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ABSTRACT

In the last few years, it has become apparent that traditional wavelet-based image processing algorithms and
models have significant shortcomings in their treatment of edge contours. The standard modeling paradigm
exploits the fact that wavelet coefficients representing smooth regions in images tend to have small magnitude,
and that the multiscale nature of the wavelet transform implies that these small coefficients will persist across
scale (the canonical example is the venerable zero-tree coder). The edge contours in the image, however, cause
more and more large magnitude wavelet coefficients as we move down through scale to finer resolutions. But if
the contours are smooth, they become simple as we zoom in on them, and are well approximated by straight
lines at fine scales. Standard wavelet models exploit the grayscale regularity of the smooth regions of the image,
but not the geometric regularity of the contours.

In this paper, we build a model that accounts for this geometric regularity by capturing the dependencies
between complex wavelet coefficients along a contour. The Geometric Hidden Markov Tree (GHMT) assigns
each wavelet coefficient (or spatial cluster of wavelet coefficients) a hidden state corresponding to a linear ap-
proximation of the local contour structure. The shift and rotational-invariance properties of the complex wavelet
transform allow the GHMT to model the behavior of each coefficient given the presence of a linear edge at a
specified orientation — the behavior of the wavelet coefficient given the state. By connecting the states together
in a quadtree, the GHMT ties together wavelet coefficients along a contour, and also models how the contour
itself behaves across scale. We demonstrate the effectiveness of the model by applying it to feature extraction.
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1. INTRODUCTION

Images have two salient features that any model should account for: they contain smooth, homogeneous regions,
and these regions are separated by smooth edge contours. That is, images exhibit grayscale reqularity in smooth
regions and geometric regularity along edge contours. Both grayscale regular regions and geometric regular
contours are readily characterized by their multiscale behavior. In a sense, they both become “uninteresting” as
we zoom in on them; at fine resolutions, smooth regions are essentially flat and contours are essentially straight.

The wavelet transform handles the grayscale regularity in images naturally, and as a result has emerged
as the preeminent tool in image processing. Wavelet models operate under the paradigm “wavelet coefficients
representing smooth regions in the image tend to be small”. This idea is the basis for many state-of-the-art wavelet
domain processing algorithms for applications including compression [1,2], denoising [3,4], and segmentation [5].

An effective model for edge structure in the wavelet domain has been more elusive. At fine scales in the wavelet
domain, many coefficients are needed to build up an edge (the number roughly doubles from scale to scale). But
since the edge contour itself is simple (smooth), the values of the wavelet coefficients are “geometrically coherent”
in that they exhibit strong dependencies, a fact which current models do not exploit.

To address this issue, recent research in applied harmonic analysis has focussed on developing alternate
representations that are better suited for edges [6-10]. While these new representations have theoretically nice
properties, they do not yet enjoy the same widespread success in practical applications as wavelets.
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Figure 1. Real parts of the six 2D wavelet basis functions for a given scale and location. The basis functions are local
in space, frequency, and direction; each responds only to edges at certain orientations.

In this paper, instead of proposing an alternate representation, we explore a method of compensating for
contour regularity directly in the wavelet domain. The approach combines three recent developments in image
modeling: complex wavelets [11], hidden Markov trees [3], and multiscale geometry modeling [12].

The complex wavelet transform (CWT) [11,13], like the real wavelet transform, decomposes an image using
basis functions that are local in time and frequency. Unlike the real wavelet transform, complex wavelets are
also local in orientation (see Figure 1), approximately shift-invariant and approximately steerable. As a result,
geometrical coherency among a group of complex wavelet coefficients is easy to identify and exploit.

In Section 3, we will develop the geometric hidden Markov tree (GHMT), a statistical model for images in the
complex wavelet domain. The GHMT assigns a hidden state to each group of six complex wavelet coefficients
that corresponds to the local linear edge structure present in the image (see Figure 6). The presence of an edge
constrains the CWT coefficients to behave in a certain manner, just as they are “constrained” to be small when
representing smooth regions.

The GHMT captures the contour structure in the image by imposing multiscale dependencies between these
hidden states. Since each contour in the image is smooth, their local linear behavior is closely related across
scale (see Figure 2). These relationships are quantified with transition probabilities between the hidden states
of parent and child CWT coefficients on the wavelet quadtree. An appropriate choice of transition probabilities
allows the GHMT to favor hidden state configurations that are geometrically faithful; at fine scales, the contour
is essentially straight, and we expect little innovation in the hidden state sequence.

