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We show that elastic waves can be excited at a fracture inside a transparent sample by focusing laser

light directly onto this fracture. The associated displacement field, measured by a laser interferometer, has

pronounced waves that are diffracted at the fracture tips. We confirm that these are tip diffractions from

direct excitation of the fracture by comparing them with tip diffractions from scattered elastic waves

excited on the exterior of the sample. Being able to investigate fractures—in this case in an optically

transparent material—via direct excitation opens the door to more detailed studies of fracture properties in

general.
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Introduction.—Being able to remotely sense the proper-
ties of fractures with elastic waves is of great importance in
seismology [e.g., [1]] and nondestructive testing [e.g., [2].
For example, in geothermal and hydrocarbon reservoirs, it
is very common to use hydraulic fracturing methods to
attempt to increase the native permeability of the rocks
above what is present in any naturally occurring fractures.
The microseismic events associated with the fracturing
process typically radiate seismic energy, which is recorded
in nearby wells or at the surface. Much is left to be under-
stood about the nature of such fractures and their relation-
ship to elastic waves, but the scaling issues involved make
numerical modeling a challenge. On the other hand, labo-
ratory studies of fractures or faults are used to investigate
their mechanical properties, such as stiffness [3], fracture
slip rate, stress drop, or rupture propagation [4]. Typically,
fractures under laboratory investigation are either on the
surface of samples, or the result of new or growing frac-
tures from an applied stress to induce fracture stick-slip
creep [5,6]. Recently, Blum et al. [7] used noncontacting
techniques to probe a fracture inside a clear sample to
recover the fracture compliance. A high-powered laser
excites the surface of the sample creating ultrasonic waves.
These waves scatter from the fracture and are recorded at
the surface of the sample with a laser interferometer [8].
Here, instead of only exciting the ultrasonic waves at the
sample surface, we focus a pulsed infrared (IR) laser beam
at the fracture location, turning it into an ultrasonic source.
This technique makes it possible to measure the fracture
response as a function of source energy, stress on the
sample, or the laser beam size and location. By scanning
the fracture with a focused IR laser beam it may be possible
to measure spatial variations in the fracture properties and

delineate barriers and asperities [9], concepts that are of
great importance in earthquake dynamics, for example. A
localized excitation, along the fracture, could also be used
to excite interface waves traveling along the fracture
[10,11] to probe for properties such as fault gouge or the
fluids filling the fracture. Here, we illustrate the use of
direct excitation of a fracture to investigate the elastic
effective size of the fracture by means of tip diffractions.
To date, these are most commonly studied on surface
cracks [12].
Experiment.—We create a single disk-shaped fracture by

focusing a high-power Q-switched Nd:YAG laser in a
cylinder made of extruded Poly(methyl methacrylate)
(PMMA), with a diameter of 50.8 mm and a height of
150 mm. The laser generates a short pulse (! 20 ns) of IR
light that is absorbed by the sample material at the focal
point and converted into heat. The sudden thermal expan-
sion generates sufficient stress to form a fracture inside the
plastic material [13,14]. Anisotropy in the elastic moduli,
caused by the extrusion process, results in a fracture with
an orientation parallel to the cylindrical axis. The fracture
studied here is approximately circular with a diameter of
!7 mm (Fig. 1).
Elastic waves are excited at the surface of the sample by

using the same high-power Q-switched Nd:YAG laser,
operated at a much lower power, and with a partially
focused beam. When an energy pulse from the laser hits
an optically absorbing surface, part of that energy is ab-
sorbed and converted into heat. The resulting localized
heating causes thermal expansion, which in turn results
in elastic waves in the ultrasonic range [8].
Typically, the laser is focused on the outside of the

sample—but as we explore in this Letter—the laser can
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also be focused inside the sample. In this case, the planar
fracture has a visible contrast with the rest of the sample,
seen as a darker region in Fig. 1. The Nd:YAG pulsed laser
generates energy at a wavelength of 1064 nm, in the near
IR. Therefore, we assume that the optical contrast due to
the fracture is also present at the IR wavelength, leading to
energy absorption and thermoelastic expansion at the frac-
ture location.

We measure elastic displacement with a laser interfer-
ometer, based on a doubled Nd:YAG laser, generating a
constant wave 250 mW beam at a wavelength of 532 nm.
The light is split between a beam reflecting off the sample
and one following a reference track inside the sensor. Two-
wave mixing of the reflected and reference beams in a
photorefractive crystal delivers a point measurement of
the out-of-plane displacement field at the sample surface.
The output is calibrated to give the absolute displacement
in nanometers [7]. The frequency response is flat between
20 kHz and 20 MHz, and accurately detects displacements
of the order of parts of angstroms. Since the PMMA
sample is transparent for green light, we apply a reflective
tape to the surface to reflect light back to the laser receiver.

