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PP PS warped time shifts

Figure 1. Subsets of a PP image and a corresponding PS image warped using time shifts estimated automatically by smooth

dynamic warping. Contour lines (at 10-sample intervals) highlight the smoothness of the estimated time shifts.

ABSTRACT
Dynamic time warping is a simple classic method for aligning two sampled
functions of time. The sequence of time shifts computed by this method are
a globally optimal solution to a non-linear optimization problem with linear
inequality constraints that may be directly related to subsurface properties. In
applications to seismic traces, the time shifts may increase or decrease rapidly in
time (and space). However, when related to integrals of subsurface parameters,
such variations in time shifts are often smooth. A new method for smooth
dynamic warping exploits this inherent smoothness to increase the accuracy
of time shift estimates, especially where di↵erences between seismic traces to
be aligned are not limited to time shifts. The new method requires only a
few simple modifications to the classic method, and can be easily extended to
multidimensional image warping as well. In an application to registration of PP
and PS images, we used smooth dynamic warping to compute times shifts that
vary smoothly in both time and space, and are significantly more accurate than
those computed using the classic method.
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1 INTRODUCTION

Dynamic image warping is a method for shifting features
in one image to align them with corresponding features
in another image. In applications to seismic images, the
shifts are often in time or depth, and the correspondence
is rarely exact.

Figure 1 illustrates one example, the registration
of PP and PS seismic images. Here we have warped a
PS image to align reflections with those in a PP image.

The time shifts, while increasing rapidly with time, vary
smoothly in time and space. We computed these time
shifts using a new method for smooth dynamic warping

proposed in this paper.
Clearly, di↵erences between the PP and PS images

in Figure 1 are not limited to time shifts. Other di↵er-
ences include noise, which is most apparent in the PS
image, as well as di↵erences in reflection amplitudes and
waveforms related to di↵erences in PP and PS reflection
coe�cients.
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The PP and warped PS images shown in Figure 1
are subsets of the PP and (not yet warped) PS images
shown in Figure 2. The images are displayed with di↵er-
ent vertical scales so that reflections in the PP image are
visually and approximately aligned with corresponding
reflections in the PS image. The time shifts shown in
Figure 1 are a subset of the time shifts we computed
from the entire PP and PS images shown in Figures 2a
and 2c.

Again, di↵erences in noise and reflection amplitudes
and waveforms are apparent in the PP and PS images.
We compensated somewhat for amplitude di↵erences by
applying a time-variable gain to each trace in the PP
and PS images. This gain normalizes amplitudes within
seamlessly overlapping windows so that the rms ampli-
tude within each window is one. Because the windows
approximate a Gaussian with half-width 100 samples,
the applied gain varies slowly with time.

Remaining di↵erences complicate our estimation of
time shifts. Yet we often estimate time di↵erences, as in
this example, because (1) they are related to subsurface
properties, such as the ratio of P-wave and S-wave veloc-
ities VP /VS , and (2) after compensating for di↵erences
in reflection times, we can more readily analyze di↵er-
ences in reflection waveforms. So it is important that we
estimate time shifts using methods that are accurate in
the presence of noise and other such di↵erences.

Several authors, including Gaiser (1996), Fomel
et al. (2003), Nickel and Sonneland (2004), Fomel et al.
(2005), and Liang and Hale (2012) have described meth-
ods for registration of PP and PS images and the corre-
sponding estimation of VP /VS ratios. For this and simi-
lar problems, the dynamic warping method (Sakoe and
Chiba, 1978; Anderson and Gaby, 1983; Hale, 2013) has
two important advantages. First, dynamic warping hon-
ors specified bounds on time shifts and on the rate at
which time shifts may vary with time. Second, using the
computational method of dynamic programming, dy-
namic warping finds a globally optimal solution to an
error minimization problem that may have many local
minima.

The first advantage is important because the con-
straints are often related to geophysical parameters. For
example, because VP � VS , we know that PS reflection
time is never less than the corresponding PP reflection
time, and that the di↵erences between PS and PP re-
flection times can never decrease with time.

