found, I apply three more filters to eliminate
quads and links that are inconsistent with any geologi-
cally feasible model of fault surfaces. These filters work
much like the consistency checks applied to quads in the
quad soup described above.

The first filter unlinks any quads that are folded on
top of one another. Specifically, I unlink two quads if the
dihedral angle between them (computed from their nor-
mal vectors) is less than 90 degrees. This filter ensures
that the orientation of a fault surface does not vary too
rapidly from one quad to the next.

The second filter unlinks two quads if either of them
(1) has no other neighbors or (2) has only one neighbor
on the opposite side. Such quads tend to appear as fins
or bridges between two nearby fault surfaces. In un-
linking such quads, I assume that fault surfaces must
nowhere be too skinny, with a width or height of only
one quad.

After the first two filters remove geologically in-
feasible links between quad neighbors, the third filter
simply removes any quads that have no neighbors. In
applying this filter, I require that any fault surface must
have a size of more than one quad.

When applied to the quads extracted in Figure 2,
these three filters caused 15976 of the 337986 quads to
be removed from the quad soup. All of the 322010 quads
that remained were linked to at least two quad neigh-
bors.

3.3 Constructing oriented fault surfaces

After extracting quads and linking them together, the fi-
nal step in extracting fault surfaces is to find collections
of quads that are linked either directly as neighbors or
recursively as neighbors of neighbors. These collections
form quad meshes that represent fault surfaces.

I assume that fault surfaces are orientable, that
they have topologically distinct front and back sides,
unlike the surfaces extracted from medical images by
Schultz et al. (2010). In other words, I assume that fault
normal vectors can be chosen consistently for every quad
in the surface, so that the front side of every quad co-
incides with the front side of the surface.

This orientability assumption may be neither valid
nor necessary, but is convenient here because of another
assumption that I make when estimating fault throws as
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described in the following section of this paper. I com-
pute fault throws as a vector field of displacements from
the back side to the front side of a fault surface, and
vice-versa. In that process I assume that fault throws
vary smoothly within each fault surface, and this as-
sumption is most easily enforced where all of the quads
in a fault surface are oriented consistently. Therefore,
when collecting quads to form fault surfaces, I flip the
orientations of quads as necessary to be consistent with
their neighbors.

The collection process begins with a loop over all
quads in any order. I first construct a new fault surface
containing any quad. I then add neighbors of this first
quad to the surface, flipping their orientations as neces-
sary to be consistent with that of the first quad. I then
recursively add quad neighbors, if not already in the
surface, again flipping their orientations as necessary.
The first fault surface is complete when there exist no
linked quad neighbors that are not already part of that
surface.

The collection process then returns to the loop over
quads. When I find a quad that is not yet part of a fault
surface, I again construct a new fault surface with that
quad and recursively add quad neighbors to it in the
same way as for the first fault surface. When the loop
over all quads is complete, every quad belongs to exactly
one fault surface.

I determine whether or not a fault surface is ori-
entable during the recursive collection of quads. If, while
examining neighbors of a quad, I find a neighbor that is
already part of the surface and that has an inconsistent
orientation, then the surface is not orientable. Other-
wise, if all quad neighbors have consistent orientations,
the surface is orientable.

In the extraction of surfaces shown in Figure 2, I
found 1922 surfaces, and all of them were orientable.
This figure displays only the 20 largest fault surfaces,
those with at least 2000 quads.

In another example I found that 0.03% of surfaces
extracted were not orientable. I make such surfaces ori-
entable by simply unlinking any quad neighbors that are
already part of the surface and that have inconsistent
orientations. In e↵ect, this unlinking makes a surface
orientable by cutting it in a rather arbitrary way that
depends on the recursive order in which I add quads to
the surface. Better methods for choosing the cut may be
possible, and may be important where a large number
of surfaces must be cut to make them orientable.

Because we typically view faults from the hanging
wall side (above), and not from the footwall side (be-
low), one final orientation of fault surfaces is useful for
display, If necessary, I flip the orientations of all quads
in each fault surface so that the average of the normal
vectors for those quads points upward, not downward.
After this final orientation, when viewing fault surfaces
from the hanging wall side, we see the front side of the
surface.

