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Figure 1. A horizon slice of a 3D seismic image (a) provides a model of spatial correlation (b) for an anisotropic and spatially

varying Matérn model covariance used here in a geostatistical simulation of porosities (c). The model covariance is implemented

with smoothing filters.

ABSTRACT
While known to be an important aspect of geostatistical simulations and inverse
problems, an a priori model covariance can be difficult to specify and imple-
ment, especially where that model covariance is both anisotropic and spatially
varying. The popular Matérn covariance function is extended to handle such
complications, and is implemented as a cascade of numerical solutions to par-
tial differential equations. In effect, each solution is equivalent to application of
an anisotropic and spatially varying smoothing filter. Suitable filter coefficients
can be obtained from auxiliary data, such as seismic images. An example with
simulated porosities demonstrates the effective use of a Matérn model covari-
ance implemented in this way.
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1 INTRODUCTION

The solution of many inverse problems in geophysics is
facilitated by a priori information about the desired so-
lution. In least-squares inverse theory this information
is provided in the form of an initial model estimate m0

and a covariance matrix CM, which can be used to com-
pute a better (a posteriori) model estimate m̃ as follows
(Tarantola, 2005):

m̃ = m0 + CMG>(GCMG> + CD)−1(d−Gm0). (1)

Here, d denotes observed data, which are assumed to be
approximately related to the true model m by d ≈ Gm,
for some linear operator G. The data covariance matrix
CD quantifies uncertainties due to errors (e.g., measure-
ment errors or ambient noise) in this approximation,
while the model covariance CM quantifies spatial corre-
lation of the model m.

The matrices in equation 1 can be viewed more gen-
erally as linear operators, and this view is especially use-
ful for the model covariance matrix CM. For a model m
with M parameters, the matrix CM would contain M2
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elements, which for large M cannot be stored in com-
puter memory. Moreover, analytical expressions for the
elements of CM may be unavailable, as when m is a
sampled function of space with covariance that is both
anisotropic and spatially varying. We are therefore moti-
vated to implement multiplication by CM in equation 1
as an algorithm that applies the linear operator CM

without explicitly constructing and storing a matrix.
Although we might avoid computing and storing

the matrix CM, we must still specify parameters that
describe this linear operator. This task can be especially
difficult for anisotropic and spatially varying models of
spatial correlation.

Figure 1 illustrates one way to parameterize the
linear operator CM using additional information. The
spatial correlation of seismic amplitudes displayed in
Figure 1a is clearly anisotropic and spatially varying.
A quantitative measure of this spatial correlation is ob-
tained from structure tensors (Weickert, 1999; Fehmers
and Höcker, 2003) computed for every sample in the
seismic image. In Figure 1b, a small subset of these
structure tensors are represented by ellipses. Spatial cor-
relation of seismic amplitudes is high at locations where
ellipses are large and in directions in which they are
elongated. In this paper I show how this tensor field
can almost completely parameterize an anisotropic and
spatially varying model covariance operator CM.

Moreover, if the model covariance operator can be
factored such that CM = FF>, then we can easily simu-
late models m with covariance CM by applying the oper-
ator F (or F>) to an image of random numbers (Cressie,
1993). Figure 1c displays a simulated model m of porosi-
ties computed in this way. In this example, porosity is
not directly correlated with seismic amplitude. In other
words, we cannot accurately predict porosity at some lo-
cation from the seismic amplitude at that location. How-
ever, the spatial correlation of porosities mimics that of
seismic amplitudes, because the model covariance oper-
ator CM used in this simulation was derived from the
seismic image.

In this paper I describe a method for using tensor-
guided smoothing filters to implement a linear operator
CM that approximates the Matérn covariance, which
is widely used in geostatistics (Stein, 1999). My imple-
mentation of CM is an approximation that extends the
Matérn covariance to be both anisotropic and spatially
varying. I illustrate the use of this CM in a tensor-guided
kriging method for gridding data sampled at scattered
locations.

2 THE MATÉRN COVARIANCE

In its simplest form, the Matérn covariance function is
defined by

c(r) =
21−ν

Γ(ν)
rνKν(r), (2)
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Figure 2. Matérn covariance functions c(r) defined by equa-

tion 2, for four different values of the shape parameter ν.

where r is the Euclidean distance between two points
in space, ν is a positive real number that controls the
function’s shape, and Kν(r) denotes the modified Bessel
function of the second kind with order ν. The function
c(r) is normalized to have unit variance c(0) = 1, but
may easily be scaled to have any variance σ2.

