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MODELING TELESEISMIC P-WAVE PROPAGATION IN THE 
UPPER MANTLE USING A PARABOLIC APPROXIMATION 

BY M. G. BOSTOCK, J. C. VANDECAR, AND R. K. SNIEDER 

ABSTRACT 

Teleseismic waves propagating in the upper mantle are subject to consider- 
able distortion due to the effects of laterally heterogeneous structure. The 
magnitude and scale of velocity contrasts representative of features such as 
subducted slabs may be such that wave diffraction becomes an important 
process. In this case forward modeling methods based on high-frequency 
asymptotic approximations to the wave equation will not accurately describe 
the wavefield. A method is introduced to model the propagation of teleseismic 
P waves in a laterally heterogeneous upper mantle that accounts for distortion 
of the initial portion of the wavefield including the effects of multipathing and 
frequency-dependent diffraction. The method is based on a parabolic approxi- 
mation to the wave equation that is solved in the time domain on a finite-dif- 
ference grid which mimics the expected pattern of energy flow in a reference 
velocity field. Numerical examples for a simple two-dimensional subducting 
slab model demonstrate the application of the method and illustrate the effects 
of multipathing and diffraction which dominate waveform distortion at high and 
low frequencies, respectively. 

INTRODUCTION 

The principal objective of this study is to introduce a method for modeling 
waveforms in structural ly complex areas of the Earth 's  upper mantle. On a 
global scale we find tha t  the most pronounced lateral contrasts in the Ear th  
occur in this region, and in particular at  subduction zones where variations 
in temperature of up to 1000 K are possible over scales of less than  100 km. 
The associated contrasts in seismic velocity must  occur over similar distances 
and are estimated to represent a 3% to 10% deviation from radially stratified 
Ear th  models (Silver et al., 1988; Lay, 1991). Velocity variations of this mag- 
nitude may have significant effects on the propagation of seismic waves, on 
travel times (e.g., VanDecar and Crosson, 1990; Spakman, 1991), amplitudes 
(Thomson and Gubbins, 1982; VanDecar et al., 1990), and more generally 
on the character of observed waveforms (Davies and Julian, 1972; Sleep, 1973; 
Silver and Chan, 1986; Gubbins and Snieder, 1991). For teleseismic waves this 
magnitude of velocity contrast and the scales over which variations can occur 
imply tha t  techniques based on asymptotic ray theory may not adequately 
describe relevant aspects of the observed wave field. More specifically, frequency- 
dependent effects or diffractions become important  and the degree to which 
any asymptotic method (e.g., Gaussian beams, Maslov theory) can account for 
this class of wave interaction is not clear (see Cormier, 1989). As a conse- 
quence, accurate modeling of waveforms through subduction zone environments 
has been limited to a large extent to finite difference calculations for some two- 
dimensional (2D) models (Vidale, 1987; Vidale and Garcia-Gonzalez, 1988). 

Full waveforms have the potential to provide a wealth of information concern- 
ing the structure of the subducted lithosphere in the upper mantle and should 
be exploited to shed light on the dynamic processes which are operative at these 
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depths. Difficulties in the analysis of full waveforms arise, however, due to the 
complexity of the mult ipathing and diffraction processes which occur in an 
environment as complex as a subduction zone. More specifically we must  
contend with scattered energy tha t  may potentially arrive from any one of a 
mult i tude of possible directions and may have changed identity several times 
along the way through the processes of mode conversion. Indeed, the problem of 
full 3D modeling of elastic waveforms over reasonable propagation distances is, 
at the present time, computationally intractable. It seems reasonable therefore 
to set our sights on a more immediately attainable goal: an accurate description 
of the first few cycles of P-wave energy. From physical considerations, we know 
tha t  the energy in this initial portion of the seismogram will, in most cases, 
have traversed a reasonably well defined region between source and receiver, or 
specifically a region with frequency-dependent volume but centered i n  some 
loose sense about the geometrical ray. In addition, with the exception of 
interactions in the very near vicinity of the source and the receiver, we can 
avoid the analysis of scattered S-wave contributions to the P-wave field since 
they will arrive considerably later in the seismogram. 

In the following sections we outline a method to s imulate  teleseismic P waves 
in the upper mantle  based on a parabolic approximation to the wave equation 
which allows us to model diffraction effects tha t  are not adequately described by 
ray-theoretical techniques, and which is much less computationally intensive 
than  a full finite-difference t rea tment  of the elastic case. We then proceed to 
apply the method in a simple 2D model of a subduction zone to demonstrate its 
application and il lustrate the effects of diffraction on P-waveforms at  different 
frequencies. The application and extension of the method to the problem of 
modeling teleseismic P waves in a realistic, 3D model of a subduction zone is 
the subject of a paper in preparation. 

A SCALAR WAVE EQUATION FOR THE INITIAL P WAVE ARRIVALS 

We begin with the equation of elastic wave motion in generally anisotropic, 
heterogeneous media in the absence of sources 

o~2Ui 
p ~ -  = ( c i j k l u k , l ) , j ,  (1) 

where u i is the displacement, Cijkl is the elastic modulus tensor and p is 
density. We will confine our at tention to the study of isotropic, heterogeneous 
media and so, by employing the constitutive relation 

Cijkl = ~t~ij~kl + ].£( ~ik~ji + ~il~jk), (2) 

we write (1) as 

c92ui 
P $ t  2 - -  = ( A + 2 ~ ) u j ,  ij + ~ u i , j j  + A, iuj, j + ~ , j (Ui ,  j + uj, k) (3) 

where A and tt are the Lam~ parameters.  This expression can be writ ten in a 
more convenient form by adopting vector notation and exploiting various vector 
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identities to yield 

c~ 2 VA 
~t 2 u  = a2V(V -u)  - / 3 e v  × V × u + - - V . u  

P 

+ - - × ( V x u ) + 2  .V u. 
P 

(4) 

We note tha t  in homogeneous media the last three terms vanish and we can 
associate the remaining equation with the motion of P and S waves propagat- 
ing independently with velocities a and fi, respectively, where 

A + 2/~ )1/2 
= (5)  