The filtering based on fault sizes used to obtain the
20 surfaces shown in Figure 2 is just one example of the
sort of filtering that is possible after constructing fault
surfaces. We could also filter these surfaces based on
their average strikes or dips, (Pedersen et al., 2003; Ped-
ersen, 2007, 2011), their fault likelihoods, or any com-
bination of statistics derived from attributes computed
for the quads that comprise the surfaces.

4 FAULT THROWS

Conceptually the problem of estimating fault throws
from 3D seismic images is a simple one. We must corre-
late seismic reflections on one side of the fault with those
on the other side, and compute vector displacements be-
tween corresponding reflections. In practice, this prob-
lem is di�cult for several reasons.

4.1 Di�culties

First, our resolution of faults is limited by the resolu-
tion of seismic images, so that reflections on one side of
a fault may extend somewhat into the other side. (See,
for example, the image displayed in Figure 3a.) As sug-
gested by Liang et al. (2010), our correlation of reflec-
tions across faults must in some way mimic the visual
correlation of experienced seismic interpreters. That is,
we must estimate fault throws from coherent seismic
reflections extending well away from a fault, not only
those immediately adjacent to it.

A second di�culty is that fault throws vary within
a fault surface and within any local windows that we
might use to correlate seismic reflections. To ease this
di�culty, Aurnhammer and Tönnies (2005) used sev-
eral geologic and geometric constraints in a generic al-
gorithm to estimate fault displacements.

Still, inconsistency remains in estimating a fault
throw from a window of image samples in which that
throw may vary significantly (L. Liang, personal com-
munication, 2011). This second di�culty is exacerbated
by the fact that such windows must be at least as long
as the longest fault throw vector to be estimated.

A third di�culty is related to the fact that we can
best estimate fault throws from strong seismic reflec-
tions with high signal-to-noise ratios, but these may be
far apart, with weaker and noisier reflections in between.
Constraints (e.g., Aurnhammer and Tönnies, 2005) are
therefore needed to ensure continuity of fault throws
estimated between strong reflections.

A fourth di�culty lies in constraining fault throws
to vary smoothly in both dip and strike directions
within a fault surface. Imposing this constraint is dif-
ficult partly because a fault surface typically cannot be
projected onto a plane and then represented as a single-
valued function (such as distance) of coordinates within
that plane. This means that we cannot simply estimate
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Figure 8. Fault throws computed for a fault surface in which

one part of the surface lies in front of another part. For such

surfaces, we cannot compute fault throws from footwall and

hanging-wall images extracted alongside the fault.

fault throws from 3D seismic images by correlating one
2D image extracted from the footwall side of a fault sur-
face with another 2D image extracted from the hanging-
wall side.

An example is shown in Figure 8, where part of
a fault surface lies in front of another part of that
same surface. This situation occurs often in the 20 fault
surfaces shown in Figure 2. Another example is the
roughly conical fault displayed in Figure 1b. For such
surfaces we cannot extract 2D images from the footwall
and hanging-wall sides of a fault surface, so we can-
not use 2D crosscorrelations of such images to estimate
smoothly varying fault throws.

4.2 Dynamic warping

I address the di�culties summarized above with an ex-
tension of a classic method for estimating relative shifts
between two acoustic signals in the problem of speech
recognition (Sakoe and Chiba, 1978). This method is
today widely known as dynamic time warping. For the
problem of estimating fault throws, the most important
aspect of this method is that it estimates a time-varying
(dynamic) shift between two sampled functions of time,
without any local windows. Another important aspect
of this method is that the change in the shift with time
can be easily constrained with no additional cost.

In a separate paper (Hale, 2012) I propose an ex-
tension of the dynamic time warping algorithm to the
problem of dynamic image warping, in which we seek to
constrain estimates of relative shifts between two images
to vary smoothly in all directions. The extension is an
alternating sequence of vertical (top-down, bottom-up)
and lateral (left-right, right-left) smoothings of di↵er-
ences in image sample values, followed by the classic
dynamic time warping algorithm. The vertical and lat-
eral smoothings are non-linear, but simple and compu-
tationally e�cient.

