Up to now we have been talking about steady state situations If we change a boundary condition and wait, the system changes gradually from the initial steady condition to a new steady state condition The rate at which that change occurs is controlled by the storage properties of the porous medium and its condition with respect to confinement ## **Unconfined / Confined aquifer** #### **Unconfined:** Head in the aquifer is below the "top" of the aquifer Head decline results in drainage from pores Releasing substantial volume of water when head declines #### **Confined:** Head in the aquifer is above the "top" of the aquifer Head decline does not drain pores Rather it reduces the pressure in the pores Releasing a relatively small volume when head declines STORATIVITY - S: unitless Also called Storage Coefficient VOLUME OF WATER AQUIFER RELEASES PER UNIT SURFACE AREA PER UNIT CHANGE IN HEAD NORMAL TO THE SURFACE SPECIFIC STORAGE - s or S_s: L⁻¹ **VOLUME OF WATER AQUIFER RELEASES** **PER UNIT VOLUME** PER UNIT CHANGE IN HEAD NORMAL TO THE SURFACE For aquifer thickness = b S = S_s b S_s=S / b ### Define: $\begin{array}{c} \varphi \text{ - POROSITY} \\ \alpha \text{ - VERTICAL COMPRESSIBILITY OF AQUIFER SKELETON} \\ \beta \text{ - COMPRESSIBILITY OF WATER} \\ b \text{ - THICKNESS} \end{array}$ Compressibility - relative volume change in response to a pressure change Units: (1/pressure units) Pascals⁻¹ or ft²/lb #### IF WE IGNORE LATERAL COMPRESSIBILITY IGNORE COMPRESSIBILITY OF SOLID And EXPLORE PARTS OF STORAGE TERM: IF AQUIFER IS RIGID - water given up from a unit volume for a unit drop in head would be entirely due to expansion of water $\phi b \beta \gamma$ units cancel: [L³ L⁻³ L L² M⁻¹ M L⁻³] <u>IF WATER IS RIGID</u> - water given up from a unit volume for a unit drop in head would be entirely due to compression of aquifer skeleton $b\alpha\gamma$ units cancel: [L L² M⁻¹ M L⁻³] STORAGE COEFFICIENT (STORATIVITY) = sum of those contributions: $S = \gamma b (\phi \beta + \alpha)$ [unitless] SPECIFIC STORAGE is STORAGE COEFFICIENT per unit thickness $S_s = S/b$ [L⁻¹] VOLUME of water released for a head change Δh over an area A : $S \Delta h A \quad [LL^2] : [L^3]$ RECALL STORAGE IN AN UNCONFINED AQUIFER WE CAN'T RECOVER ALL THE WATER FROM THE PORES, SO ONLY A PORTION IS AVAILABLE SPECIFIC YIELD - % OF TOTAL VOLUME THAT CAN BE DRAINED BY GRAVITY SPECIFIC RETENTION - % OF TOTAL VOLUME HELD AGAINST GRAVITY BY DEFINITION THEY SUM TO TOTAL POROSITY $$\phi = SY + SR$$ | | Pa ⁻¹ | ft²/lb | Typical | |--------------|--------------------------------------|--|---------------------| | CLAY | 10 ⁻⁶ - 10 ⁻⁸ | 5X10 ⁻⁵ - 5X10 ⁻⁷ | Porositie 0.33-0.60 | | SAND | 10 ⁻⁷ - 10 ⁻⁹ | 5X10 ⁻⁶ - 5X10 ⁻⁸ | 0.25-0.50 | | GRAVEL | 10 ⁻⁸ - 10 ⁻¹⁰ | 5X10 ⁻⁷ - 5X10 ⁻⁹ | 0.25-0.50 | | JOINTED ROCK | 10 ⁻⁸ - 10 ⁻¹⁰ | 5X10 ⁻⁷ - 5X10 ⁻⁹ | <0.01-0.17 | | SOUND ROCK | 10-8 - 10-11 | 5X10 ⁻⁸ - 5X10 ⁻¹⁰ | <0.01-0.12 | | WATER | 4.4X10 ⁻¹⁰ | 2.1.4X10 ⁻⁸ | 1.00 | | ST | ORAGE COEFF | ICIENT: | |