P 

and 

= (6)  

The independence of P and S waves in homogeneous media can be demon- 
strated by al ternately taking the divergence and curl of equation (4) (while 
ignoring the last three terms) and employing the definition of the dilatation 0 
and the rotation vector S where 

0 = V - u ,  (7)  

s = v × u .  (8)  

In heterogeneous media, however, we must  apply the divergence and curl to all 
terms in (4) and in so doing we retrieve two equations which are coupled in 0 
and S. By considering only first-order terms in the gradients of material  
properties, that  is ignoring second derivatives and products of first derivatives, 
an approximation to this system can be conveniently wri t ten as 

1 
a2 0t e V20 + (2g~ + gp) • V 0 -  (2gz + gp) • V x S (9) 

and 

1 02S 
v ~ s  - g~  × ( v  × s )  + [ (g~  + g ~ ) .  v ] s  

f i2 3 t  2 

I ] + 2 g ¢ +  2 -  gp ×VO. ( lO) 

Here we have adopted the notation of Landers and Claerbout (1972) (note also a 
similar formulation by Ben-Menahem and Beydoun (1985)) and employed the 
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following abbreviated variables: 

g ~  = ( V a 2 ) / a  2 (lla) 

g ~  = ( V f i 2 ) / f l  2 (llb) 
g .  = Vp/p. (11c) 

Let us now examine equation (9) in more detail. It  represents a scalar wave 
equation for the dilatation 0 but it differs from the corresponding equation for a 
homogeneous medium by the presence of the last two terms. The first of these 
terms involves gradients in the square of the P-wave velocity and density, and 
accounts to first order for P to P scattering processes• The second term contains 
the rotation vector S and describes first-order scattering contributions to the 
P-wave field arising from mode conversion of S waves due to gradients in 
rigidity and density. Note here tha t  by first order we mean the effects of 
first-order gradients in material  properties, not the single scattering contribu- 
tion from a region of heterogeneity. These equations remain valid while the 
gradients in material  properties are "smooth" as defined by Ben-Menahem and 
Beydoun (1985). These authors employed this terminology to distinguish such 
gradients from the "weak" variations in material  properties which are required 
in order tha t  ray theory be valid and tha t  P and S waves can be viewed as 
propagating independently. Now consider the physical nature  of the these 
contributions in the time domain. We can write the first-order S-wave contribu- 
tion to the P-wave field 0 s using representation theorems (see e.g., Aki and 
Richards, 1980) as 

0s(X,t ) = f d t ' f  [ a ( x  ) ]  [2g~(x')  + gp(x')] 

• V × S (0 ,x ' ,  t ' )G(x ,  tlx', t ' ) ,  (12) 

where G(x, tlx', t') is the Green's function for the scalar wave equation 

1 c9 2G(x, tlx', t ') 
= V2G(x ,  t l x ' , t  ') + 6(x - x ' ) 6 ( t  - t ' ) .  

ol(x) 2 3t 2 
(13) 

In this form it is apparent  tha t  contributions to the P-wave field resulting from 
scattering of the direct S wave arrive at times greater than  fx~ d s f l - l +  
fx x, dsv~ -1, where x' and x are the coordinates of the scattering region and the 
observer relative to an origin x o coinciding with the earthquake source, and s is 
the distance along the raypath  connecting the appropriate points as shown in 
Figure 1. If  we ignore S-P scattering in the near source regime, Ix' - x 0] << 
~x-  x'], then the first cycles of P-wave energy at  x are not affected by this 
scattering. In a similar fashion we will choose to ignore scattering processes in 
the near  receiver vicinity, Ix' - x o] >> Ix - x'l, which would allow for S-wave 
contamination to the initial energy via scattering of the direct P wave: The 
dependence of the S-wave field on 0 is shown explicitly in (12) to indicate the 
coupling of equations (9) and (10), and tha t  there is, of course, a continual 
exchange of energy between P and S waves propagating in a generally hetero- 
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FIG. 1. W i t h  t h e  except ion  of convers ions  o r ig ina t ing  n e a r  t h e  source  x 0, e n e r g y  sca t t e r ed  into P 
f rom the  di rect  S wave  a t  some  po in t  x '  shou ld  a r r ive  a t  cons ide rab ly  l a t e r  t i m e s  t h a n  t h e  direct  P 
wave  a t  a po in t  of  obse rva t ion  x. 

geneous medium. This means tha t  there are S-wave contributions to the 
P-wave train in the initial energy but they are of second order and involve 
conversion from P to S and back to P. Implicit in this feedback process is the 
energy which is lost from P due to conversion to S. If  we constrain our material  
property perturbations (11) to be of order e then it is not difficult to show tha t  
S-wave contributions arising through P to S to P conversion must  be of order 
e 2 and hence can be ignored over the first few cycles of P-wave energy. In this 
sense our formulation is essentially a single scattering approximation as we are 
ignoring the energy loss in the initial P wave which accrues from conversion to 
S. 

Thus we will restrict our attention to the first few cycles of P-wave energy 
and neglect the last term in (9) which results in a simple scalar equation 
describing the initial P-wave motion in media with smooth gradients in mate- 
rial properties, or specifically 

1 ~20 

OL 2 3 t  2 
- - - -  = V 2 0 + ( 2 g ~ + g p ) - V 0 .  (14) 

One further point to note is the way in which scattering from smooth gradients 
in material  properties enters into the final term of (14). In addition to the ray 
geometrical amplitude growth/decay  tha t  a waveform experiences due to veloc- 
ity and density gradients in the direction of propagation, this term describes 
frequency-dependent scattering phenomena which result from interactions in 
directions transverse to propagation. In the event tha t  material  variations are 
smooth, forward scattering or "transmission" will dominate over back scattering 
or "reflection" (see e.g., Aki a n d  Richards, 1980). This has important  implica- 
tions for the manner  in which we choose to solve (14). 