Unfortunately, as implied by Figure 8, we cannot
reduce the problem of estimating fault throws to that

hanging wallfootwall fault

vertical quad

horizontal quad

Figure 9. Fault throws are computed from di↵erences be-

tween image sample values (squares) on the footwall side and

values (circles) on the hanging wall side of a fault. These

sample values are slightly o↵set from vertical quads, which

intersect horizontal edges in the image-sampling grid. Fault

strike is perpendicular to the plane of this figure.

of finding an optimal warping between footwall and
hanging-wall images. We can, however, adapt the im-
age warping solution to the problem of estimating fault
throws, by performing a similar sequence of vertical and
lateral smoothings within fault surfaces like those dis-
played in Figure 8.

Recall that each quad in this fault surface intersects
exactly one edge in the sampling grid of a 3D seismic
image, as shown in Figure 7. Some quads intersect ver-
tical edges, but I assume that most quads, like those in
Figure 7, intersect horizontal edges of the sampling grid.
This assumption is valid even for fault dip angles greater
than than 45 degrees, measured from vertical, because
seismic images are typically sampled more finely in ver-
tical directions than in horizontal directions.

As illustrated in Figure 9, let us refer to quads in-
tersecting vertical edges as horizontal quads, and quads
intersecting horizontal edges as vertical quads, even
though quads are rarely exactly horizontal or vertical.
I make this distinction because I use only the vertical
quads in the dynamic warping process used to estimate
fault throws.

My first step in estimating fault throws is to com-
pute for each vertical quad two sequences of squared
di↵erences between image sample values collected from
both sides of a fault surface. This first step is similar to
computing squared di↵erences of sample values in image
warping, except that here I obtain sample values by fol-
lowing fault dip vectors up and down the fault surface,
as illustrated in Figure 9.

Each intersection of a fault with a horizontal edge of
the sampling grid corresponds to one vertical quad in a
fault surface, like that near the center of the fault surface
in Figure 9. For each such vertical quad I first find the
value of the nearest sample (the filled square) located
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at the same time (or depth), with some small lateral
o↵set, in the footwall side of the fault. The purpose of
this small o↵set is to compensate for limited resolution
in 3D seismic images of faults. In Figure 9 the o↵set is
two samples.

I then compute and store with this vertical quad
the squared di↵erences between the one footwall sample
value (the filled square) and all of the values (the circles)
on the hanging wall side of the fault. These squared
di↵erences form a sequence that is indexed by vertical
lag.

I use that sequence and those computed for all other
vertical quads in the same fault surface as inputs to the
dynamic warping algorithm to estimate vertical com-
ponents of throw vectors from the footwall side to the
hanging wall side of the fault. I then estimate the hor-
izontal components of throw vectors by once again fol-
lowing the fault dip vectors up or down the fault.

I repeat this process to estimate fault throws from
the hanging-wall side to the footwall side of the fault.
By estimating throws in both directions, we can check
pairs of throw vectors for consistency. If we follow the
fault throw vector from a sample on the footwall side of
the fault to a sample on the hanging-wall side, and then
follow the throw vector found there back to the footwall
side, we should return to the first sample at which we
began.

A less rigorous test is to simply reject throw vectors
on opposite sides of a fault where their vertical com-
ponents have the same sign. In other words, we may
assume that a fault exists only where throw vectors on
opposite sides of the fault have vertical components with
di↵erent signs.

This assumption is valid for all fault throws shown
in this paper. The vertical components of all fault
throws illustrated in figures are positive because the
throws shown are those from the footwall sides to the
hanging-wall sides of normal faults.

In summary, the dynamic warping process de-
scribed above computes fault throws that minimize the
sum of squared di↵erences between image sample values
on two sides of the faults, while constraining the rate at
which the throws may change within the fault surface.

4.3 Unfaulted images

A good test of the fidelity of estimated fault throws is
to use them to undo faulting apparent in the seismic
images from which they were derived. Luo and Hale
(2012) describe this unfaulting process in detail. Here I
use this process only to illustrate the accuracy of fault
surfaces and fault throws computed using the methods
proposed in this paper.