The second advantage improves the accuracy of dy-
namic warping in the presence of noise and reflection
waveform di↵erences. Such di↵erences, which are unre-
lated to time shifts, imply that we often want a locally
sub-optimal but globally optimal image registration.

In this paper we propose an improved method for
smooth dynamic warping that enables control of a trade-
o↵ between accuracy and resolution of estimated time

strains, changes in time shifts with time. The trade-o↵
is important because estimates of time strain may corre-

spond directly to subsurface parameters, such as VP /VS

ratios. In addition, this new warping method improves
robustness in the presence of noise and other di↵erences,
while requiring significantly less computer memory in
applications to 2D and 3D images.

We first describe a basic dynamic time warping al-
gorithm that is equivalent to one developed by Sakoe
and Chiba (1978), but is most similar to one developed
by Hale (2013). We then describe our improved algo-
rithm, and extend the improvement to image warping,
in which we compute shifts that are smooth in all sam-
pled image dimensions (time and space), as illustrated
in Figure 1. Throughout this paper we use the registra-
tion of PP and PS images shown in Figure 2 as just one
example of the application of our improved method for
smooth dynamic warping. The improvements extend to
other applications as well.

2 DYNAMIC TIME WARPING

The problem in dynamic warping is to find a sequence
of time shifts u[0 : ni � 1] ⌘ {u[0], u[1], . . . , u[ni � 1]}
that aligns two sequences (time series) f and g so that

f [i] ⇡ g[i+ u[i]], i = 0, 1, . . . , ni � 1 (1)

More precisely, dynamic time warping computes time
shifts

u[0 : ni � 1] ⌘ argmin
l[0:ni�1]

ni�1X

i=0

e[i, l[i]] (2)

subject to constraints

ul  u[i]  uu, rl  u[i]� u[i� 1]  ru, (3)

where

e[i, l] ⌘ (f [i]� g[i+ l])2. (4)

In the inequality constraints 3, ul and uu are lower and
upper bounds on shifts u[i], and rl and ru are lower and
upper bounds on time strain, the rate at which time
shifts change with time sample index i. As noted above,
these lower and upper bounds may sometimes be related
to bounds on geophysical parameters.

The 2D array e[i, l] contains alignment errors com-
puted for all sample indices i and lag indices l. These
alignment errors could be computed in alternative ways.
For example, we could use an absolute value of di↵er-
ences instead of the square of di↵erences in equation 4;
we used the latter to obtain all of the results shown in
this paper.

The bounds [ul, uu] on shifts u[i] imply that we
must compute e[i, l] only for lags l that satisfy ul 
l  uu. For simplicity in array indexing, we instead use
the bounds 0  l  nl � 1, where nl = 1 + uu � ul

is the number of lags l for which we compute e[i, l]. In
practice, if ul 6= 0, then we simply add ul to l on the
right-hand side of equation 4 as we compute alignment
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Figure 2. PP (a) and PS (c) images to be aligned, with subsets (b and d) corresponding to the white rectangles. The vertical

scales for the PS images are di↵erent from those for the corresponding PP images, and were chosen to approximately align

reflections in the two images.

errors. If we let f denote one trace from the PP image in
Figure 2a and g denote a corresponding trace from the
PS image in Figure 2c, then the lower bound on shift
is in fact ul = 0 because, as noted above, PS reflections
never appear before corresponding PP reflections.

It is important to recognize that the sequence of
shifts u defined by equation 2 is the globally optimal so-
lution to a non-linear least-squares problem with linear
inequality constraints 3. In practice, the oscillatory na-
ture of seismograms represented by the sequences f and
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g causes this minimization problem to have many local
minima. As noted above, the ability to find the glob-
ally optimal solution to this problem is a key advantage
of the dynamic warping method, when compared with
alternative methods.

Given a 2D array of alignment errors e[i, l] and
bounds on strain rl and ru, we compute the optimal
shifts u[i] using a dynamic programming algorithm.
This algorithm has four phases, which are highlighted
in the pseudocode for Algorithm 1.