Despite its simplicity relative to the coupled system in (9) and (10), a full 
finite-difference t rea tment  of equation (14) in a laterally heterogeneous upper 
mantle environment is not computationally attractive, nor is it necessarily 
warranted as we are interested only in the first few cycles of arriving energy 
and we are assuming tha t  gradients in material  properties, while important,  are 
smooth so tha t  only forward scattering is significant. In the following sections 
we will fur ther  simplify equation (14) by adopting a time domain parabolic 
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approximation which allows us to formulate the problem in terms of a one-way 
wave equation which is efficient and relatively simple to solve numerically. 

PARABOLIC APPROXIMATIONS TO WAVE EQUATIONS 

In deriving a parabolic approximation or "one-way" wave equation we are 
forced to make some a priori assumptions regarding the nature  of the wave 
field we wish to model. In particular it is necessary to adopt a coordinate system 
in which one of the coordinate axes roughly coincides with the dominant  
direction of propagation. In this section we illustrate the essential ideas in- 
volved in the derivation of a time domain parabolic approximation by examining 
the behavior of solutions to the wave equation in (14) for a simple 2D Cartesian 
geometry, where the wave equation becomes 

1 + 6 ( x , y )  320 320 320 
- -  - - -  + - -  + ( 2 g ~  + g v ) "  VO.  ( 1 5 )  

2 c~t 2 C~X 2 c)y2 
~0 

Here we consider a medium tha t  is characterized by smooth perturbations 
6(x, y) on a homogeneous reference model with constant slowness ao -1 In 
addition we consider a solution which behaves roughly as a plane wave and 
propagates primarily along a single preferred direction, e.g., x. In frequency 
domain derivations of parabolic approximations (e.g., Claerbout, 1970), the 
solution to this equation is usually writ ten as O(x, y, (o)= O(x, y, w) 
e x p ( i w x / ~  o) where O(x, y, w) is a slowly varying, modulating function which 
has been separated from a more rapidly varying phase term. This representa- 
tion is useful when the medium is smooth and backscattering is negligible. In a 
homogeneous medium (6 = 0), O(x, y, w) would of course remain constant in 
space and time and represent simply the amplitude of an undistorted plane 
wave. To derive a time domain expression for the solution we integrate over all 
frequencies so tha t  

O ( x , y , t )  = f d w O ( x , y ,  o J ) e x p [ - i w ( t - X / a o )  ] = O ( x , y , t - X / a o ) .  (16) 
- - c o  

It is obvious here tha t  if we define the retarded temporal coordinate T such tha t  

r = t - x / a  o 

then O(x, y, t) is the inverse Fourier t ransform of the slowly varying modulation 
O(x, y, w) in T, or O(x, y, ~). There are several reasons, however, why it is 
advantageous to t reat  the problem directly in the time domain ra ther  than  
perform the calculation over a full frequency band followed by Fourier transfor- 
mation. Most importantly,  as noted by Claerbout and Johnson (1971), it may be 
difficult to obtain a sufficiently accurate solution to (16) when subtle features 
characterize the waveforms under  consideration, even with high accuracy over a 
large frequency band. Low amplitude signal may be obscured by periodicity and 
parasitic interference patterns caused by higher amplitude energy at  other 
times. Time domain solutions also offer certain advantages from a computa- 
tional point of view; for example, efficient algorithms may be devised for array 
processors since there is no need to perform complex arithmetic. 

We therefore proceed to solve (15) in the time domain, applying the transfor- 
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mation to retarded time coordinate ~ directly. Using the chain rule this leads to 
an equation for O as 

320 2 020 6 ( x , y )  ~20 

3X 2 % OT OX %2 0T2 

(0o 1oo) 
+ ( 2 g ~ + g o ) x  Ox % OT 

020 ~O] 
+ ~ + (2g .  + gp)y--~-y = 0. (17) 

Note tha t  to this point equation (17) remains equivalent to (15), we have simply 
chosen to represent the solution in a retarded temporal reference frame which 
reflects the dominant  anticipated phase variation. We now perform a scale 
analysis to assess the significance of the first five terms. Equation (14) was 
derived under  the assumption tha t  variations in material  properties are smooth 
and vary on a scale length L such tha t  L >> A where A is the dominant  
wavelength of the P wave. We note once more tha t  this is consistent with the 
notion tha t  forward scattering dominates over backscattering. Under these 
conditions 0 is also slowly varying, and in particular, we expect tha t  it will vary 
on the same scale length L as the material  properties. We observe then tha t  

020 1 2 320 1 6 ( x ,  y )  320 1 

- - ~  L 2, ~ - - ,  2 ( X - -  0x2 %0 OT cgX A L  % OT 2 A 2 ' 

00  1 1 00  1 
- -  cx - -  (2g~ + g P ) ~ o -  ~ - - "  (2g .  + gp)~ 0x 5 2 ' 0~- AL 

We derive a one way wave equation by dropping terms proportional to 1 / L  2 so 
tha t  we have 

2 020 6(x,  y)  020 1 00  

a 0 O"rOx a02 0T 2 (2g~ + gP)x % 0T 

320 0'y30] 
+ - + (2g~ + gp)y-W- = O. (18) Oy 2 

We are now left with only a first-order derivative in the direction of propagation 
which allows us to formulate a forward-propagator, finite-difference scheme 
tha t  is easier to solve numerically than  a finite-difference t rea tment  of the full 
hyperbolic wave equation in (15). We note tha t  equation (18) may be posed in an 
al ternate form by integration with respect to reduced time from negative 
infinity to a current r. This removes the temporal derivative in the first term of 
(18) and is more convenient from the point of view of numerical implementation 
as will be discussed in a later section. 

This form of parabolic equation is known as the 15 ° approximation (see 
Claerbout, 1976, 1985) since the effective dispersion relation is a reasonable 
approximation to tha t  for the full hyperbolic equation over an angular range of 
15 ° from the principal direction of propagation. An attractive feature of the 
parabolic equation is tha t  the physical significance of each of the remaining 
terms in (18) is now readily apparent. The 020/0T 2 term is an advective term 
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and accounts for delays or advances in the wavefront, the 0 0 / / ~  term describes 
the change in amplitude of the wave as it depends on the local material  
properties, and the ~O//0y and 020//~y2 terms are diffraction terms which 
account for healing of the wavefront. 