Figure 2 displays the Matérn covariance function
c(r) for four different choices of the shape parameter
ν. For any value of ν, this function decays smoothly
and monotonically with increasing distance r. For ν =
0.5, the Matérn covariance is simply the exponential
function c(r) = e−r.

Despite its somewhat complex definition in terms
of special functions, the Matérn covariance function is
widely used in spatial statistics (Stein, 1999), partly be-
cause of the flexibility provided by the shape parameter
ν. Indeed, equation 2 is sometimes described as defin-
ing the Matérn family of covariance functions, because
any ν > 0 yields a valid (positive definite) covariance
function, for any number of spatial dimensions.

For d spatial dimensions, the Fourier transform of
c(r) is

C(k) =
Γ( d

2
+ ν)

Γ(ν)

(2
√
π)d

(1 + k2)
d
2
+ν
, (3)

where k is the magnitude of the wavenumber vector k.
Because the covariance function c(r) is real and sym-
metric about the origin, its Fourier transform C(k) is
real and symmetric as well. Because C(k) decays mono-
tonically with increasing k, we may view the Matérn
covariance function c(r) as the impulse response of a
smoothing filter that attenuates high spatial frequen-
cies.

2.1 Range scaling

Figure 2 illustrates that the effective width or range of
the Matérn covariance function increases as the shape
parameter ν increases. In practice, we wish to specify
both the shape and the range of this function, indepen-
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Figure 3. Matérn covariance functions c(r) after range scal-

ing, so that all functions shown here have an effective range
a = 1 that is independent of the shape parameter ν.

dently. To do this, we make the following substitution
suggested by Handcock and Wallis (1994):

c(r)→ c

(
2
√
ν

a
r

)
, (4)

with a corresponding change to the Fourier transform

C(k)→
(

a

2
√
ν

)d
C

(
a

2
√
ν
k

)
. (5)

In both of these expressions the parameter a is the effec-
tive range of the covariance function c(r); the additional
factor 2

√
ν compensates for the increase in range with

increasing ν apparent in Figure 2.
Figure 3 displays unit range (a = 1) Matérn co-

variance functions with this range scaling substitution.
The effect on covariance shape caused by varying the
parameter ν is more apparent in Figure 3 than in Fig-
ure 2. Note that the effect of varying ν is greatest for
distances r < 1 or, more generally, r < a.

The scaling in equations 4 and 5 is isotropic; cor-
relation varies only with distance, not with direction.
Anisotropic covariance functions can be obtained by us-
ing a more general definition of distance r between two
points x and y, with the following substitution:

c(r)→ c
(√

(x− y)>D−1(x− y)
)
, (6)

with Fourier transform

C(k)→ |D|
1
2C
(√

k>Dk
)
. (7)

Here D denotes a metric tensor and |D| its determi-
nant. In d spatial dimensions D is a symmetric positive
definite d× d matrix. With these substitutions, correla-
tion is highest in the direction of the eigenvector of D
corresponding to its largest eigenvalue.

For simplicity in equations 6 and 7 and below, I let
the range scaling factor 2

√
ν/a in equations 4 and 5 be

included in the tensor D. In practice, where D varies
spatially, such that D = D(x), it is most convenient
to keep these factors separate, so that we can adjust

the shape ν or effective range a without modifying the
tensor field D(x).

Where the tensor D is spatially invariant, we can
apply the Matérn model covariance operator CM by
convolution with the function c(r). Let p(x) denote the
input to the function that applies the operator CM to
obtain an output q(x). Then

q(x) =

∫
p(y) c

(√
(x− y)>D−1(x− y)

)
dy. (8)

Equivalently, and perhaps more efficiently, we can

(i) Fourier transform p(x) to obtain P (k),

(ii) compute Q(k) = C
(√

k>Dk
)
P (k), and

(iii) inverse Fourier transform Q(k) to obtain q(x).

Note that, for either convolution with c(r) or multiplica-
tion by C(k), we need not construct and store a matrix
representing CM.

The problem addressed in this paper is that nei-
ther convolution in the space domain nor multiplication
in the wavenumber domain is valid when the tensors D
vary spatially. In this case, the output q(x) should be
computed as the solution to a partial differential equa-
tion with spatially varying coefficients.