The location of the noncontacting ultrasonic source and
receiver are fixed in the laboratory frame of reference, but
the PMMA sample is mounted on a rotational stage. The
source-receiver angle ! (defined in Fig. 2) is therefore
constant, here ! ¼ 20#, and only the orientation of the
fracture with respect to the frame of reference, character-
ized by the angle ", changes. Moreover, the source and
receiver are focused on the sample in an (x, y) plane normal
to the cylinder axis (z axis, Fig. 2). While anisotropic, as
mentioned above, the extruded PMMA is transversely iso-
tropic, and its elastic properties are therefore invariant with
respect to the defined angles of interest.

By computer-controlled rotation of the stage, we mea-
sure the elastic field in the (x, y) plane for values of " in

increments of 1#. The signal is digitized with 16-bit pre-
cision and a sampling rate of 100 MS=s (mega samples per
second) and recorded on a computer acquisition board. For
each receiver location, 256 waveforms are acquired and
averaged after digitization.
Figure 3 shows the ultrasonic displacement field for the

source S1 at the fracture for all recorded azimuths, after
applying a 1–5 MHz band-pass filter. As defined in Fig. 2,
the horizontal axis represents the angle " between the
normal to the fracture and the source direction.
Electromagnetic interferences are generated by the high-
power source laser when the light pulse is emitted, and
leads to noise being recorded for short arrival times
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FIG. 2 (color online). Top view of the experimental setup for
direct fracture excitation. The laser source beam (red) excites
elastic waves (blue) at S1.

FIG. 1. Photograph of the laboratory sample and zoom around
the disk-shaped fracture, with ruler units in cm. The sample is
cut in half longitudinally to display the fracture without optical
deformation by the curvature of the sample. The diameter of the
fracture is !7 mm, and the diameter of the cylinder is 50.8 mm.
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FIG. 3 (color online). Displacement field generated by excita-
tion of the fracture. fP is the P wave generated at S1 and
traveling directly to the receiver. PfP is the P wave generated
at S2 and scattered by the fracture before reaching the receiver.
fPP is the P wave generated at S1, traveling away from the
receiver before bouncing back to the sample surface. Finally, PP
is the P wave generated at S2, traveling across the sample and
bouncing back to the receiver.
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(0–3 #s, highlighted in Fig. 2). The arrival at approxi-
mately 10 #s denoted fP corresponds to the wave field
excited at the fracture. The fPP wave is excited at the
fracture and reflects off the backside of the sample.

Next, we apply reflective tape where the source laser
beam hits the sample surface at S2, increasing the IR light
absorption at the surface and lowering the amount of
energy reaching the fracture (Fig. 4). We repeat with this
configuration the acquisition procedure used in the first
experiment (Fig. 5). The PfP wave is generated at the
surface of the sample, and then scattered by the fracture,
while PP is scattered from the backside of the sample. PfP
and PP phases are stronger than fP and fPP in Fig. 3,
confirming that more of the thermoelastic expansion takes
place at the surface of the cylinder.

Fracture tip travel times.—The waves fP and PfP in
Figs. 3 and 5 show a distinct lenticular pattern. For source
angles " ¼ $10# and 170#, the PfP phase is a specular
reflection, and the amplitude is a maximum. For intermedi-
ate angles, the scattered amplitude decreases [14]. Note
splitting of the wave at intermediate angles into wavelets
arriving before and after the specular reflection (see Fig. 6).
These waves have the travel time and phase of waves
diffracted by the crack tips. In particular, for " ¼ 70#,
the receiver is in the plane of the fracture, and therefore
the travel time difference between the tips of the fracture
the closest and the farthest to the receiver is largest (Fig. 4).
Equation 39 in [14] shows that the P to P scattered

amplitude for a planar fracture in a linear-slip model under
the Born approximation can be written in the frequency
domain as a product of a scaling factor, a factor depending
on the mechanical properties of the fracture and the propa-
gation medium, and a form factor that depends on the
fracture shape and the wave number change from the
fracture scattering. Only this last factor carries time infor-
mation. We show in the Appendix that the corresponding
travel times are

ttip-sc ¼
R

$

!
2% a

R
½sin"ð1þ cos!Þ þ sin! cos"*

"
; (1)

where a is the radius of the fracture and R the radius of the
cylinder. The P wave velocity is $ ¼ 2600 m=s [14].
Figure 6 shows the PfP arrival overlain by the computed
travel times from Eq. (1) with a fracture radius aPfP ¼
3:3 mm.
For the arrival time of the fP wave that is excited at the

fracture, we consider the geometry of rays originating from
the fracture tips and traveling directly to the receiver. The
ray paths are shown in Fig. 2. Using this geometry the
travel time can be expressed as

ttip-direct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 % 2aR sinð"Þ þ R2

p

$
: (2)