Note tha t  the Gaussian beam method (Cerveny and Psencik, 1983), which 
relies on a similar parabolic approximation to the wave equation, is an asymp- 
totic approximation in frequency and as such is local with all physical quantities 
calculated along a specific ray. In contrast we will undertake to solve an 
equation developed in the following sections and similar to (18), on a finite- 
difference grid, at necessarily greater expense, but which permits a more global 
t rea tment  of propagation. That  is, widely separated elements are Mlowed to 
interact  with each other through the implementation of the diffraction operator. 
The accuracy and general performance of the parabolic approximation, in 
particular the form which we have chosen to implement in this study, is 
examined in a second paper where synthetic seismograms for several simple- 
models are compared with those computed using full finite differences and 
Maslov theory. 

In his "phase front" approach Haines (1983, 1984a, b) extended the plane 
wave parabolic t rea tment  to more general classes of heterogeneous media by 
adopting a curvilinear coordinate system which mimics the general flow of 
energy through a given medium. It is this class of approach which we will adopt 
in the following analysis. 

A PARABOLIC APPROXIMATION FOR P WAVES IN THE UPPER MANTLE 

The upper mantle of the Ear th  is characterized by a variation in material  
properties, and seismic velocities in particular, tha t  is primarily a function of 
depth. In order tha t  we may implement a parabolic wave equation for P waves 
propagating in the upper mantle  it is necessary tha t  we identify a coordinate 
system which reflects this dominant  variation. Since we are concerned with the 
transmission effects on the first arrivals we will disregard the effects of velocity 
discontinuities and concentrate on P-wave velocity models tha t  incorporate the 
more smoothly varying character of typical upper mantle  velocity profiles. A 
useful reference in this case is the Herrin model shown in Figure 2 along with 
models PREM and IASPEI for the top 1000 km of the Earth.  The implementa- 
tion of a parabolic approximation to the wave equation in (14) is not critically 
dependent upon the exact form of the coordinate system adopted as long as one 
coordinate corresponds reasonably closely with the principal direction of propa- 
gation of the anticipated wave field. Bearing this in mind, we note tha t  over 
most of the top 800 km or so the velocity profiles in Figure 2 can be reasonably 
well represented in terms of a function tha t  is linear in depth. This suggests 
tha t  we consider the use of a ray coordinate system for a medium with constant 
gradient in velocity OLLRM(Z) a s  a function of depth 

a ( z )  = a o + m z .  (19) 

As is well known, ray paths and wave fronts for a point source in this class of 
media are described by circular arcs and spherical surfaces, and hence may be 
defined analytically. In addition, a ray coordinate system defined for this class 
of media is regular everywhere except at  the actual location of the defining 
point source. Although it is not strictly necessary, let us proceed with the 
development on the basis tha t  our reference coordinate system is constructed for 
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UPPER MANTLE VELOCITY MODELS 
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FIG. 2. Various upper mantle P-velocity models (stippled lines) and a constant gradient P- 
velocity model (solid line) over the top 1000 km of the Earth 's  crust and mantle. 

a medium which exhibits a constant velocity gradient  with depth as shown in 
Figure 2. For brevity we shall refer to this "linear reference medium" as LRM. 

The most natura l  choice of reference frame associated with the LRM we have 
just  described is one based on ray coordinates and which incorporates the 
variables T, ~, and gP; where T is the travel time, ~ is the initial angle of a ray  
measured relative to the z-axis, and q) is the angle made by the ray  in the 
horizontal plane with respect to some predesignated axis. Note that  these three 
variables constitute an orthogonal curvilinear coordinate system. In the follow- 
ing sections and the numerical  examples we will discard the (P dependence and 
t rea t  the 2D problem to illustrate implementation of the method. The general- 
ization of the method to 3D is straightforward and comprehensive 3D modeling 
will be the subject of future study. 

Now let us consider the form taken by the wave equation in (14) when 
referred to this 2D orthogonal curvilinear coordinate system. First note' that  the 
terms involving gradient  and Laplacian operators in this system are given by 

( 1  303T 1 3 O )  
V O =  nT h T - -  + n~--hc-~  , (20) 

and 

V20 = hTh---~ ~ h T 3 T  + - ~  ~ h T 3~ " (21) 

Here n T and n~ are unit  vectors pointing in the directions of increasing T and 
~, and h T and h~ are scale factors associated with the respective coordinates. 
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d x = aLRM (7.) dT n T 

ao 

FIG. 3. Schematic diagram defining quantities employed in the derivation of scale factors (a) h T 
and (b) h~ for a curvilinear ray coordinate system corresponding to a medium with constant velocity 
gradient. 

We can derive analytic expressions for these scale factors by considering the 
nature  of a differential element in (T, ~ ) space as shown in Figure 3a. The scale 
factor h T can be determined by recognizing that,  with the passage of an 
incremental period of time d T ,  the wavefront in the LRM moves a distance d x  
where 

d x  = aLRM( Z ) d T n T ,  (22) 

and d x  is in the direction of the normal to the wavefront n T. Hence the scale 
factor for our curvilinear coordinate T is jus t  the local reference velocity, 
aLRM(Z) = aLRM(T, ~), 

h T = aLRM(T ,  ~ ) .  (23) 

To determine the scale factor h~ corresponding to our transverse coordinate 
we refer to Figure 3b and note tha t  an incremental change in ~ can be related to 
a corresponding change in depth dz  by the relation 

- 1  dz 
h~ s in(~)  d~" (24) 
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dz 
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X 

bo 
FIG. 3. Continued. 

To m a i n t a i n  simplici ty we will a s sume  t h a t  the origin of our  reference f rame is 
located at  the  origin of a Car tes i an  coordinate sys tem (i.e., z = 0) in which case 
we can wri te  ~, the  local angle to the  vert ical  of a r ay  wi th  ini t ial  angle ~ at  
some t ime T, as 

= 2 a t a n [ e x p ( m T ) t a n ( ~ / / 2 )  ]. (25) 

Likewise the  depth  z at  a given t ime T in this  case is 

_ _  OLLRM [ s i n ( ~ )  1). (26) 
z m [ s~n(~)  

With  expressions for h T and  h~ now in hand ,  we m a y  look more closely a t  
deriving a parabolic approximat ion  to our  original equat ion (14) which we can 
rewri te  af ter  mul t ip ly ing  by hT 2 as 
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320 ( 1 OX 
+ hTfr X aT 

020 
= [1 + 6] at 2 . 