In Section 4, we apply the model to the problem of feature extraction. Given an image, we use a fast
optimization algorithm to find the state configuration with greatest joint likelihood. The resulting hidden state
configuration gives us an estimate of the contour structure in the image across a range of scales; an example is
shown in Figure 7. The pictures in Figure 7 are completely parameterized; they were redrawn from the “vector
graphics” information (line segment orientations) inherent in the state configuration.

2. COMPLEX WAVELETS AND LOCAL GEOMETRY

The complex wavelet transform decomposes an image X (s),s € R? in terms of basis functions that are shifted
in dilated versions of siz different mother wavelets 1°:

X()= > wiok+ )Y D hals) 1)
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where 2, (s) = 294"(27s — k). The ¢}, and ¢!, (s) are complex valued, with the real and imaginary parts of
@[1?7 , forming an approximate Hilbert pair. The CWT uses six subbands B = {15,45,75, —15, —45, —75}, labeled
for the directional information they give. Like the real wavelet transform, each subband can be arranged on a
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Figure 2. The linear behavior of the curve on the right is closely related across scale. The dashed line on the left shows
the linear fit at one scale, and the dotted line shows the fits at the next finer scale.

(a) (b)

Figure 3. The local linear behavior of a contour inside the bold box in (a) is parameterized by (b) an angle 6 and offset
d.

quadtree with nodes indexed by scale and location. The real parts of the 1/)?7 i for one scale and location are
shown in Figure 1.

The CWT has several properties which make it attuned to characterizing geometrical structure*:

Shift-invariance: Let {C?', w 1o,k be the CWT coefficients of an image X at a scale j. Then the corresponding
scale j CWT coeflicients for any shift of X can be calculated by interpolating the {c?) )bk

Rotational-invariance: Similarly, the CWT coefficients for any rotation of X can be calculated by interpolating
the {Cb }b k-
7,k S0,

Directional selectivity: Along with being local in time and frequency, the 77/1?7 . are local in orientation.

As a result of these three properties, the CWT coefficients at one scale and location can provide a charac-
terization of local geometrical structure. For a CWT basis function centered on location k in the plane, local
edge positions can be parameterized by a distance d and an angle 6 relative to k (see Figure 3). The (d,6)
parameterization provides a nice separation in the edge response of the six CWT coefficients (see Figure 4): d
controls the phase, while 8 controls the magnitude. The mapping from (d, ) to the corresponding edge response
is (almost) invertible. The local geometry is manifest in the CWT coefficients; simply by looking at their values,
we can not only decide whether or not an edge is in the vicinity, but we can also estimate the distance d and
angle 6. An example of local edge structure being “read off” from CWT coeflicients is shown in Figure 5.

*While not strictly true, theses properties hold for nearly all intents and purposes.
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Figure 4. Magnitude edge response for the six CWT basis functions at a given scale and location as a function of 8 for
d = 0. The phase response varies linearly with d. The relative magnitudes are tied to the angle 6 of local geometrical

structure while the phase is tied to the offset d.

Figure 5. Local edge detection using the CW'T. Highlights of different regions in the “cameraman” image are shown on
the left, on the right are edge estimates from the corresponding complex wavelet coefficients. The upper row shows the
original region of the image, the lower row shows the edge estimates.
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3. GEOMETRIC HIDDEN MARKOV TREE MODELING

The wavelet-domain hidden Markov tree [3] (HMT) is a general purpose statistical image model underlying
powerful denoising [4] and segmentation [5] algorithms. The HMT separates the wavelet coefficients 0177-7 x of an
image into two categories, S and L, and uses a different statistical model for each. Over smooth regions in the
image, the wavelet coeflicients are expected to have small magnitude; the HMT models these type S coefficients
as coming from a low-variance Gaussian distribution. Over regions with edges or texture, the wavelet coefficients
can have larger magnitude; these type L coefficients are modeled with a high-variance Gaussian. Of course, the
type of each wavelet coefficient is not known a priori; it can be interpreted as a hidden state g;j that controls
the marginal distribution of c?) &