2.2 Partial differential equations

To simplify the discussion below, let us consider only the
2D case for which d = 2, although the methods proposed
in this paper can be extended to any number of spatial
dimensions. In 2D, the (unscaled) Fourier transform of
the Matérn covariance is simply

C(k) =
4πν

(1 + k2)1+ν
. (9)

This simple form for C(k) follows from equation 3 and
the identity Γ(1 + ν) = νΓ(ν).

Multiplication by the Fourier transform C(k) of the
2D Matérn covariance function has been shown (Whit-
tle, 1954; Guttorp and Gneiting, 2006) to be equiva-
lent to solving the following partial differential equation
(PDE):

(1−∇ •∇)1+ν q(x) = 4πν p(x). (10)

This equivalence results from the fact that multiplica-
tion by k2 in the wavenumber domain is equivalent to
applying the differential operator −∇ •∇ in the space
domain.

Our reason for considering solution of partial dif-
ferential equations like equation 10 is the need to apply
the Matérn model covariance operator in contexts where
the direction and extent of correlation are described by
a spatially varying tensor field D(x). In such contexts
equation 10 should be rewritten as

|D|−
1
4 (x) (1−∇ • D(x) •∇)1+ν |D|−

1
4 (x)q(x)

= 4πν p(x).
(11)
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This equation is analogous to equation 10, with the
anisotropic range scaling of equation 7. Note that we

must move the factor |D|
1
2 in equation 7 to the left-

hand side of equation 11 and split it into two parts, to
ensure that the product of symmetric positive definite
(SPD) operators on the left-hand side remains symmet-
ric. That product is proportional to the inverse of the
desired Matérn model covariance operator CM, and so
must be SPD.

For any tensor field D(x), solution of equation 11
is straightforward when the shape parameter ν is an
integer. This is one reason that Whittle (1954) consid-
ered the integer shape ν = 1 to be most natural for 2D
problems. In a similar but more recent context, Fuglstad
(2011) and Lindgren et al. (2011) have likewise assumed
integer ν and thereby avoided the complexities of frac-
tional PDEs.

In practical applications with spatially invariant 2D
Matérn model covariances, commonly used values for
the shape parameter ν lie in the interval [0.5, 1.5], which
includes only the one integer value ν = 1. In practice,
permitting only integer ν may reduce the Matérn family
of covariance functions to just one function.

3 A SMOOTHING COVARIANCE

To facilitate more general (non-integer ν) shapes of co-
variance functions in the Matérn family, let us con-
sider approximations to the fractional partial differen-
tial equation 11. For simplicity in developing these ap-
proximations, I temporarily omit the tensor field D(x)
and use the Fourier transform C(k) in equation 9 as a
convenient shorthand for equations 10 and 11.

The approximation to C(k) proposed here is of the
form

C̃(k) =
γ

(1 + αk2)l (1 + βk2)
, (12)

where α, β, γ, and l are constants computed from the
shape ν of the desired Matérn covariance function. Com-
putation of the constant integer l is easy: l = b1 + νc.
For example, if ν = 1

2
, then l = 1; if ν = 1, then l = 2.

If ν is an integer, then l = 1 + ν, α = 1, β = 0, and
γ = 4πν yields an exact match to the Matérn covariance
function. In this case C̃(k) in equation 12 exactly equals
C(k) in equation 9, and no approximation is required.

Otherwise, after computing l, I compute the three
non-negative constants α, β, and γ so that the approx-
imate covariance function c̃(r) corresponding to C̃(k)
matches exactly three values of the Matérn covariance
function c(r) given by equation 2. To obtain an approx-
imation that is accurate for both large and small dis-
tances r, I choose to match the values 0.1, 0.9 and 1.0.

I first express the scale factor γ in terms of α and
β so that c̃(0) = 1, which is one of the three values
to be matched. Recall that c̃(0) is just the 2D inverse
Fourier transform of C̃(k) evaluated at r = 0 which, in

Table 1. The scale factor γ in C̃(k), as a function of α and

β, chosen so that c̃(0) = 1. See equation 12.

l γ

1
4π(α−β)
log(α/β)

2
4π(α−β)2

α−β−β log(α/β)

3
8π(α−β)3

(α−3β)(α−β)+2β2 log(α/β)

turn, equals the 2D integral of C̃(k) divided by 4π2. By
analytically performing this integration I obtained the
expressions for γ listed in Table 1.