) ao 2 aZo ( ax ) ao ] 
- -  v i  + x + x hTr<- -g 

(27) 

For simplicity of the resulting expressions we have chosen to write the velocity 
a(x ,  z) in the actual medium in terms of a perturbation parameter  6(x, z) 
where a = h T / ( 1  + 6) 1/2. In addition, we have employed the abbreviated vari- 
ables 

fT = (2g~ + gp) "nT, (28) 

f; = (2g~ + gp) . n ; ,  (29) 

hT 
X ( T ,  ~)  - h¢" (30) 

We now follow the same line of argument  as tha t  made in the previous section. 
In particular we assume negligible backscattering (L >> A) and adopt a re- 
tarded time coordinate r = t - T, which allows us to monitor the slowly varying 
character of our waveform O as it propagates through a heterogeneous region. 
From the chain rule our differential operators become 

0 0 0 
- -  - * - - - - - .  ( 3 1 )  T ~ T ' ,  a T  aT '  aT 

and 

0 0 
t -~ ~-, - -  -* - - .  (32) 

Ot O'r 

Dropping the primes on the variable T' and employing these relations, our wave 
equation may be writ ten as 

[ 2o ( 
a T  ~ - 2 - -  + h T f  T O'c O T X - ~  a T  a'r 

~02o ( 0x)0o] 0~o 
+x 7 u + X  hTf +-  =8--.o, 2 (33) 

Henceforth we follow the same arguments  employed in the previous section 
with respect to scale analysis and discard factors proportional to 1 / L  2. This 
yields the following parabolic equation 

020 ( 1 a X ) a O _ X z a 2 0  X h r f ~  ° 0  020 1 
2--~--~ + h T f  T X O T Or 0--~- - 0-~ + 6--~Tz = 0. (34) 

Here we have also dropped a c)X/O~ term which in 2D for a constant gradient 
reference medium is zero. 
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NUMERICAL SOLUTION 

The principal motivation in adopting a parabolic approximation for P-wave 
propagation is the numerical advantage held over a finite-difference solution of 
the full hyperbolic wave equation. There are two main reasons for this advan- 
tage. First, note that  there is only a first derivative dependence in the direction 
of propagation, hence the solution of equation (34) admits only forward propa- 
gating waves and, consequently, we may adopt a relatively coarse grid dis- 
cretization in this direction. Second, we follow the evolution of the waveform in 
a reduced time frame 7, and therefore we require a temporal grid which is only 
as long as the anticipated maximum delay between first- and last-arriving 
signals tha t  are of interest. Thus the duration of our temporal grid may be only 
a small fraction of the total time required for the waveform to propagate 
through a region of heterogeneity. 

Similar advantages exist in the frequency domain and considerable effort has 
been devoted to solving one-way wave equations in exploration seismology 
where vast  quantit ies of data are frequently involved (see e.g., Claerbout, 1976, 
1985). As indicated in previous sections we are interested in a time domain 
implementation and may choose to solve (34) in one of several ways. One 
possibility is to employ an efficient and stable algorithm originally proposed by 
Claerbout and Johnson (1971). In tha t  study, the authors were concerned only 
with the diffraction of a distorted plane wave propagating in a homogeneous 
medium. Consequently, they did not need to incorporate terms corresponding to 
our advective (6) terms in equations (18) and (34). To apply their algorithm 
directly would require that  we either center the second time difference (corre- 
sponding to the 0 2 0 / 0 7 2  term) over a grid point which differs from the center 
point of the diffraction difference operator, or split the total equation into two 
separate parts, a diffraction par t  and a "thin lens" or advective part, and solve 
these in al ternate steps. We have chosen a third approach where all differences 
are centered over the same point and which avoids splitting. This involves 
integrating (34) over reduced time 7 from negative infinity to our point of 
interest  7'. 

) 020  r~' [ 020  1 0X 0 0  X2 - -  j_ d7[2~+ h T f  T X ~ 0----~" - O~ 2 

[oo(1o,,) 
= 2 - - ~  + h m f  T • ~ - X  ~J_d70 

oo] 

oO o 2 0 ]  
xh r; 0---{ + ] 

(35) 

We note that  the 3 0 / 0 ~  and 0 2 0 / 0 ~  2 operators commute with the f ~  dT 
operator and that  none of the geometrical factors involving X or the mate- 
rial property gradients depend on 7. Thus we have transformed (34) into a 
integro-differential equation which may be solved using a combination of finite- 
differencing and numerical  quadrature.  To do this we employ a discretized 
dilatation O~k where T = n AT ,  7 = j A 7 ,  and ( =  k A~. Our initial condition 
involves a waveform of finite duration prescribed as a function of reduced time 7 
and introduced to our upper mantle model at some boundary level in our LRM 
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coordinate frame, T = T 0. Since we have purposely chosen our reference medium 
LRM to exhibit velocities which are everywhere slightly greater  than those in 
the actual medium of propagation, we know that  the value of ojnk on our 
temporal grid will always be zero in advance of some prescribed value of 
( j  = 1 in our finite-difference scheme). This formulation allows us to derive a 
stable, implicit finite-difference scheme for the u n k n o w n  Of+11, k in terms of 
known Oj~ 1, ojn+l,k, and O~k centered over the point (n + 1, j + 1)2 • The 
derivatives in T and T at this point are differenced as 

o n +  1 __ o n +  1 O n __ n c)O j+ l,k j,k + j+ l,k O~,k 

3T 2AT 
o n + l  __ o n  o n + l  O n  3 0  j+ l,k j+ l,k + j,k -- j,k 

3~" 2AT 

(36) 

(37) 