Algorithm 1 Find shifts u[i]

1: procedure FindShifts(rl, ru, e, u)
2: for l = 0 to nl � 1 . initialize
3: d[0, l] = e[0, l]

4: for i = 1 to ni � 1 . accumulate
5: for l = 0 to nl � 1
6: dl = 1
7: ql = max(drle, l � nl + 1)
8: qu = min(bruc, l)
9: for q = ql to qu

10: dq = d[i� 1, l � q] + e[i, l]
11: if dq < dl
12: dl = dq
13: ml = q

14: d[i, l] = dl
15: m[i, l] = ml

16: i = ni � 1 . minimize d
17: di = 1
18: for l = 0 to nl � 1
19: if d[i, l] < di
20: di = d[i, l]
21: u[i] = l

22: while i > 0 . backtrack
23: u[i� 1] = u[i]�m[i, u[i]]
24: i = i� 1

Lines 2–3 initialize the first column, the one for
sample index i = 0, of a 2D array of accumulated errors

d[i, l].
Lines 4–15 perform a non-linear accumulation of

alignment errors e[i, l], and store the accumulated er-
rors in d[i, l]. The accumulation is recursive, in that we
compute accumulated errors for sample index i from
those for sample index i� 1. Also, while accumulating,
we record in a separate 2D array m[i, l] the lags l for the
accumulated errors d[i�1, l] used to compute d[i, l]. We
think of the array m[i, l] as recording the error mini-

mizing moves that are made while accumulating. These
moves are constrained by the bounds [rl, ru]; drle in line
7 denotes the smallest integer not less than rl, and bruc
in line 8 denotes the largest integer not greater than ru.
Accumulation, the most costly of the four phases, ends
with the computation of the last column of accumulated
errors d[ni � 1, l].

Lines 16–21 then search this last column for the lag

l that minimizes d[ni�1, l]. This lag is the optimal shift
u[i] for sample index i = ni � 1. The accumulated error
d[ni � 1, u[ni � 1]] is the minimized sum in equation 2.

Finally, lines 22–24 use the moves recorded inm[i, l]
to backtrack, computing the optimal shift u[ni�2] from
u[ni�1], u[ni�3] from u[ni�2], and so on, until finally
computing u[0] from u[1].

Our improved Algorithm 2 is similar, but di↵ers
from Algorithm 1 in two ways.

Algorithm 2 Find subsampled shifts ui[j] ⌘ u[i[j]]

1: procedure FindShiftsI(rl, ru, e, i, ui)
2: for l = 0 to nl � 1 . initialize
3: d[0, l] = e[0, l]

4: for j = 1 to nj � 1 . accumulate
5: h = i[j]� i[j � 1]
6: for l = 0 to nl � 1
7: dl = 1
8: ql = max (dhrle, l � nl + 1)
9: qu = min (bhruc, l)

10: for q = ql to qu
11: dq = d[j � 1, l � q]
12: for p = 0 to h� 1
13: dq = dq + e[i[j]� p, l � pq/h]

14: if dq < dl
15: dl = dq
16: ml = q

17: d[j, l] = dl
18: m[j, l] = ml

19: j = nj � 1 . minimize d
20: dj = 1
21: for l = 0 to nl � 1
22: if d[j, l] < dj
23: dj = d[j, l]
24: ui[j] = l

25: while j > 0 . backtrack
26: ui[j � 1] = ui[j]�m[j, ui[j]]
27: j = j � 1

The first di↵erence is that Algorithm 2 computes
shifts ui[j] ⌘ u[i[j]] for only a subset of sample indices
i[0 : nj � 1] ⌘ {i[0], i[1], . . . , i[nj � 1]}. Note that an
array of indices i in this subset must be specified as in-
put to the procedure in Algorithm 2. To compute shifts
u[i] for all sample indices i, we must later interpolate
the subsampled shifts ui[j] ⌘ u[i[j]] computed by Algo-
rithm 2.

