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S U M M A R Y
Microseismic events generate compressive waves and shear waves, which can be recorded at
receivers. We present a theory that shows how elastic P and S waves separately backpropagate
to the original source location. These refocused P and S wavefields are free of singularities. We
also demonstrate a technique that enhances the ability to image the spatial focus for each wave
type using elastic waves. The improved spatial focus obtained is achieved in a velocity model
for which the interface boundaries are approximate but where the mean slowness is correct.
Deconvolution designs a signal to be rebroadcasted from the receivers, using only the waves
recorded at each receiver, such that the wavefield has an optimal temporal focus at the source
location. We demonstrate theoretically and numerically that improved temporal focusing of
elastic waves leads to improved spatial focusing for each wave type. This proposed technique
only involves a simple pre-processing step to the recorded data and its cost is hence negligible
compared to the total cost of microseismic imaging.

Key words: Image processing; Fourier analysis; Earthquake source observations; Computa-
tional seismology; Fractures and faults.

I N T RO D U C T I O N

Due to hydraulic fracturing becoming a common practice for uncon-
ventional gas and oil fields, there has been an increased interest into
the study of microseismic events. Clusters of microseismic events
delineate faults and the formation of fractures, and can indicate
new or reactivating regions of failure. These microseismic events
can be generated naturally or as a result of hydraulic stimulation
(Duncan 2005; Kendall et al. 2011). Therefore, the petroleum in-
dustry desires to develop more accurate ways of locating, and moni-
toring microseismic events to potentially improve their relationship
to production and completion data (Foulger & Julian 2012).

A common processing method to locate microseismic events or
earthquakes is based on picking arrival times of the acoustic and
shear waves. This process, however, is difficult to do accurately when
significant noise is present in the data (Bose et al. 2009; Bancroft
et al. 2010; Kummerow 2010; Song et al. 2010; Hayles et al. 2011).
An alternative approach, which requires less user interaction and
allows for more accuracy, is using time reversal to image the focus
of the microseismic events or earthquakes at the source location
(Larmat et al. 2006, 2010; Lu 2008; Steiner et al. 2008; Lu & Willis
2008; Artman et al. 2010). In this imaging approach, one uses time
reversal to focus the recorded signal at the source location in both
time and space. The advantage of time reversal is that it does not
require picking of arrival times which is important when dealing
with noisy data.

If one would time reverse the waves at every point in space, the
wavefield will focus onto the original source location. If, however,

the wavefield is sampled at only a limited number of locations,
then it is not obvious that time reversal is the optimal way to focus
energy on the original source. Much research has been carried out
on focusing sparsely sampled wavefields (Parvulescu 1961; Fink
1997; Roux & Fink 2000; Tanter et al. 2000, 2001; Aubry et al.
2001; Bertaix et al. 2004; Jonsson et al. 2004; Montaldo et al.
2004; Vignon et al. 2006; Larmat et al. 2010; Gallot et al. 2011).
In this paper, we explore a simple extension to time reversal, based
on deconvolution, as previously derived by Anderson et al. (2014).
We have shown earlier that deconvolution improves the locating of
microseismic events in an acoustic medium (Douma et al. 2013). We
now demonstrate deconvolution’s ability to improve the imaging of
a microseismic event in an elastic medium. This method is a robust,
though simplified, version of the inverse filter (Tanter et al. 2000,
2001; Gallot et al. 2011). It calculates a signal to be rebroadcast
from the receiver such that the output at the focal location becomes
an approximate delta function δ(t) and uses only the recorded signals
at each receiver.

As with all imaging methods, reverse time imaging is unable to
locate the microseismic event to a point location when the velocity
model used for the backpropagation differs from the true velocity
model, or when the aperture is limited; it causes the spatial image to
defocus. In the numerical example used for this paper, the aperture
used is not perfect, thus, the wavefield is not known at every point
in both time and space. Additionally, we complicate our model
by adding noise and backpropagating our wavefields not through
the correct velocity model but through a smoothed version of the
velocity model.
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In this paper, we first derive a relationship between the temporal
focus and the incoming wave for an elastic medium. The theory is
used to show that improved temporal focusing leads to improved
spatial focusing for each wave type due to different sources (ex-
plosive, point force and double couple). We then show a numerical
example in which a horizontal point force excites elastic waves.