Because of the fact that the size of the fracture is small
compared to the radius of the sample, this travel time is to
leading order in a=R given by
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FIG. 4 (color online). Top view of the experimental setup for
elastic-wave excitation at the sample surface. The laser source
beam (red) excites elastic waves (blue) at S2.
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FIG. 5 (color online). Displacement field generated by excita-
tion at the sample interface. Signal for t < 3 #s corresponds to
noise generated by the laser source, and to the direct P wave
traveling directly from the source S1 to the receiver. Other
arrivals are defined in Fig. 3.
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FIG. 6 (color online). Detailed view of the scattered (PfP)
arrival. The solid (orange) curves represent the tip arrival times
computed from Eq. (1).
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ttip-direct ¼
R

$

!
1% a

R
sinð"Þ

"
: (3)

Figure 7 shows the fracture-source displacement field over-
lain with the tip arrival time (in purple) computed from
Eq. (3). Just as in Fig. 6, the theoretical time for a radius
afP ¼ 3:3 mm agrees well with the arrival time of the fP

wave, and the observed size in Fig. 1. The good agreement
with the visually estimated radius confirms that the whole
visually fractured area is mechanically discontinuous and
capable of being excited by elastic waves.
Conclusions.—Laser-based ultrasonic techniques can

not only excite and detect elastic waves at the surface,
but can also be used to directly excite heterogeneities (such
as fractures) inside an optically transparent sample. This
result opens up possibilities for diagnosing the mechanical
properties of fractures by directly exciting them. Here, we
estimate the effective elastic size of the excited fracture.
By scanning the fracture with a focused IR laser beam, it
may be possible to measure spatial variations in the
fracture properties and delineate barriers and asperities.
These concepts are of great importance in earthquake
dynamics, although hard to investigate in the field or
numerically.
Appendix: Tip-diffraction times from form factor.—

Equation 39 in [14] shows that the P to P scattered ampli-
tude for a planar fracture in a linear-slip model under the
Born approximation is

fP;Pðn̂; m̂Þ ¼ !2

4%&$4 AF½k$ðn̂$ m̂Þ*f'2(N þ 2'#(N½ðn̂ + f̂Þ2 þ ðm̂ + f̂Þ2* þ 4#2ð(N $ (TÞðn̂ + f̂Þ2ðm̂ + f̂Þ2

þ 4#2(Tðn̂ + m̂Þðn̂ + f̂Þðm̂ + f̂Þg; (4)

where! is the angular frequency, $ the P-wave velocity, &
the density of the material, ' and # the Lamé parameters,
A the surface area of the fracture, and (N and (T the
normal and tangential compliances, respectively, for
the linear-slip model. The unit vectors n̂ and m̂ denote
the directions of incoming and outgoing waves, respec-
tively, and f̂ is the unit vector normal to the fracture
(see Fig. 4).

The prefactor ð!2=4%&$4ÞA does not carry time infor-
mation. The factor in curly brackets contains the angular
dependence of the scattering amplitude, and depends only
on the mechanical properties of the fracture (N and (T of
the sample material, and on the directions of the incoming
and outgoing waves relative to the fracture orientation. The
form factor F½k$ðn̂$ m̂Þ* depends on the fracture size and
shape, and contains travel time information. For the case of
a circular fracture, the form factor can be expressed as
[Eq. (33) in [14]]:

F½k$ðn̂$ m̂Þ* ¼ 2

kka
J1ðkkaÞ; (5)

where a is the radius of the fracture, kk the projection of the
wave number change during the scattering onto the fracture
plane, and J1 the first order Bessel function. According to
Eq. (20.53) of [15], the asymptotic development of the
Bessel function is

JmðxÞ ¼
ffiffiffiffiffiffiffi
2

%x

s
cos

!
x$ ð2mþ 1Þ%

4

"
þOðx$3=2Þ: (6)

For the geometry described in Fig. 4, the wave number
change can be expressed as

kk ¼
!

$
½sin"ð1þ cos!Þ þ sin! cos"*: (7)

Inserting Eqs. (6) and (7) into expression (5), and expand-
ing the cosine in exponentials gives

FðkÞ / ðei%=4ei!T þ e$i%=4e$i!TÞ; (8)

where T ¼ ða=$Þ½sin"ð1þ cos!Þ þ sin! cos"*. T and$T
quantify the delay time of the tip-diffraction arrivals rela-
tive to the arrival time t ¼ 2R=$ for a ray reflecting at the
center of the fracture. Therefore, the total tip-diffraction
travel times for the scattered arrival are given by Eq. (1).
Note that this expression predicts a phase shift expð%i%=4Þ
for these waves that is characteristic of edge diffracted
waves [16].
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