The second di↵erence lies in the accumulation step,
where lines 11–13 in Algorithm 2 have replaced line 10 in
Algorithm 1. The additional inner loop for p = 0 to h�1
accumulates h = i[j]� i[j � 1] (line 5) alignment errors
e[i, l]. Lines 4–18 compute and store accumulated errors
d[j, l] and moves m[j, l] corresponding to the indices i[j]
in the subset i[0 : nj � 1].

Figure 3 illustrates how subsampling in Algorithm 2
can produce smoother sequences of shifts. This figure
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shows a closeup view of shifts u[i] computed from e[i, l]
obtained by averaging alignment errors for all traces
in the PP and PS images shown in Figure 2. For this
example, we chose strain limits rl = 0 and ru = 2, so
that with h = 1 only three values of strain u[i]�u[i�1]
are possible: 0, 1, or 2. In other words, as we increase the
sample index i, shift u[i] must either remain the same or
increase by one or two lags. This restriction explains the
rough sequence of shifts for h = 1 shown in Figure 3a.

In contrast, for the same strain limits, subsampling
with h = 50 yields 51 possible values of strain and the
smooth sequence of shifts shown in Figure 3a. These
shifts were obtained by interpolating subsampled shifts
ui[j] ⌘ u[i[j]] computed using Algorithm 2.

Figures 3b and 3c show computational stencils used
for h = 1 and h = 5, again for strain limits rl = 0
and ru = 2. Lines 8 and 9 of Algorithm 2 determine
which previously accumulated errors are accessed when
computing the accumulated error d[j, l] set in line 17.
For h = 1 (Figure 3b), Algorithm 2 will access only three
previously accumulated errors, d[j � 1, l], d[j � 1, l� 1],
and d[j � 1, l � 2], as it computes d[j, l].

For h = 5 (Figure 3c), Algorithm 2 will access 11
previously accumulated errors (corresponding to 11 dif-
ferent lags l), and for each of them it will sum h = 5
alignment errors e[i, l], as it determines which change in
shift minimizes accumulated error d[j, l].

Note that the expression l�pq/h in line 13 of Algo-
rithm 2 may not have an integer value. For some sam-
ple indices i, the lines representing the computational
stencil shown in Figure 3c lie between two integer lag
indices l. This means that interpolation of alignment
errors e[i, l] for non-integer lags l is required in line 13.
In practice, we find that linear interpolation or simply
choosing the alignment error e[i, l] for the nearest inte-
ger lag l is su�cient.

When the spacing between consecutive subsample
indices i[j] is h = 1 (so that i[j] = j and nj = ni), then
Algorithm 2 is equivalent to Algorithm 1. The ability
in Algorithm 2 to sample shifts with larger subsampling
intervals enables us to increase accuracy in estimated
time strains (and shifts), by sacrificing temporal resolu-
tion of those same strains.

3 ACCURACY VERSUS RESOLUTION

Such a trade-o↵ between accuracy and resolution is com-
mon in signal processing, and is unavoidable when esti-
mating time shifts from two time series.

Figure 4 illustrates this trade-o↵ for shifts u[i] esti-
mated from the PP and PS images of Figure 2. In Fig-
ure 4a, the sequence of shifts u[i] is the globally optimal
solution to the optimization problem of equations 2–4.
We computed these shifts from alignment errors e[i, l]
using Algorithm 2 for h = 1.

Figures 4b and 4c show smoother sequences of shifts
u[i] computed using the same algorithm for h = 50 and

h = 1

h = 5

h = 1

h = 50

a)

b)

c)

Figure 3. Closeup views of alignment errors e[i, l] and shifts

u[i] (a) computed without subsampling (h = 1) and with

subsampling by a factor of h = 50. For strain limits 0 
u[i] � u[i � 1]  2, the computational stencil for h = 1 (b)

can represent only two changes in lag; at each sample, lag

must either remain constant or increase by one or two. In

contrast, the stencil for h = 5 (c) represents 10 changes in

lag, and a stencil for h = 50 (not shown) represents 100

changes in lag.