I then use bisection to find distances r1 and r9 such
that c(r1) = 0.1 and c(r9) = 0.9. Finally, I use the itera-
tive Newton-Raphson method to compute the constants
α and β such that c̃(r1) = 0.1 and c̃(r9) = 0.9. The
Newton-Raphson iterations require values and deriva-
tives (with respect to α and β) of the approximate co-
variance function c̃(r).

Using symbolic mathematical software, it is possi-
ble to obtain c̃(r) as a function of α and β by analytical
2D inverse Fourier transform of C̃(k) in equation 12.
The value of c̃(r) is given by one of the expressions in
Table 2. Though straightforward to compute, these ex-
pressions are somewhat complicated, so I use finite dif-
ferences to approximate derivatives of c̃(r) with respect
to α and β, as required by the Newton-Raphson method.
I begin the Newton-Raphson iterations with initial val-
ues α = 1 and β = 0.

The results of the fitting process are listed in Ta-
ble 3. In practical applications we might use these tabu-
lated values directly to obtain adequate approximations
to c̃(r) or C̃(k). Note that for integer shapes ν, no ap-
proximation is required.

Figure 4 displays approximations to Matérn covari-
ance functions computed in this way. All of these ap-
proximations match the Matérn covariance for at least
three values of distance r, those with covariance values
0.1, 0.9 and 1.0. For shape ν = 1, no approximation
is necessary, since for this case we have simply l = 2,
α = 1, β = 0, and γ = 4π. For shape ν = 1.5, the ap-
proximate covariance is almost indistinguishable from
the Matérn covariance. The approximations are worse
for ν < 1, but even for ν = 0.5 may be adequate.

Although I derived the covariance functions c̃(r)
displayed in Figure 4 as approximations, we may con-
sider them to be a practical alternative to the Matérn
family of covariance functions c(r) displayed in Figure 2.
We can control the shape of a function in this alterna-
tive family using a single parameter ν, just as we might
do for the Matérn family. A key advantage of the al-
ternative covariance functions c̃(r) is that correspond-
ing model covariance operators can be easily applied by
solving partial differential equations.
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Table 2. Covariance functions c̃(r) for β > 0, which correspond to non-integer values of the shape parameter ν.

l c̃(r)

1 2
log(α/β)

[
K0

(
r√
α

)
−K0

(
r√
β

)]
2 1

α−β−β log(α/β)

[
(α−β)√

α
rK1

(
r√
α

)
− 2βK0

(
r√
α

)
+ 2βK0

(
r√
β

)]
3 1

2α[(α−3β)(α−β)+2β2 log(α/β)]

[
2
√
α(α− 3β)(α− β)rK1

(
r√
α

)
+
(
8αβ2 + (α− β)2r2

)
K0

(
r√
α

)
− 8αβ2K0

(
r√
b

)]

Table 3. Parameters for covariance functions c̃(r).

ν l α β γ

0.1 1 3.036078 0.000001 2.556095

0.2 1 3.632036 0.000019 3.749303
0.3 1 3.561636 0.000370 4.879283

0.4 1 3.318675 0.002999 5.944607

0.5 1 3.076319 0.012989 7.040834
0.6 1 2.851276 0.037789 8.177463

0.7 1 2.607699 0.087610 9.332528
0.8 1 2.312860 0.178474 10.469799

0.9 1 1.906318 0.351281 11.553648

1.0 2 1.000000 0.000000 12.566371
1.1 2 1.074940 0.005512 13.814264

1.2 2 1.139814 0.017076 15.071712

1.3 2 1.194873 0.035916 16.338362
1.4 2 1.239510 0.063831 17.610024

1.5 2 1.273500 0.102676 18.882510

1.6 2 1.292509 0.157953 20.155772
1.7 2 1.297433 0.232326 21.421235

1.8 2 1.281105 0.337481 22.676615

1.9 2 1.229161 0.500485 23.916472
2.0 3 1.000000 0.000000 25.132741

2.1 3 1.034468 0.016534 26.382951

2.2 3 1.065423 0.039589 27.644620
2.3 3 1.091981 0.070357 28.905683

2.4 3 1.115053 0.108546 30.168595
2.5 3 1.133170 0.157174 31.432672

2.6 3 1.145163 0.219478 32.696440

2.7 3 1.150721 0.297654 33.955588
2.8 3 1.145802 0.402307 35.210680

2.9 3 1.123103 0.554972 36.459091

3.0 4 1.000000 0.000000 37.699112

3.1 PDE implementations

Recall that the motive for an alternative family of co-
variance functions c̃(r) is that factors in their Fourier
transforms C̃(k) have only integer exponents, which
greatly simplifies PDE implementations of the corre-
sponding model covariance operators CM. The PDE
corresponding to C̃(k) in equation 12 is