T H E O RY

In this section, we show that improved temporal focusing leads
to improved spatial focusing for both P and S waves. Just as in
the theory for the excitation of elastic waves (Aki & Richards
2002), we treat the medium as locally homogeneous near the fo-
cus. The complexity of the wavefield due to heterogeneity is cap-
tured in the wave that is incident on the focus. We thus consider
a locally homogeneous elastic medium where either P, SV or SH
waves are incident on a focal point. According to expression (8.13)
of Aki & Richards (2002), the elastic wavefield can locally be
expressed as

u(r, θ, ϕ) =
∑
lm

(
Ul (r ) Rm

l (θ, ϕ) + Vl (r ) Sm
l (θ, ϕ)

+ Wl (r ) Tm
l (θ, ϕ)

)
. (1)

The vector spherical harmonics in eq. (1) are given by

Rm
l (θ, ϕ) = Ylm(θ, ϕ)r̂ (P waves), (2)

Sm
l (θ, ϕ) = 1√

l(l + 1)

(
∂Ylm(θ, ϕ)

∂θ
θ̂ + 1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
ϕ̂

)

(SV waves), (3)

Tm
l (θ, ϕ) = 1√

l(l + 1)

(
1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
θ̂ − ∂Ylm(θ, ϕ)

∂θ
ϕ̂

)

(SH waves), (4)

where Ylm(θ , ϕ) denote the spherical harmonics. The radial functions
Ul(r), Vl(r) and Wl(r) are spherical Bessel functions or spherical
Hankel functions which satisfy eq. (8.6) of Aki & Richards (2002).
We stress that the vector spherical harmonics of expressions (2)–(4)
do not denote the normal modes of a finite system, instead they are
representations of the wavefield in a locally homogeneous medium.

We consider the case of an incoming wave that, at a large distance
from the focal point r = 0, is given by fl(t + r/c)/r. We study the
properties of this incoming wave at the focus for every angular
degree l separately. For a perfect aperture, the angular degree l
describes an explosive source when l = 0, a point force when l = 1
and a double-couple source when l = 2. Since there is no source at
the location r = 0, the solution is finite and is therefore given by
spherical Hankel functions jl:

Ul (r ) ∝ jl (kr ) where k = ω/α, (5)

with α representing the P-wave velocity, and

Vl (r ) and Wl (r ) ∝ jl (kr ) with k = ω/β, (6)

where β is the S-wave velocity. Thus, the radial variation of the
wavefield is proportional to jl(kr), with k the wavenumber of
the wave type under consideration. In the following, we study
wavefields with radial dependence jl(kr) and denote the wavenum-
ber as

k = ω/c, (7)

where c is the appropriate wave velocity (α or β depending on
the wave type). It is understood that the total wavefield follows by
multiplying with the appropriate vector spherical harmonic as given
in expressions (2)–(4). The radial dependence of the wavefield in
the frequency domain, therefore, is given by

Ul (r, ω) = Al (ω) jl (kr ), (8)

where Al(ω) is a Fourier coefficient.
Using the Fourier convention f(t) = ∫

F(ω)e−iωtdω, the wavefield
in the time domain is given by

ul (r, t) =
∫

Al (ω) jl (kr )e−iωt dω. (9)

The waves impinging on the focus are determined by the incoming
waves. For large radius r, the incoming waves can be written as

uinc
l (r, t) = fl (t + r/c)

r
as r → ∞. (10)

We show in the Appendix that the total wavefield is given for all
values of r by,

ul (r, t) = (−i)l 2

c

∫
(−iω)Fl (ω) jl (kr )e−iωt dω, (11)

where Fl(ω) is the Fourier transform of fl(t).
Because our derivation involves repeated differentiations and

integrations, we employ the following notation:

f (n)
l (t) ≡ dn fl (t)

dtn
. (12)

For negative values of n, this notation implies integrating fl(t) n
times. In the frequency domain, the notation (12) translates into

F (n)
l (ω) ≡ (−iω)n Fl (ω). (13)

Next, we relate the total wavefield ul(r, t) to the spherical Bessel
function of order 0 which makes it possible to evaluate the Fourier
integral in eq. (11) analytically. This derivation, found in the
Appendix, gives:

ul (r, t) = clr l

(
1

r

d

dr

)l
(

f (−l)
l (t + r/c) − f (−l)

l (t − r/c)

r

)
.