We can approximate the integral over reduced time to the point (n, j )  using the 
trapezoidal rule operator S where 

f = - 0 n j,k _ ~ i ,  k + , ( 3 8 )  

We approximate O as 

~ ) n + l  o n + l  O n O n 
0 ~ j+l ,k  + j,k + j+l ,k  + j,k 

4 ' (39) 

so that  the value of the integral to the point (n + ½, j + ½) is approximately 

S [ O  n+l S [ O  n+l O n S ( O ? k  j + l , k )  + ~ j,k ) + S ( d + l , k )  + ) 

4 

o n + l  o n + l  O n n s[on+l)~ j,k -~- S(O~,k)  j+l ,k  q- j,k q- j+l ,k  q- Oj, k 
= + ( 4 0 )  

2 8 

Finally we represent  our derivative operators in the t ransverse direction 
through the finite-difference operators A k and I1 k where 

OLk+l- 2ojn, k + O?k_ 1 
Ak(Ojn ~) = ( A ( )  2 , (41) 

O ? k + l  --  O ? k  1 
IIk(Ojn' k) = 2A~ (42) 

The complete finite-difference representat ion of (35) is then wri t ten as 

[1 + Ak n+ 1/2 _]_ Bkn+l/2 _ Ckn+l/2 _ Dkn+l/2]O;+ll, k 

= [ - 1  - A k  n+ 1/2 + Bkn+ 1/2 _]_ Ckn+ 1/2 _}_ Dkn+ 1/2] ojn,~ 1 

+ [1 -- n k  n+1/2 _ Bkn+l/2 + Ckn+l/2 .+_ Dkn+l/2]O;+l,k  

+[1  - - n k n + l / 2  + Bkn+l/2 + Ckn+l/2 + Dkn+l/2]O?k 

+ nick  n+1/2 + Dkn+l/2][S(Of, k) + 8 ( O ~ 1 ) ] ,  (43) 
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where we have employed the discretized quantities 

Akn+l/2= AT(4 fT x10X)hn+l/2'OT 

AT 
Skn+l/2 _ (~)kn+l/2 

2AT 

ATA~ 
Ck n+1/2 __ ( X 2 ) k  n+1/2 n k ,  

8 

ATA~ 
Dk~÷l/2 _ (Xf~)k~+l/2IIk. 

16 

(44) 

(45) 

(46) 

(47) 

The issue of boundary conditions must  also be considered. We might choose 
to implement some form of absorbing boundary condition (see Clayton and 
Engquist, 1980) expressed in curvilinear coordinates. However it is simpler to 
recognize that,  in our application, artificial reflections from grid boundaries will 
arrive at times which are significantly later than  the portion of the seismogram 
we are interested in. Hence it is most economical to employ simple two-point 
Dirichlet or Neumann boundary conditions. 

Thus if we consider O~ k as a vector in k, then we can view equation (43) as a 
matrix equation where O n÷l j+l,k represent our unknowns, with all remaining 
quantities on the right hand side known and calculable. Fur ther  note tha t  the 
matrix system on the left hand side of (43) is tridiagonal and so we can exploit 
the Crank-Nicholson scheme for its solution. The solution proceeds by solving 
(43) first for all j = 0, J on our temporal grid at a given value of n, and then 
repeating this process for all further values of n. 

To summarize, our strategy will be to consider a given incident waveform at 
some initial boundary T O on our LRM grid. We then forward propagate this 
waveform using (43) to some desired level in our upper mantle model, generally 
the Earth 's  surface. Although our method requires tha t  the magnitude and 
wavelength of the heterogeneity is such tha t  backward scattering is small, we 
have incorporated terms which describe diffraction effects such as wavefront 
healing. For this reason we expect to gain a better understanding of frequency- 
dependent effects on teleseismic P waves propagating through a subduction 
zone than  is possible, for example, by using high-frequency asymptotic methods. 
In the following section we examine the effect of a model slab on synthetic long- 
and short-period P waveforms. 

NUMERICAL EXAMPLES 

In this section we examine P-wave propagation in an upper mantle model of a 
subduction zone using the parabolic approximation developed in earlier sec- 
tions. Our interest  is motivated, in part, by work currently in progress to 
monitor teleseismic P-wave distortion caused by the Cascadia slab as recorded 
on the Washington regional seismograph network. In a companion paper we 
compare observations with synthetic seismograms for models of Cascadia de- 
rived from travel time inversion studies and which serve as realistic representa- 
tions of the expected structure in this complicated region. For the present study, 
however, our main concern will be to demonstrate the application of the method, 
and identify some of the important  physical interactions tha t  take place be- 
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tween  the  wave  field and  the  subduc ted  slab a t  h igh  and  low frequencies .  To 
th is  end,  we will confine our  a t t en t i on  to a s imple 2D slab model  where  the  
he t e rogene i ty  exists  as a p e r t u r b a t i o n  on a re fe rence  m e d i u m  wi th  velocity 
profile which is l inear ly  dependen t  on depth.  

To model  th is  s i tua t ion  we will consider  an  incoming te lese ismic  wave  intro-  
duced at  some ini t ia l  level  in our  m a n t l e  model  and  examine  its express ion  at  
the  surface  a f te r  p ropaga t ion  t h r o u g h  the  slab s t ruc ture .  The  re fe rence  m e d i u m  
is cha rac te r i zed  by  the  veloci ty profile 

a ( x ,  z )  = 0 .00412z  + 7.9 (48) 