(1− α∇ •∇)l (1− β∇ •∇) q(x) = γ p(x). (13)

shape
0.50

1.50
1.00 
0.75 

Figure 4. Alternative covariance functions c̃(r). Compare
with the Matérn covariance functions displayed in Figure 2.

For anisotropic and spatially varying tensor fields D(x),
the corresponding PDE is

|D|−
1
4 (x) (1− α∇ • D(x) •∇)l

(1− β∇ • D(x) •∇) |D|−
1
4 (x)q(x)

= γ p(x).

(14)

I have again constructed the product of SPD opera-
tors on the left-hand side of equation 14 to be SPD.
To see this, note that the differential operators 1 −
α∇ • D(x) •∇ and 1 − β∇ • D(x) •∇ share the same
eigenvectors, which implies that they commute. There-
fore, the composite left-hand-side operator is SPD.

To solve the partial differential equation 14 numer-
ically, we could approximate the differential operators
with finite differences, and then use the method of con-
jugate gradients to compute the output q(x). However,
the condition number for the complete left-hand-side
operator grows exponentially with the number of dif-
ferential operators in parentheses. As an example, for
ν = 1 (l = 2, α = 1, β = 0), the condition number
for the complete operator is the square of that for each
of the two differential-operator factors, so that a large
number of iterations may be required for convergence of
the conjugate-gradient method.

A more efficient approach is to use the method
of conjugate gradients multiple times, once for each of
the differential operator factors on the left-hand side
of equation 14. In this approach we solve the following
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sequence of equations:

q0(x) = |γ2D(x)|
1
4 p(x)

(1− α∇ • D(x) •∇) q1(x) = q0(x)

(1− α∇ • D(x) •∇) q2(x) = q1(x)

· · ·
(1− α∇ • D(x) •∇) ql(x) = ql−1(x)

(1− β∇ • D(x) •∇) qL(x) = ql(x)

q(x) = |γ2D(x)|
1
4 qL(x). (15)

In the special case where β = 0 (ν is an integer), so-
lution of the last PDE for qL(x) is unnecessary. In any
case, the total number of conjugate-gradient iterations
grows only linearly, not exponentially, with the number
of equations 15.

The solution of each PDE in the sequence of equa-
tions 15 is equivalent to applying a smoothing filter to
a function qi(x) on the right-hand side. Tensor coeffi-
cients D(x) can be specified so that this smoothing is
both anisotropic and spatially varying. At each location
x the extent of smoothing is greatest in directions of
eigenvectors corresponding to the largest eigenvalues of
D(x). The cascade of tensor-guided smoothing filters in
equations 15 approximates the application of a Matérn
model covariance operator CM in which covariance is
both anisotropic and spatial varying.

Because this approximation is implemented with
smoothing filters, it is henceforth referred to as a
smoothing covariance.

4 TENSOR-GUIDED KRIGING

A simple and common use of a model covariance op-
erator CM is in the interpolation of measurements ac-
quired at locations scattered in space. In this applica-
tion, the linear operator G in equation 1 is simply a
model-sampling operator K that extracts values of the
model m at scattered locations to obtain data d ≈ Km.
Here, the approximation is due to measurement errors
that may be non-zero. Substituting the model-sampling
operator K for G in equation 1, we obtain

m̃ = m0 +CMK>(KCMK>+CD)−1(d−Km0). (16)

As noted by Hansen et al. (2006), the process of
computing a model estimate m̃ with equation 16 is
equivalent to gridding with simple kriging, a process
well known in geostatistics. In this process, we estimate
the model m at locations on a uniform and dense sam-
pling grid. The number of gridded-model samples in m
is typically much larger than the number of scattered-
data samples in d. The operator K gathers values from
a small subset of locations in the uniform grid, the scat-
tered locations where data are available, and the oper-
ator K> scatters values into those same locations.

Tarantola (2005) shows that simple kriging can also

be performed in a different but equivalent way:

m̃ = m0 + (C−1
M + K>C−1

D K)−1K>C−1
D (d−Km0).