(14)

This expression shows an explicit relationship between the
total wavefield ul(r, t) for all values of r, and the incident wave,
fl(t + r/c)/r at a distance. Note that using the notation of eqs (12)
and (13), the incoming wave is integrated l times in the factor
f (−l)
l (t ± r/c), and that the differential operator (1/r)(d/dr) acts l

times as well. The term f (−l)
l (t + r/c) is the wave that converges

on the focal point, while f (−l)
l (t − r/c) gives the outgoing wave

that radiates from the focus after the incoming waves have passed
through that point. The incident wave fl(t + r/c) and the outgoing
wave fl(t − r/c) have opposite sign because the focus is a caustic in
two angular directions, hence the Maslow index increases by two,
which corresponds to a sign change (Chapman 2004). Note that
a point source is, by definition, located at a caustic of the excited
or backpropagated wavefield. The theory presented takes this fully
into account.

We now demonstrate how we can use the expression for the
wavefield near the focal point to demonstrate that improved temporal
focusing leads to improved spatial focusing. The spatial focus Rl(r)
is defined as the wavefield at time t = 0. It follows from expression
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(14) that the spatial focus is given by:

Rl (r ) ≡ ul (r, t = 0) = clr l

(
1

r

d

dr

)l
(

f (−l)
l (r/c) − f (−l)

l (−r/c)

r

)
.

(15)

This expression gives the spatial focus in terms of the incoming
wave.

One might be tempted to define the temporal focus as ul(r = 0,
t). This field, according to expression (9), is proportional to jl(kr)
in the frequency domain. The zeroth-order Bessel function j0(kr) is
non-zero for r = 0, but jl(kr = 0) = 0 for l ≥ 1 (Arfken & Weber
2001). This means that for l ≥ 1, the wavefield vanishes at the focal
point. Physically, this is due to the fact that for l ≥ 1, the focal point
(r = 0) is located at the intersection of nodal lines. Since Ul(r = 0, t)
vanishes at r = 0 for l ≥ 1, this quantity is not a useful diagnostic
of the temporal focus. To remedy this, we define the temporal focus
instead as

Tl (t) ≡ dl

dr l
ul (r = 0, t). (16)

As shown in the Appendix, the l-th derivative of jl(kr) is finite and
non-zero for r = 0. We derive in the Appendix the following relation
between the temporal focus and the incoming waves:

Tl (t) = 2bl

cl+1
f (l+1)
l (t), (17)

where bl is given by

bl = 2l (l!)2

(2l + 1)!
. (18)

Specifically,

b0 = 1, b1 = 1/3, b2 = 2/15.

According to eq. (17), the temporal focus thus is proportional to the
(l + 1)-th time derivative of the incoming wave. Of these (l + 1)
derivatives, given by eq. (17), l are due to the derivatives in definition
(16). One time derivative is due to the fact that (14) contains the
combination (fl(t + r/c) − fl(t − r/c))/r. Using a Taylor expansion
and taking the limit r → 0, gives

lim
r→0

fl (t + r/c) − fl (t − r/c)

r
= lim

r→0

2(r/c) f
′

l (t)

r
= 2

c
f

′
l (t).

This explains an additional time derivative in expression (17).

S PAT I A L A N D T E M P O R A L F O C U S F O R
E A C H A N G U L A R C O M P O N E N T

The spatial and temporal focus defined by expressions (15) and (17)
both relate to the incoming waves and can be combined to explicitly
relate the spatial and temporal focus:

Rl (r ) = c2l+1

2bl
r l

(
1

r

d

dr

)l
(

T (−2l−1)
l (r/c) − T (−2l−1)

l (−r/c)

r

)
.