which provides  a r ea sonab le  r e p r e s e n t a t i o n  of an  average  veloci ty profile in 
m a n y  uppe r  m a n t l e  models  (see F igu re  2). Note  he re  t h a t  uni t s  of d is tance  and  
velocity are  km and  krn/sec, respect ively.  For  our  ini t ia l  wave field we select  
the  r ay  theore t ica l  solut ion for a surface  point  source and  a m e d i u m  wi th  
velocity profile as in (48). This  is r ead i ly  ca lcula ted  ana ly t ica l ly  by  solving the  
t r a n s p o r t  equa t ion  associa ted wi th  the  scalar  wave  equa t ion  in (14). The  slab is 
modeled  as a 2D t a b u l a r  body compris ing  a + 5% Gauss i an  p e r t u r b a t i o n  on top 
of the  re fe rence  m e d i u m  wi th  a wid th  a t  1 / e  of m a x i m u m  va lue  of 70 k m  and  
ex tend ing  to 400 k m  dep th  as shown in F igure  4. The  axial  p lane  of the  slab is 
o r ien ted  at  a dip of 55 ° and  in te rsec t s  the  surface  at  a d is tance  of app rox ima te ly  
6400 k m  f rom the  source. The  finite difference grid on which we solve (34) is 
def ined by  b o u n d a r y  rays  in the  re fe rence  m e d i u m  which  leave the  source at  
angles,  ~, of app rox ima te ly  29.5 and  32.5 ° and  which  r each  the  surface  at  
d is tances  be tween  6000 and  7000 km. A por t ion  of the  grid is shown schemat i -  
cally in F igure  5 and  i l lus t ra tes  the  class of wave field-slab conf igura t ion  which 

F~ 

SYNTHETIC SLAB MODEL 

;3 
7.9 10.3 
Velocity (km/s) 

6000 6200 6400 6600 

Distance (km) 
FIG. 4. Synthetic slab model for the numerical examples described in Sections 7 and 8. The slab is 

represented by a 2D tabular body extending between 50 and 400 km depth. The velocity profile 
across the axial plane of the slab is a 5% Gaussian positive velocity perturbation with a half width 
of 40 km. 
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RAY COORDINATE GRID 

v 

7.9 10.3 
Velocity (km/s) 

6000 6200 6400 6600 

Distance (km) 
FIG. 5. Schematic representation of the finite-difference grid employed to solve the parabolic 

equation (35) for the slab model described in Section 7. The grid is superimposed on a grayscale map 
of the velocity field. 

we wish to investigate. In particular, we examine the case where the wave field 
propagates roughly parallel t o  the axial plane of the slab. For strictly 2D 
geometries we expect the most severe waveform distortions to result  from this 
configuration. 

The incident waveform employed in the next section for high-frequency study 
is a simple Gaussian pulse defined by 

w(z ,  ~ ) = A( ~ )exp[ - 12(z - 0.625) 2] (49) 

where A( ~ ) is the geometric amplitude along the wavefront, T is measured in 
seconds. Although not particularly realistic, Gaussian waveforms are attractive 
(see Vidale, 1987; Cormier, 1989) in their  simplicity and symmetry,  and permit 
a straightforward analysis of pulse distortion. The spectrum of the pulse in (49) 
is relatively flat between 0 and 1.0 Hz and has dropped well below 20 dB after 
2.0 Hz. We use a similar pulse scaled in time to describe lower frequency 
propagation. 

HIGH FREQUENCY PROPAGATION 

Figure 6 shows a series of synthetic seismograms as recorded at the surface 
and plotted as functions of range and reduced time, for waves containing 
significant energy out to 1.0 Hz. Note tha t  higher frequencies here will have 
propagated distances through the anomalous region to the surface in excess of 
60 wavelengths. Several features are immediately apparent, in particular the 
negative travel time anomaly associated with tha t  portion of the wave field tha t  
has propagated up the high-velocity slab. For the model parameters we have 
chosen to adopt this anomaly ranges up to approximately 3 sec and is most 
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SLAB SEISMOGRAMS- 1.0 Hz 
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Reduced Time (s) 
FIG. 6. Short-period synthetic seismograms recorded at the surface over the slab model (see 

Figure 4). At higher frequencies multipathing of ray geometric arrivals is the principal factor 
affecting waveform distortion. 

pronounced at 6400 km where the axial plane of the slab intersects the surface. 
The effect of the slab is also witnessed in the amplitudes of the waveforms: since 
the slab represents a region of increased velocity it behaves as an anti-wave 
guide (see Gubbins and Snieder, 1991) which continuously refracts energy out of 
its borders. Thus there is a systematic loss of energy from tha t  portion of the 
wave field which propagates up the core of the slab as i l lustrated in Figure 6. 
The most severely affected waves exhibit amplitudes which are approximately 
one sixth those in the undistorted wave field recorded at  the surface. 

Perhaps the most interesting effect is observed on seismograms which record 
waves tha t  have traveled to either side of the slab axis and interacted with the 
more pronounced transverse velocity gradients. In these regions we note a 
complicated distortion in the waveform which results, in geometrical optics 
terms, from a triplication and the consequent interference of three separate 
phases. A smaller selection of traces is shown in Figure 7 to indicate more 
clearly the nature  of these phases. Above the slab in the range 6240 to 6310 km 
and below the slab between 6471 to 6566 km we can identify the interference of 
the direct wave and a second Hilbert t ransformed phase which has touched the 
caustic surface. The expression of this interference is sensitive to position and 
varies rapidly over relatively short distances. At certain positions the interfer- 
ence results in amplitudes tha t  are approximately twice those in the undis- 
turbed wave field. The observation and interpretat ion of this phenomenon in 



774 M. G. BOSTOCK, J. C. VANDECAR, AND R. K. SNIEDER 

_% 

© 
o~-~ 

© 
a ,  

r~ 

© 
N o~-~ 

© 

6566 
6539 
6525 
6512 
6498 
6485 
6471 
6403 
6336 
6323 
6310 
6296 
6283 
6270 
6256 
6243 
6196 

SELECTED TRACES- 1.0 Hz 

m 

m 

m 

m 

I I 

m 

m 

m 

n 

m 

m 

I I I I I I I I I 

0 1 2 3 4 5 6 7 8 

Reduced  Time (s) 
FIG. 7. Selected short-period synthetics at various locations across the slab. Note the interference 

between the direct arrival and the Hilbert t ransformed pulse which has touched the caustic surface. 

actual data  would require a high density of recording stations. The pat tern of 
waveform distortion about the axial plane of the slab is, of course, asymmetric 
owing to the geometry of the problem. In part icular this asymmetry  can be seen 
to arise from several different and competing factors: i) the velocity gradient 
above the slab is greater  than that  below; ii) the wave field below the slab 
propagates a greater  distance through the anomalous region before reaching the 
surface than that  above; and iii) the initial conditions require that  our start ing 
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S L A B  S E I S M O G R A M S  - 0.1 H z  

r~ 

r~ 

© 
N °~-~ 

O 

7300 
7200 
7100 
7000 
6900 
6800 
6700 
6600 
6500 
6400 
6300 
6200 
6100 
6000 
5900 
5800 

- -  I I I I 

I I I I 

0 10 20 30 

Reduced Time (s) 
FIG. 8. Long-period synthet ic  seismograms recorded at  the surface over the  slab model. At lower 

frequencies diffraction of the  waveform becomes an  impor tan t  factor in determining the  character  of 
waveform distortion. 

wave field vary slightly in amplitude along the wavefront as indicated in (49). 
These factors result  in slightly greater peak amplitudes above the slab than  
below and a difference in the moveout of the secondary phases on either side of 
the slab. 