(17)
This alternative is appealing because finite-difference
approximations to C−1

M are compact and can be applied
more efficiently than those for CM, which requires solu-
tion of partial differential equations 15. However, equa-
tions 16 and 17 are equivalent only when the inverses of
matrices in these equations exist. If measurement errors
are negligible, so that CD ≈ 0, then CD is nearly sin-
gular and equation 17 is ill-conditioned. The fact that
equation 17 is invalid without measurement error is just
one reason to favor gridding with equation 16.

Another reason is that the size of the matrix
KCMK> + CD equals the number of scattered data
samples, which is often small enough to enable efficient
direct solution of the kriging equations 16. In contrast,
the size of the matrix C−1

M +K>C−1
D K equals the (typi-

cally) much larger number of gridded model samples, so
that iterative solution of equation 17 is required. When
CD ≈ 0, and without a good preconditioner, conver-
gence of iterative methods is slow.

For these reasons I choose to use equation 16 to im-
plement gridding with an anisotropic and spatially vary-
ing model covariance. However, even with this choice,
an iterative solution is required, because we lack an-
alytic expressions for elements of the smoothing co-
variance matrix CM and, hence, the composite matrix
AM ≡ KCMK>+CD. The smoothing equations 15 pro-
vide only a method for applying (performing multipli-
cation by) CM. Nevertheless, that method is sufficient
for iterative conjugate-gradient solution of equation 16.

4.1 Paciorek’s approximation

Convergence of conjugate-gradient iterations is greatly
accelerated by a good preconditioning operator P ≈
A−1

M , one that can be computed and applied more
quickly than AM itself. Recalling that AM ≡ KCMK>+
CD, one way to obtain such a preconditioner is to find
a good approximation to the smoothing covariance op-
erator CM.

Paciorek (2003) and Paciorek and Schervish (2006)
propose an approximation CP ≈ CM whose elements
can be computed quickly by the following modification
of equation 6:

c(r)→ a(x,y) c

(√
(x− y)>D̄−1(x,y)(x− y)

)
,

(18)
where

D̄(x,y) ≡ D(x) + D(y)

2
, (19)

and

a(x,y) ≡ |D(x)|
1
4 |D(y)|

1
4 |D̄(x,y)|−

1
2 . (20)
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In effect, these expressions approximate the covariance
of the model at location x and the model at location y
using averages of tensors D(x) and D(y) at only those
two locations. The approximation is best where D(x)
varies slowly within the effective range of that function.

Assuming that the number of scattered measure-
ments in d is sufficiently small, say, less than 1000, we
can use Paciorek’s approximation to quickly compute
and store the elements of the approximate composite
matrix AP ≡ KCPK>+CD. We can then use Cholesky
decomposition to compute the preconditioner P = A−1

P ,
for use in a conjugate-gradient solution of equation 16.
The resulting process is a method for performing sim-
ple kriging with an anisotropic and spatially varying
Matérn model covariance or, more simply, tensor-guided
kriging.

4.2 Simulated model and data

To test the process, I synthesized data by sampling a
known gridded model at 256 random locations. Fig-
ure 5a shows the known model porosities m, while Fig-
ure 5b shows the sampled data porosities d. The data
were sampled without error; i.e., the data covariance
CD = 0.

The model has a known covariance CM that I de-
rived from seismic amplitudes, also shown in Figure 5.
(The images in Figures 1a and 1c are identical to those
in Figures 5c and 5a, respectively.) These amplitudes
were extracted from a 3D seismic image at depths cor-
responding to a seismic horizon. Stratigraphic features
apparent in this image suggest an anisotropic and spa-
tially varying model covariance CM.

I computed the known model m ≡ m(x) dis-
played in Figure 5a by smoothing an image r ≡ r(x)
of pseudo-random values independently generated for a
normal distribution N (0.25, 0.02). The smoothing was
performed by solving a finite-difference approximation
to the following partial differential equation:

(1−∇ • D(x) •∇)m(x) = |γ2D(x)|
1
4 r(x), (21)

where D(x) are structure tensors computed from the
seismic image displayed in Figure 5c.

