Up to now we have been talking about steady state situations

If we change a boundary condition and wait, the system changes gradually from the initial steady condition to a new steady state condition

The rate at which that change occurs is controlled by the storage properties of the porous medium and its condition with respect to confinement

Unconfined / Confined aquifer

Unconfined:

Head in the aquifer is below the "top" of the aquifer
Head decline results in drainage from pores
Releasing substantial volume of water when head declines

Confined:

Head in the aquifer is above the "top" of the aquifer
Head decline does not drain pores
Rather it reduces the pressure in the pores
Releasing a relatively small volume when head declines

STORATIVITY - S: unitless

Also called Storage Coefficient VOLUME OF WATER AQUIFER RELEASES

PER UNIT SURFACE AREA

PER UNIT CHANGE IN HEAD NORMAL TO THE SURFACE

SPECIFIC STORAGE - s or S_s: L⁻¹

VOLUME OF WATER AQUIFER RELEASES

PER UNIT VOLUME

PER UNIT CHANGE IN HEAD NORMAL TO THE SURFACE

For aquifer thickness = b S = S_s b S_s=S / b

Define:

 $\begin{array}{c} \varphi \text{ - POROSITY} \\ \alpha \text{ - VERTICAL COMPRESSIBILITY OF AQUIFER SKELETON} \\ \beta \text{ - COMPRESSIBILITY OF WATER} \\ b \text{ - THICKNESS} \end{array}$

Compressibility - relative volume change in response to a pressure change Units: (1/pressure units) Pascals⁻¹ or ft²/lb

IF WE

IGNORE LATERAL COMPRESSIBILITY IGNORE COMPRESSIBILITY OF SOLID

And EXPLORE PARTS OF STORAGE TERM:

IF AQUIFER IS RIGID - water given up from a unit volume for a unit drop in head would be entirely due to expansion of water

 $\phi b \beta \gamma$ units cancel: [L³ L⁻³ L L² M⁻¹ M L⁻³]

<u>IF WATER IS RIGID</u> - water given up from a unit volume for a unit drop in head would be entirely due to compression of aquifer skeleton

 $b\alpha\gamma$ units cancel: [L L² M⁻¹ M L⁻³]

STORAGE COEFFICIENT (STORATIVITY) = sum of those contributions: $S = \gamma b (\phi \beta + \alpha)$ [unitless]

SPECIFIC STORAGE is STORAGE COEFFICIENT per unit thickness $S_s = S/b$ [L⁻¹]

VOLUME of water released for a head change Δh over an area A : $S \Delta h A \quad [LL^2] : [L^3]$

RECALL STORAGE IN AN UNCONFINED AQUIFER
WE CAN'T RECOVER ALL THE WATER FROM THE PORES,
SO ONLY A PORTION IS AVAILABLE

SPECIFIC YIELD - % OF TOTAL VOLUME THAT CAN BE DRAINED BY GRAVITY

SPECIFIC RETENTION - % OF TOTAL VOLUME HELD AGAINST GRAVITY

BY DEFINITION THEY SUM TO TOTAL POROSITY

$$\phi = SY + SR$$

	Pa ⁻¹	ft²/lb	Typical
CLAY	10 ⁻⁶ - 10 ⁻⁸	5X10 ⁻⁵ - 5X10 ⁻⁷	Porositie 0.33-0.60
SAND	10 ⁻⁷ - 10 ⁻⁹	5X10 ⁻⁶ - 5X10 ⁻⁸	0.25-0.50
GRAVEL	10 ⁻⁸ - 10 ⁻¹⁰	5X10 ⁻⁷ - 5X10 ⁻⁹	0.25-0.50
JOINTED ROCK	10 ⁻⁸ - 10 ⁻¹⁰	5X10 ⁻⁷ - 5X10 ⁻⁹	<0.01-0.17
SOUND ROCK	10-8 - 10-11	5X10 ⁻⁸ - 5X10 ⁻¹⁰	<0.01-0.12
WATER	4.4X10 ⁻¹⁰	2.1.4X10 ⁻⁸	1.00
ST	ORAGE COEFF	ICIENT:	