(19)

Eq. (19) is the main result of the theory. Although the relation (19)
between the spatial and temporal focus is complicated, it does show
that good temporal focusing implies good spatial focusing. Good
temporal focusing implies that Tl(t) is strongly peaked near t = 0,
that is, that Tl(t) only differs appreciably from zero for a small

range of time values −tf < t < tf, where tf is the half width of
the temporal focus. Expression (19) implies that the spatial focus
differs appreciably from zero for values of r that satisfy 0 ≤ r < ctf

(radius is always positive). A good temporal focus (small tf) thus
implies a good spatial focus.

The spatial and temporal focus, and their relationship defined by
eqs (15), (17) and (19) all depend on the order l. In this section,
we show the explicit forms of these expressions for the case l = 0,
l = 1 and l = 2. These cases are relevant for an explosive source
(l = 0), point force (l = 1) and double-couple source (l = 2) if the
aperture would be perfect. For l = 0, eqs (15), (17) and (19) become,
respectively,

R0(r ) =
(

f0(r/c) − f0(−r/c)

r

)
, (20)

T0(t) = 2

c
f (1)
0 (t) and (21)

R0(r ) = c

2

(
T (−1)

0 (r/c) − T (−1)
0 (−r/c)

r

)
. (22)

Eqs (20)–(22) are the same as shown in the previous derivation of
Anderson et al. (2014), which dealt with an explosive source in an
acoustic medium where the temporal focus is the time derivative of
the incoming wave.

We now continue the derivation for R(r) due to a point force
(l = 1) and double-couple (l = 2). For l = 1, eqs (15), (17) and (19)
become, respectively,

R1(r ) = 1

r
( f1(r/c) + f1(−r/c))

− c

r 2

(
f (−1)
1 (r/c) − f (−1)

1 (−r/c)
)

, (23)

T1(t) = 3

2c2
f (2)
1 (t) and (24)

R1(r ) = 2c2

3

1

r

(
T (−2)

1 (r/c) + T (−2)
1 (−r/c)

)

− 2c3

3

1

r 2

(
T (−3)

1 (r/c) − T (−3)
1 (−r/c)

)
. (25)

It may appear that eq. (23) is singular at r = 0. Even though each
of the two terms in this expression diverge as r → 0, the singular-
ities cancel. This can be verified by writing f1(r/c) = a0 + O(r).
Integrating this once gives f (−1)

1 (r/c) = a0(r/c) + O(r 2). Inserting
this into eq. (23) gives

R1(r ) = 1

r
(2a0 + O(r )) − c

r 2

(
2a0(r/c) + O(r 2)

)
. (26)

The terms proportional to a0, which caused each of the individual
terms in expression (23) to be singular, cancel out. The remainder
of eq. (26) is finite as r → 0.

For l = 2, eqs (15), (17) and (19) become, respectively,

R2(r ) = 1

r
( f2(r/c) − f2(−r/c)) − 3c

r 2

(
f (−1)
2 (r/c) + f (−1)

2 (−r/c)
)

+ 3c2

r 3

(
f (−2)
2 (r/c) − f (−2)

2 (−r/c)
)

, (27)

T2(t) = 4

15c3
f (3)
2 (t) and (28)
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R2(r ) = 15c3

4

1

r

(
T (−3)

2 (r/c) − T (−3)
2 (−r/c)

)

− 45c4

4

1

r 2

(
T (−4)

l (r/c) + T (−4)
l (−r/c)

)

+ 45c5

4

1

r 3

(
T (−5)

l (r/c) − T (−5)
l (−r/c)

)
. (29)

The wavefields computed are finite at the focal point r = 0 when
one refocuses either P or S waves. In contrast, when P and S waves
are excited by a point force, the P-wave component and the S-wave
component behave as 1/r3 as r → 0, hence the P wave and S wave
separately have a non-integrable singularity at r = 0, while their
sum has an 1/r singularity Wu (1985), which is integrable. The
refocused wavefields do not display this behaviour because these
fields are source-free at r = 0, and therefore the wavefield is finite.
Therefore, the P and S waves can be refocused separately without
causing singularities, and the treatment given here is applicable to
P, SV and SH waves separately.

The expressions above must be multiplied with the appropriate
vector spherical harmonic (2)–(4) to obtain the full focused wave-
field. For each wave type, a different spherical harmonic must be
multiplied to characterize the wavefield. Additionally, in eqs (2)–(4),
the vector spherical harmonics are summed over the angular order
l and degree m which captures the imprint of the source properties

on each wave type. Therefore, each wave has its own dependence
on the angles and on space and time.