Finally, we note tha t  the lower frequencies in the waveform experience 
noticeable diffraction. This is apparent  in Figure 7 for seismograms at 6323, 
6336, and 6403 km wherein it is apparent  tha t  a very low-amplitude, low- 
frequency component of energy follows the first arrival. This results from a 
"leakage" of energy into the slab from the external medium. The nature  of the 
distortion in the lower frequencies is examined in the following section. 

LoW-FREQUENCY PROPAGATION 

We now investigate the effect of the same model slab on a wave field which 
contains significant energy over a narrower frequency band. The shape of the 
incident pulse is the same as tha t  in the previous example, however it has been 
stretched in time by a factor of 10 so tha t  most of its energy is confined to the 
band 0 to 0.1 Hz. Although the appearance of the section in Figure 6 differs 
quite markedly from tha t  in Figure 8, there are several broad similarities (note 
tha t  the time axis has changed). First, the same general negative travel time 
anomaly exists over tha t  portion of the wave field which has propagated up the 
high-velocity slab. Second, the amplitudes of corresponding waveforms are 
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reduced relative to those in the unaffected portion of the wave field. Here the 
similarities end; the wave field at  longer periods is far more severely affected by 
the frequency-dependent effect of the diffraction operator in equation (34). Since 
it is expressed through the second derivative transverse to the general direction 
of propagation, this operator has a smearing or averaging effect and tends to 
heal the sharper, more pronounced features in the wave field. Thus we find tha t  
severe waveform distortion observed in the previous example via mult ipathing 
is no longer present. For example the variation in amplitude is more subdued, 
ranging between 75 to 110% of the value expected for the unperturbed, laterally 
homogeneous reference medium. In addition, ra ther  than  observing the evolu- 
tion of distinct phases, we find tha t  the waveforms see the effect of the slab in 
terms of a broadening, or an increase in low-frequency content (see Figure 9). 
This is most pronounced for waveforms traveling up the axial plane of the slab 
since the early component of the waveform has propagated through the high- 
velocity slab material  and later energy arrives via leakage of the energy into the 
slab from the slower, external wave. 

DISCUSSION AND CONCLUSIONS 

We have presented a method for computing time domain synthetic seismo- 
grams for P waves propagating in a laterally heterogeneous upper mantle. The 
method describes distortion over the initial few cycles of the P waveform and 
requires tha t  material  contrasts be smooth on the scale of a wavelength such 
tha t  backscattered energy is negligible. In this case we can derive a parabolic 
approximation to the wave equation in which the principal processes affecting 
the pulse during propagation are explicitly identified. These include advection 
(i.e., time delay or advance of the pulse), growth or decay of the waveform 
amplitude, and diffraction which smoothes the wave field and is strongly 
dependent on frequency. 

In order to implement the parabolic approximation we must  identify a priori  
a coordinate system which mimics the general flow of energy. A reasonably 
accurate representation of a reference velocity structure in the upper mantle is 
afforded by a profile which is linear in depth. This motivates our solution of the 
parabolic equation on a curvilinear coordinate grid where the orthogonal coordi- 
nates are simply the rays and wavefronts for a point source in a reference 
medium with constant velocity gradient. The result  is an efficient forward 
propagator scheme which involves integrating the parabolic equation using 
finite differences forward in space from some initial level, through a region of 
heterogeneity, to the Earth 's  surface. 

Application of the method to a simple 2D slab model demonstrates the 
contrasting effects of the slab anomaly on high- and low-frequency waves. At 
short periods we observe the effects predicted from ray theory, notably advanced 
travel times and reduced amplitudes for waves traveling up the axial plane of 
the slab, and the complex interference of mult ipathed arrivals away from the 
axial plane. Long-period waves exhibit the same qualitative travel time and 
amplitude characteristics; however, the character of waveform distortion differs 
quite markedly. Wave diffraction plays an important  role in this case and 
results in a wave field which exhibits more gradual variations. In particular we 
find tha t  waveforms which have propagated through the slab anomaly are 
characterized primarily by broadening, or equivalently an increase in low- 
frequency content. 
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FIG. 9. Selected long-period synthetics at various locations across the model slab. Wave diffrac- 

tion causes a "leakage" of energy into the high velocity slab corridor and results in a broadening of 
the waveform. 

Research is currently under  way into applying the parabolic approximation in 
the form derived here to more accurate realizations of P-wave propagation in a 
laterally heterogeneous upper  mantle. This includes the incorporation of more 
realistic velocity models, notably the Cascadia slab model of VanDecar (1991) 
constructed through the inversion of teleseismic travel time data. This will in 
turn allow for a comparison of synthetic waveforms with actual field data. The 
inclusion of velocity discontinuities is also contemplated and requires tha t  these 
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be identified explicitly in the finite difference scheme. In addition we are 
investigating the extension of the method to 3D heterogeneity. The theory for 
3D follows trivially from the derivation presented here for 2D situations; the 
complication arises in the development of a numerical implementation which is 
both accurate and computationally efficient. As in related applications 
(Claerbout, 1973, 1985), it is no longer practical to difference the parabolic 
equation in an implicit manner and therefore explicit treatments must  be 
adopted which do not suffer too severely from the effects of numerical disper- 
sion. 
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