P(c?)k|qj,k =m)= ﬁ exp (—c?)k/@osl)) m € {S,L}. (2)

To model the dependencies between the wavelet coefficients, the HMT sets up a Markov-1 dependency
structure on hidden states across scale. The relationships between parent and child coefficients* are parameterized

fTypically, the variances o2, will also vary with the scale j
#The wavelet coefficients of an image can be naturally arranged on a quadtree, where “parent nodes” at a scale j split
into four “child” nodes at scale j + 1.
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Figure 6. The geometric hidden Markov tree model. The tree of hidden states, shown on the left, models the multiscale
behavior of the contours. Associated with each hidden state is a set of six complex wavelet coefficients (drawn as black
dots on the right).

by transition probability matrix
Apn = Prob (child state = m|parent state = n). (3)

Since smooth regions of the image at one scale will break down into smooth regions at the next scale, we expect
Ass to be close to 1.

Rather than using a single “Gaussian with large variance” state to model contours in the image, the geometric
HMT (GHMT) breaks the L state down into many geometry states, each corresponding to a different type of local
linear contour behavior. The states are drawn from a dictionary of possible (d,6) values, ¢ € SU{(dm,0m)},
and we use the same state for all six CWT coefficients {w;k}b for a given scale and location (j, k).

As discussed in Section 2, each type of local linear contour structure produces distinct behavior in the CWT
coefficients. Given a geometrical state ¢ i = (dpm,0m), we model the six CWT coeflicients as coming from an

improper Gaussian whose “mean” is the one dimensional subspace E](.im’em) of response values of {1/)?7,6}5, for
edges of all different heights at (d,, 6,,). We have
. im0
P () ol = (A 0)) ox exp (= dlist({cl Jo, B4/ (202)) (4)

where dist({c?)k}b,EJ(-flk’"’em)) is the distance of the CWT coefficients {c?)k}b to the subspace EJ(.i’e) i and o2

controls the variance around this subspace.

The transition probabilities will favor small innovations in geometry over large. To each state (d,,, 0,,,), there
corresponds a line ¢, (as in Figure 3(b)). The A,,, are assigned based on the Hausdorff distance HD(¢,,, £,,)
between lines /¢, and /,, restricted to a square in the plane. A small Hausdorff distance corresponds to little
change in geometry between parent and child, and results in a high probability. We use A, ox e~ HP(Em.tn),

The GHMT, illustrated in Figure 6, is a general purpose statistical model for the complex wavelet coefficients
of images, and thus can be applied to a range of image processing problems. In the next section, we present a
simple feature extraction algorithm.

4. APPLICATION: FEATURE EXTRACTION

The hidden states in the GHMT are more than just a modeling device; they correspond to semantic contour
information. Since edge contours are perceptually the most important features in an image, knowledge of the
underlying states is interesting in its own right.

Given an image, the Markov-1 quadtree structure of the GHMT allows us to find the joint maximum-likelihood
hidden state sequence {g;} using the Viterbi algorithm [14]. The result is a set of (d,f) estimates at every

§We could make the distribution in (4) proper by putting a prior on the heights of the edges in the image.



Figure 7. Contour sketches at two different scales of the “cameraman” image shown in Figure 5. The sketches were
created directly from the (d, 0) values of the geometrical states estimated by the Viterbi algorithm.

node tied together by the geometry model. The collection of estimate states {g;x}r at a scale j can be used to
“sketch” the contour structure in an image; the finer the scale, the more details are included.

An example of geometrical feature extraction using GHMT state estimation is shown in Figure 7. The
contour sketches are re-created from the (d, ) values inferred by the Viterbi algorithm. The estimated hidden
state values are equivalent to a vector graphics representation of the contour sketch, and can be used to form an
extremely low bitrate semantic approximation to the image.

5. CONCLUSIONS

Despite their success, traditional wavelet-based models have significant shortcomings in their treatment of edge
structure in images. In this paper, we have introduced a modeling framework that accounts for geometrically
smooth edge structure. The geometrical HMT models spatial clusters of complex wavelet coefficients according
to an underlying hidden state specifying a linear approximation of the local contour structure. By imposing
dependencies on these hidden states, we are able incorporate a characterization of geometrical structure into the
model. Finally, a feature extraction algorithm, based on a joint estimation of the hidden states, was proposed
that creates simple line sketch approximations to an image.
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