If one were to use one component of the motion, such as the
x-component, the source properties for the different wave types
are superposed on each other. Since for a fixed source mechanism
the radiation pattern of P and S waves are different, the focused
wavefields do not provide clear information about the source mech-
anism. In order to avoid mixing of P- and S-radiated waves, one must
decompose the wavefield using the divergence and curl in order to
investigate the focus of each wave type (P and S) separately.

If one does not have a perfect aperture, a blurred focus will occur,
and the focus cannot be characterized by one angular degree l but
by the superposition of different angular degrees l. This applies to
the spatial focus achieved in our numerical modelling.

N U M E R I C A L E X A M P L E

We illustrate the theory with a numerical example. We use the ve-
locity model shown in the top panel of Fig. 1 to propagate the source
wavefield to the receivers. The model consists of horizontally con-
tinuous layers whose P-wave velocities range from approximately
4.7 km s−1 to 5.9 km s−1 and S-wave velocities range from approxi-
mately 2.3 km s−1 to 2.9 km s−1. In practice, one does not know the
true velocity model. For this reason, we used the smoothed velocity
model, shown in the bottom panel of Fig. 1, for the backpropagation.

Figure 1. P-wave velocity models of the numerical experiment with units of km s−1. Top panel indicates the correct velocity model and represents the velocity
model used to propagate the source wavefield through the medium. Bottom panel indicates the smoothed velocity model with correct mean slowness. This
model is used for backpropagation of the time-reversed signal and optimized inverse signal. The plus symbols represent the receivers, the circular dot represents
the source. The S-wave velocity was the same but had velocities values equal to half of the P-wave velocity.
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394 J. Douma and R. Snieder

P, TR 

P, DC 

P 

Figure 2. Decomposed P wavefield at time of focus due to horizontal point
force. Top panel is P wave just after the horizontal point force is emitted.
Middle panel indicates the result of injecting the time reversed signal back
into the smoothed velocity model from the receiver locations. Bottom panel
shows result of injecting the inverse signal calculated using deconvolution
back into the smoothed velocity model from the receiver locations.

The velocity model is smoothed by using a 2-D triangle smoothing
of the slowness with a smoothing radius of .185 km in the x and
z directions (Fomel 2007). This smoothed velocity model has the
same mean slowness as the correct velocity model.

We first use a horizontal point force located at (x, z) = (0.51 km,
2.68 km). The source is characterized by Ricker wavelet with dom-
inant frequency of 100 Hz. There are 56 receivers distributed over
two vertical boreholes in our model. The x-locations of the receiver
boreholes are 0.74 km and 0.88 km, respectively. The receivers
range from a depth of 2.36 km to 2.86 km with a spacing of 18.5 m.

In order to make the numerical simulation more realistic, we
added bandpass limited noise to our recorded data at the receivers
before applying time reversal or deconvolution. The additive noise
only contains frequencies within the bandwidth of the data. We

S, TR 

S, DC 

S 

Figure 3. Decomposed S wavefield at time of focus due to horizontal point
force. Top panel is S wave just after the horizontal point force is emitted.
Middle panel indicates the result of injecting the time-reversed signal back
into the smoothed velocity model from the receiver locations. Bottom panel
shows result of injecting the inverse signal calculated using deconvolution
back into the smoothed velocity model from the receiver locations.

calculated the energy ratio of the signal to noise, defined as the
ratio of the sum of the signal and noise squared, to be equal to
0.89.

It is important to note that all the numerical work is done in-
plane. The source wavefield propagates through our model. The
vertical and horizontal displacement, which are recorded at the
receiver locations, are oriented in-plane. When we solve for the S
component by calculating the curl of the wavefield using the vertical
and horizontal displacement, we imply that we are investigating
the SV component. Therefore, we do not model the out of plane
SH component. In this numerical example, sensors are deployed
in two vertical boreholes. The theory presented here is, however,
equally valid for a 2-D sensor network placed on, or near, the Earth’s
surface.
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P, TR P, DC 

S, TR S, DC 

Figure 4. Temporal focused images due to a horizontal point force produced by backpropagating the calculated time-reversed signals using time reversal and
deconvolution for vertical borehole array. Parts (a) and (b) are temporal focus of the P wave due to time reversal and deconvolution, respectively. Parts (c) and
(d) are temporal focus of the S wave due to time reversal and deconvolution, respectively.