h = 100, respectively. With Algorithm 2, we first com-
puted subsampled shifts u[i[j]] at the highlighted points,
and then interpolated those shifts using piecewise-cubic
polynomials to obtain finely sampled shifts u[i]. We
used polynomials that preserve monotonicity (Fritsch
and Carlson, 1980) to ensure that u[i] � u[i � 1] � 0,
as required by the strain constraints for PP-PS image
registration. A simpler alternative, one more consistent
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Figure 4. Alignment errors and shifts computed without

subsampling (a) and with subsampling by factors of h = 50

(b) and h = 100 (c). Subsampled shifts are both smoother

and more accurate, and cannot be computed by simply

smoothing the shifts obtained without subsampling (h = 1).

In the background images of alignment errors, white vertical

features correspond to reflections in the PP image, and di-

agonal features correspond to (shifted) reflections in the PS

image.

with the accumulation of alignment errors along linear
paths like those shown in Figure 3c, would be piecewise-
linear interpolation.

The sequence of shifts u[i] obtained without sub-
sampling for h = 1 exhibit much more detail than those
obtained with subsampling for either h = 50 or h = 100.
In other words, for h = 1, changes in time shifts with
time are well-resolved. However, in this example the

shifts obtained for h = 1 are useless. We show below
that the shifts obtained for h = 50 are much more accu-
rate. Moreover, the shifts computed for h = 50 cannot
be obtained by simply smoothing the shifts computed
for h = 1.

For h = 100 (Figure 4c) Algorithm 2 computes
shifts for only six samples. Except near sample index
i = 0, the interpolated shifts u[i] well approximate those
computed for h = 50.

To demonstrate that the shifts u[i] computed for
h = 50 are more accurate than those for h = 1, Fig-
ure 5 shows closeup views of results obtained for three
di↵erent arrays of alignment errors e[i, l]. Figures 5a–c
show averages of 1 (no averaging), 5, and 721 alignment
errors computed from pairs of traces in the PP and PS
images in Figure 2. Figures 5d–f show the same align-
ment errors with shifts computed for h = 1 and h = 50.

Figure 5a shows a closeup view of alignment er-
rors e[i, l] computed from only the middle pair of traces
in the PP and PS images. Because di↵erences between
traces in the PP and PS images are not limited to time
shifts, a unique path of minimum error is not apparent
in this 2D array, and the shifts computed for h = 1 and
h = 50 di↵er significantly, as shown in Figure 5d.

Recall that we can compute a 2D array of alignment
errors e[i, l] from each pair of corresponding traces in the
PP and PS images. By averaging alignment errors com-
puted for the five pairs of traces nearest the middle of
these images, we obtain the results shown in Figures 5b
and 5e. Again, the shifts computed for h = 1 and h = 50
di↵er significantly, but in this case the shifts for h = 50
are more accurate.

We know this because of the results shown in Fig-
ures 5c and 5f, which were obtained by averaging align-
ment errors for all 721 pairs of traces in the PP and
PS images. In Figure 5c, the path of minimum error
is obvious, and shifts computed using both h = 1 and
h = 50 are well-aligned with this path, which we may
assume corresponds to a lateral average of the correct
relationship between PP and PS reflection times.

Although the path of minimum error is clearly ap-
parent in Figure 5c, other nearly parallel paths with
small error are apparent as well. These other paths are
caused by cycle skipping, subtracting one cycle of a re-
flection waveform in the PS image from a di↵erent cycle
of the corresponding waveform in the PP image. Recall
that one of the advantages of the dynamic warping al-
gorithm is that it will always find the globally optimal
and constrained path that minimizes the sum of align-
ment errors, and will never be trapped in nearby local
minima caused by cycle skipping.