Figure 2 provides one example in which fault sur-
faces have roughly planar shapes. Faulting and unfault-
ing are most significant in the inline sections, because
faults with large throws have strike vectors that point

approximately in the crossline direction. Throws for
these faults vary somewhat in the strike direction while
generally increasing with depth.

Vertical exaggeration in these sections makes the
faults appear to be more vertical than they really are; an
approximate time-to-depth conversion (with 1 s equiv-
alent to 1 km) indicates that the dips of most faults are
about 45 degrees from vertical.

Visual comparison of the continuity of reflections
before and after unfaulting suggests that estimated fault
throw vectors are generally accurate. However, one lo-
cation where estimated fault throw appears to have the
wrong sign is at about 1.7 s and 4.5 km in the crossline
section.

4.4 Conical faults

Figures 10 and 11 show faults extracted from the same
seismic image for a shallower portion of the subsurface
with more chaotic structure. Faults extracted from this
portion have roughly conical shapes, in which the apex
of each cone lies above its base. Figure 1b displays a
close-up view of one of these conical faults.

These conical shapes became apparent to me only
after extracting fault surfaces, partly because I had
never seen faults with such shapes before, and so did
not recognize their appearance in horizontal and verti-
cal slices of the 3D seismic image.

This experience highlights an important benefit in
using an automated process to extract information from
3D seismic images. The process used here could not ex-
clude such shapes simply because they were unexpected.

After recognizing the conical shapes of these faults,
they are easily seen in 3D seismic images, even without
the fault throws shown in Figures 10 and 11. In vertical
sections, these faults appear to be hyperbolic, because
a vertical slice (conic section) of a cone is a hyperbola.
When interactively moving a vertical slice through the
3D image, one can clearly see these hyperbolas rising
and falling as the image slice moves through the cones.

Moreover, even in this relatively chaotic part of the
seismic image, reflections are more continuous in the un-
faulted image than in the original image. Some discon-
tinuities that remain may be due to my including only
the largest fault surfaces when computing fault throws.
Of the 4608 surfaces extracted, I computed throws for
only the 30 largest surfaces, those with at least 2000
quads.

5 CONCLUSION

I developed the methods proposed in this paper as parts
of a three-step process to (1) compute fault images of
likelihood, strike and dip, (2) extract fault surfaces, and
(3) estimate fault throws. I once hoped to skip the first
two steps, to simply compute fault throws everywhere
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a)

b)

Figure 10. Fault surfaces and fault throws for a 3D seismic image before (a) and after (b) unfaulting. The shape for many of

these faults is roughly conical, and the two vertical sections intersect near the center of one of these conical faults.
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a)

b)

Figure 11. Fault surfaces and fault throws for a 3D seismic image before (a) and after (b) unfaulting. Conical faults appear

as hyperbolas in vertical seismic sections.
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and then let faults be defined as locations where fault
throws are significant. However I was unable to find a
computationally feasible implementation of this poten-
tially simpler one-step process.

It is significant that the scan in the first step yields
images of fault strikes and dips for which fault likelihood
is maximized. These estimates of fault orientations are
useful in several consistency tests performed in the sec-
ond step used to extract fault surfaces.

I chose the quad-mesh representation for those fault
surfaces in part to facilitate the third step of estimating
fault throws. Because throw vectors connect samples on
one side of a fault to those on the other side, it is es-
pecially convenient that quads in the fault surface lie
between two adjacent samples of the seismic image at
the same time or depth. In addition, the quad mesh also
provides up-down and left-right connectivity needed to
implement the dynamic warping algorithm used to es-
timate vertical throws.

Most of the computation time in this three-step
process lies in the first step, which currently requires
a scan over all possible fault orientations. I improve the
computational e�ciency of this scan by using fast recur-
sive smoothing filters within each potential fault plane,
but further improvements may be worthwhile. My cur-
rent implementation of this scan for about 500 fault
orientations requires about two hours to process a 3D
image of 10003 samples on a 12-core workstation.

Perhaps the biggest current limitation in this pro-
cess is in its handling of intersecting faults. As discussed
above, to simplify the extraction of fault surfaces and
estimation of fault throws, I have incorrectly assumed
that faults do not intersect. Further work is required
to extend these two steps to properly account for fault
intersections.
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