Horizontal point force

This section describes the numerical modelling that demonstrates
that improved temporal focusing leads to improved spatial focusing
for each wave type. We first model the wavefield due to a horizontal
point force excitation at the source location. The horizontal and
vertical displacements of the wavefield are then recorded at each
receiver. Afterwards, we apply either time reversal or deconvolu-
tion to the recorded signals to generate the wavefields, which are
backpropagated.

We use the time-reversed or deconvolved signals to excite waves
that backpropagate through the smoothed velocity model, using the
following forces acting at each of the receiver locations:


FTimeReverse = (Ux (−t), Uz(−t)), (30)


FDeconv = (
U Inverse

x (t), U inverse
z (t)

)
. (31)

Here, 
FTimeReverse and 
FDeconv are the source functions for time re-
versal and deconvolution, respectively, and Ux(t) and Uz(t) are the
recorded signals. The inverse signal of a time-series g(t) is defined
as

ginverse(t) 	 g(t) = δ(t), (32)

where 	 denotes convolution. In order to solve for ginverse(t) and
avoid instability for ginverse(ω) when g(ω) = 0, we have to apply a
water level regularization. Thus,

ginverse(ω) = 1

g(ω)
⇒ g∗(ω)

|g∗(ω)|2 + ε
. (33)

The derivation and explanation of these two methods are discussed
in more detail by Douma et al. (2013).

After backpropagation, the wavefield is decomposed into P and
S components for a crucial reason. We demonstrated in the ‘The-
ory’ section that improved temporal focusing leads to improved
spatial focusing for each wave type. We do not consider the focus
for the vertical or horizontal displacements. Rather, we use the dis-
placement components to calculate the P and S wavefields using
divergence and curl, respectively. This allows us to retrieve the P
and S waves that have backpropagated from the sources. For each
wave type, our theory predicts that an improved temporal focusing
leads to improved spatial focusing.

We first model the wavefield due to a horizontal point force ex-
citation at the source location. The top panel of Figs 2 and 3 show
the P and S wavefields’ radiation pattern just after the horizontal
point force is emitted and represent a pure angular degree l = 1. In
perfect source imaging, we would reconstruct these radiation pat-
terns. However, our aperature is not perfect and we backpropagate
through a smoother version of the velocity model. Thus, we do not
expect to be able to reconstruct these radiation patterns perfectly.

In order to show that deconvolution generates an improved spatial
focus, we first demonstrate that deconvolution enhances the tempo-
ral focus. Thus, we calculate the temporal focusing for the P and
S component as a result of deconvolution (eq. 31) compared with
time reversal (eq. 30). We defined the temporal focusing in eq. (16)
as the l-th derivative of the incoming wavefield. This is necessary
because the wavefield is zero at our source location due of nodal
lines. In order to demonstrate improved temporal focusing for a hor-
izontal point force, we take the derivative of the P wavefield in the
x-direction and the derivative of the S wavefield in the z-direction
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P, TR P, DC 

S, TR S, DC 

Figure 5. Spatial focused images due to a horizontal point force produced by backpropagating the calculated time-reversed signals using time reversal and
deconvolution. Parts (a) and (b) are 1-D slices of Fig. 2 through depth 2.68 km. Parts (c) and (d) are 1-D slices of Fig. 3 through x location 0.51 km. Note the
different scales used for the cross-section in the x and z direction.

because these derivatives are the radial derivatives perpendicular
to the nodal lines for each wave type. We change the direction of
the derivative because the radiation pattern of the P wave due to a
horizontal point force is a dipole in the x-direction while the S-wave
radiation has a dipole pattern oriented in the z-direction (Aki &
Richards 2002). This is visible in the top panel of Figs 2 and 3,
which show the radiation patterns of the P and S wavefields just
after the source has acted. We calculate the derivatives as defined
earlier to show the temporal focus for the P and S wave at the
source location. Comparing Figs 4(a) to (b), one can clearly note
that deconvolution has significantly improved the temporal focus-
ing compared to time reversal for the P wave. In contrast, Figs 4(c)
and (d) show that both time reversal and deconvolution produce a
similar temporal focus for the S wave. Because improved temporal
focusing implies better spatial focusing, see eq. (26), one would
expect to see an improved spatial focus for the P wave using decon-
volution compared to using time reversal. Additionally, we do not
expect the S wave’s spatial focus to improve using deconvolution
because the temporal focus did not improve.