While more accurate, shifts u[i] for h = 1 shown
in Figure 5f are still not as smooth as those for h =
50. In fact, the alignment errors and shifts shown in
Figure 3a are closeup views of those shown in Figure 5f.
Again, the roughness of shifts for h = 1 is due to coarse
sampling of only three values (0,1 or 2) of time strain
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h = 1
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average of 5  
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Figure 5. Closeup views of alignment errors e[i, l] obtained from a single pair of PP and PS traces (a) and by averaging

alignment errors computed for 5 (b) and all 721 (c) pairs of traces, displayed with (a, b and c) and without (d, e and f) shifts

u[i] computed for h = 1 and h = 50. In this example, the correct shifts (lags) are most apparent in (c), because lateral variation

in shifts is small. With subsampling (h = 50) the correct shifts can be found by averaging alignment errors computed for only

5 pairs of traces (b and e).

u[i]�u[i�1]. The smoothness of shifts for h = 50 is due
to a much finer sampling of 101 values of time strain.
Such fine sampling may be useful in this application to
PP-PS image registration, because a value of time strain
corresponds directly to a value for

VP

VS
= 1 + 2(u[i]� u[i� 1]). (5)

For sample indices i in the closeup view shown in Fig-
ure 3a, we observe that VP /VS ⇡ 2, but this value cor-

responds to none of the three time strains sampled for
h = 1.

The results shown in Figure 5 demonstrate an im-
provement in accuracy that comes from computing sub-
sampled shifts as in Algorithm 2. This improvement is
due to the fact that, in this application, the correct shifts
are smooth, because they are directly related to the in-
tegral of a subsurface property, VP /VS . This inherent
smoothness implies that shifts u[i] can be subsampled
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without aliasing, and then later reconstructed with in-
terpolation.

The results of Figure 5 also demonstrate the dif-
ficulty in estimating time shifts from time series that
have di↵erences unrelated to time shifts, such as noise
and reflection waveform di↵erences. Using just one pair
of PP and PS traces (Figures 5a and 5d) it may be im-
possible to obtain an accurate estimate of the correct
shifts u[i]. In this example, lateral averaging of align-
ment errors computed from many pairs of PP and PS
traces helps to improve accuracy, but only because lat-
eral variations in time shifts are small. However, while
small, lateral variations can be significant, as shown be-
low. By accounting for these variations we can further
improve the accuracy of smooth dynamic warping.

4 SMOOTH IMAGE WARPING

We do this using the method for dynamic image warping
proposed by Hale (2013). In that method, we first recog-
nize that lines 4–14 of Algorithm 1 perform a recursive
non-linear smoothing of alignment errors e[i, l]. We then
repeatedly apply this smoothing filter — top-to-bottom,
bottom-to-top, left-to-right, right-to-left, and so on, for
all image dimensions — to alignment errors computed
for all pairs of traces in two images. The result is a
multi-dimensional array of alignment errors that have
been smoothed both vertically and horizontally. Finally,
we apply Algorithm 1 once more to the smoothed align-
ment errors to obtain shifts that vary both vertically
and horizontally.

To extend this method to Algorithm 2, we recognize
that lines 4–17 of this algorithm perform both a smooth-

ing and subsampling of alignment errors. Accumulation
of alignment errors e along linear paths like those shown
in Figure 3c is equivalent to a smoothing filter, a form
of anti-alias filter that enables accumulated alignment
errors d to be subsampled. Let ẽf denote a 2D array of
these forward-accumulated and subsampled errors, the
values d stored in line 17 of Algorithm 2. We can ap-
ply the same filter in the opposite direction to obtain
a di↵erent 2D array ẽr of reverse-accumulated and sub-
sampled errors. Finally, we can construct symmetrically
smoothed and subsampled alignment errors

ẽ[j, l] = ẽf [j, l] + ẽr[j, l]� e[i[j], l]. (6)

Each ẽ[j, l] is a sum along piecewise linear paths (Fig-
ure 3c) of alignment errors e[i, l]. In equation 6, ẽf [j, l]
is the forward sum for sample indices 0 to i[j]], ẽr[j, l]
is the reverse sum for sample indices i[j] to ni � 1, and
subtraction of e[i[j], l] prevents this value from being
included twice in the sum ẽ[j, l].