Equation 21 is comparable to the “stochastic
Laplace equation” described by Whittle (1954), but here
with anisotropic and spatially varying coefficients D(x).
Equation 21 is also equivalent to the first two equations
in the sequence of equations 15, for the special case
where the Matérn shape is ν = 1 (l = 2, α = 1, β = 0).
In this case, if we define this first half of equations 15 as
a linear operator F, then the second half of those same
equations is its transpose F>. In summary, I used the
factor F in CM = FF> to generate a known porosity
model m with model covariance CM(Cressie, 1993).

It is important to emphasize that I did not assume
any direct correlation between seismic amplitudes and

seismic

data

modela)

b)

c)

Figure 5. A simulated known gridded model m (a) and
scattered data d (b) used to test tensor-guided kriging. The

model covariance was derived from seismic amplitudes (c) in

a horizon slice of a 3D seismic image. The size of the pixels in
(b) has been exaggerated to make the locations of scattered

data samples more visible.

porosities. Instead, I used the seismic image only to con-
struct an anisotropic and spatially varying model co-
variance for porosity. Structure tensors D(x) computed
from the seismic image enable the effective range of
the model covariance CM to be both anisotropic and
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spatially varying. For this example I set the maximum
range to be 1 km.

4.3 Gridding with kriging

Figure 6 displays model estimates m̃ obtained by kriging
via equation 16 the simulated data d for three different
model covariances. In all three cases, I used the correct
model mean m0 ≡ m0(x) = 0.25.

For Figure 6a, I used the correct smoothing covari-
ance CM (and CD = 0) in tensor-guided kriging with
equation 16 to estimate the model m. This model esti-
mate m̃ is most accurate because it is most consistent
with the method (described above) used to synthesize
the data d. In the iterative conjugate-gradient solution
of equation 16 I used a preconditioner based on Pa-
ciorek’s approximation. The model estimate shown here
was obtained after 16 iterations.

For Figure 6b, I replaced CM in equation 16 with
Paciorek’s approximate model covariance CP, for which
the matrix AP = KCPK>+CD can be efficiently com-
puted and factored directly. In this example, the re-
sulting model estimate m̃ differs significantly from that
obtained using the correct model covariance CM (Fig-
ure 6a), because the tensors D(x) vary significantly
within the maximum range (1 km) of the covariance
function. This result indicates that, while Paciorek’s
approximation may provide a useful preconditioner for
tensor-guided kriging, it may not be an adequate sub-
stitute for the correct smoothing covariance CM.

To estimate the model displayed in Figure 6c, I re-
placed CM with a simple isotropic and spatially invari-
ant model covariance. The resulting model estimate m̃
is least accurate of those displayed in Figure 6, because
the correct model covariance CM is both anisotropic and
spatially varying.

The implementation of tensor-guided kriging
demonstrated with this simple 2D example has a sig-
nificant shortcoming not addressed in this paper. Re-
call that the number of scattered measurements in the
data vector d in this example is 256. As that number
increases to, say, 10,000 or more, the computational cost
of the Paciorek preconditioner becomes prohibitive; this
cost is mostly that of Cholelsky decomposition of the
matrix AP, which grows with the cube of the number
of data samples.

This high cost makes the implementation of tensor-
guided kriging proposed in this paper infeasible for 3D
gridding of scattered borehole data. For such large 3D
subsurface gridding problems, we might exploit the fact
that the range for vertical correlation of subsurface
properties is typically much smaller than that for lateral
correlation, and solve the large problem with a sequence
of solutions to overlapping smaller problems.

isotropic

Paciorek

smoothinga)

b)

c)

Figure 6. Porosity models estimated using (a) the correct
anisotropic and spatially varying smoothing model covari-

ance CM, (b) Paciorek’s approximate model covariance CP,

and (c) an isotropic and spatially invariant model covariance.
The maximum range for all three model covariances is 1 km.

5 CONCLUSION

By solving a cascade of partial differential equations
with tensor coefficients, we effectively implement an
anisotropic and spatially varying Matérn model covari-
ance CM. In addition to the tensor coefficients D(x),
this model covariance requires only a few additional pa-
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rameters: variance σ2, maximum effective range a, and
shape ν. The latter parameters are well-known to those
familiar with the popular Matérn covariance function.

For some inverse problems, the necessary tensor
field D(x) can be obtained directly from auxiliary data,
such as seismic images. For other problems, a necessary
first step might be for experts to specify this tensor field,
perhaps using new interactive software tools developed
for this purpose. In any case, it is difficult to imagine
a geophysical inverse problem for which an isotropic or
spatially invariant model covariance is appropriate.
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