Superposition Applications

applicable to linear conditions (i.e. confined or unconfined if drawdown << aquifer thickness s<
b)

Utility of superposition

- * Impact of pumping on a flow field
- * Pumping from a number of wells
- * Boundaries by Image well theory
- * Incremental Pumping

Drawdown from Pumping a Number of Wells Superposed Solutions

NEXT

Influence of Boundaries on Drawdown

Superposed Solutions using Image Wells

NEXT

Influence of Changing Pumping Rate on Drawdown
Superposed Solutions in Time

NEXT

We can use this to analyze aquifer test recovery data

OR for small u (small r, long t)

$$s' = \frac{2.3Q}{4\pi T} \left[\log \frac{2.25Tt}{r^2 S} - \log \frac{2.25Tt'}{r^2 S}\right] = \frac{2.3Q}{4\pi T} \log \frac{t}{t'}$$

plot of s' vs log (t/t') will be a straight line

$$T = \frac{2.3Q}{4\pi\Delta s}$$

∆s over one log cycle t/t'

and

If data are from an observation well,

S is obtained from the value of s & t when pumping stopped, see next slide

If data are from an observation well, then S can be estimated by:

- 1. identifying the value of s at the end of the test
- 2. rearranging the Theis equation

$$s = \frac{Q}{4\pi T} W(u)$$
 $W(u) = \frac{s4\pi T}{Q}$

and solving for W(u) using the Q that prevailed during the test

- 3. finding u from a table of u vs. W(u)
- 4. rearranging the expression for u

$$u = \frac{r^2S}{4Tt}$$
 $S = \frac{4Ttu}{r^2}$

and solving for S using the t at the end of the test corresponding to the s at the end of the test

Try a recovery analysis
(and compare to Theis results)
using:

http://www.mines.edu/~epoeter/ _GW/15wh4Superpsition/recovery-classex.xls