By repeating this smoothing and subsampling pro-
cess for each array of alignment errors e[i, l] (i.e., for all
pairs of traces in two images), we obtain a collection
of arrays of smoothed and subsampled alignment errors
ẽ[j, l]. In typical applications, the number of samples nj

after smoothing and subsampling will be much smaller
(say, by a factor of h = 50) than the number of sam-
ples ni input to this process. This means that we will
typically be able to keep the entire collection of ẽ[j, l] in
fast computer memory, as we apply the same smoothing
and subsampling process along other (horizontal) image
dimensions.

Finally, as in Hale (2013), we apply a simple dy-
namic warping (with no further subsampling) to the
smoothed and subsampled alignment errors ẽ to obtain
shifts u that are subsampled in all image dimensions. We
then interpolate these coarsely sampled shifts to obtain
smoothly varying shifts for every image sample.

We applied this method (using bilinear interpola-
tion) for smooth dynamic image warping to the PP and
PS images shown in Figure 2 to obtain the time shifts
shown in Figure 1. We used these time- and laterally-
varying time shifts to warp the PS image.

To illustrate the significance of the lateral variation,
in Figure 6 we compare PS images after both 1D and
2D warping. We performed 1D warping using time shifts
computed from the average of alignment errors of all 721
pairs of traces in the PP and PS images. These shifts
were computed for h = 50 and are identical to those
displayed in Figure 5f.

Figure 6a shows a subset of the PS image after 1D
warping, and Figure 6b shows the sample-by-sample dif-
ferences between this warped PS image and the PP im-
age subset shown in Figure 2b. The images shown in
Figures 6c and 6d show comparable results obtained for
2D warping.

While di↵erences between the warped PS images
in Figures 6a and 6c may be di�cult to see, reflections
in the latter appear at slightly earlier times near the
middle of the image, consistent with the upward bend in
the contours of constant time shift apparent in Figure 1.

This slight lateral variation in time shifts explains
the di↵erences apparent in Figures 6b and 6d. After
2D warping, significant di↵erences remain between the
warped PS image and the PP image, but the di↵erences
are weaker and are less spatially correlated than for 1D
warping. These di↵erences suggest that the time shifts
computed with smooth dynamic 2D warping are more
accurate than those for 1D warping.

5 CONCLUSION

With a simple modification to the dynamic time warp-
ing algorithm, we enable a trade-o↵ between accuracy
and resolution in estimates of time strains. Our im-
proved dynamic warping algorithm computes smoothly
varying shifts by smoothly interpolating shifts that have
been coarsely subsampled. While decreasing our ability
to resolve rapid variations in time strains, this coarse
subsampling increases the accuracy with which smooth
time shifts can be estimated.

In registration of PP and PS images (and in other
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Figure 6. Subsets of the PS image after 1D (a) and 2D (c) warping. For 1D warping (a), shifts were subsampled vertically by a

factor of h = 50. For 2D warping (c), shifts were subsampled by the same factor both vertically and horizontally. Corresponding

sample-by-sample di↵erences (b and d) indicate that 2D warping more accurately aligns the PS image with the PP image.

applications not discussed in this paper), smooth dy-
namic warping has enabled us to significantly improve
the accuracy of time shift estimates, especially where
di↵erences between sequences or images to be aligned
cannot be attributed entirely to time shifts. In a sep-
arate report, we use smooth dynamic warping to es-
timate VP /VS ratios that correspond directly to time

strains computed using smooth dynamic warping of 3D
images.

The only disadvantage we have found in smooth dy-
namic warping is an increase in computation cost that
is proportional to h, the nominal subsampling inter-
val. The computational complexity of simple dynamic
warping via Algorithm 1 is O(ni ⇥ nl). The computa-
tional complexity of smooth dynamic warping via Algo-
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rithm 2 is O(ni ⇥ nl ⇥ h). In practice we have found
this increase in cost to be worthwhile, especially for
multidimensional image warping, in which subsampling
of smoothed alignment errors quickly reduces computa-
tional cost as smoothing and subsampling are performed
for each image dimension.
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