After having demonstrated that deconvolution improved the tem-
poral focusing for the P wave, we compare the spatial focus gen-
erated by deconvolution and time reversal for each wave type. The
backpropagated wavefields at t = 0 for the two methods are shown
in the middle and bottom panels of Figs 2 and 3. The middle panel
of Fig. 2 represents the spatial focus of the P wave using time re-
versal whereas the bottom panel shows the spatial focus of the P
wave using time-reversal. Fig. 2 shows that deconvolution drasti-
cally improves the spatial focus compared to deconvolution. Fig. 3
does not show a clear improvement of spatial focusing between

time reversal (middle panel) and deconvolution (bottom panel) for
the S component. This was expected due to deconvolution and time
reversal producing similar temporal focuses for the S wave.

The aperture, over which we record the data that we backprop-
agate, is not perfect. This causes the spatial focuses, created using
time reversal and deconvolution shown in Figs 2 and 3, to not be
confined to one angular degree l because the spatial focuses are
blurred in the z-direction. A perfect spatial focus would consist of
only the l = 1 component. Figs 5(a, b) and (c, d) show cross-sections
of the backpropagated wavefields in Figs 2 and 3 in the x- and z-
directions, respectively, so that it is easier to asses the improvements
and comparisons between the two methods. Note that the scales of
the horizontal axis for Figs 5(a) and (b) are different from Figs 5(c)
and (d). Fig. 5(a) demonstrates that time reversal is not able to create
a well-defined dipole focus in the x-direction, which represents the
radiation pattern of a P wave due to a horizontal point force. Fig. 5(b)
shows that deconvolution is able to reconstruct the dipole radiation
pattern of the P wave due to a horizontal point force. Figs 5(c) and
(d) demonstrate that in this example there seems to be no signifi-
cant difference between time reversal (c) and deconvolution (d) to
reconstruct the S wave’s focus.

Our numerical results have shown that deconvolution was able to
improve the temporal focus for the P wave, which led to an improved
reconstruction of the P wavefield’s radiation pattern. However, de-
convolution was not able to improve the temporal focus for the
S-wave, due to a horizontal point force, which led to it also not
improving the reconstruction of the S wavefield’s radiation pattern.
This can be attributed to the fact that a nodal line for the S wave-
field’s radiation pattern intersects the receiver array. Deconvolution
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P, TR 

P, DC 

P 

Figure 6. Decomposed P wavefield at time of focus due to vertical point
force. Top panel is P wave just after the vertical point force is emitted.
Middle panel indicates the result of injecting the time-reversed signal back
into the smoothed velocity model from the receiver locations. Bottom panel
shows result of injecting the inverse signal calculated using deconvolution
back into the smoothed velocity model from the receiver locations.

assigns a larger weight to the receivers near the nodal line in order
to increase a weak recorded signal. This is unphysical because there
is no information to be gained in these weak recorded waveforms
near the nodal lines. These receivers are supposed to record no
information about the source and should, therefore, not propagate
any information back. However, it simultaneously demonstrates the
robust nature of deconvolution. For the radiation pattern which has
a nodal line intersecting the receiver array, deconvolution does not
generate an inaccurate but rather a comparable reconstruction of the
radiation pattern as time reversal.

Vertical point force

We applied the same analysis towards a vertical point force using
the same numerical model as for the horizontal point force. As pre-

S, TR 

S, DC 

S 

Figure 7. Decomposed S wavefield at time of focus due to vertical point
force. Top panel is S wave just after the vertical point force is emitted.
Middle panel indicates the result of injecting the time reversed signal back
into the smoothed velocity model from the receiver locations. Bottom panel
shows result of injecting the inverse signal calculated using deconvolution
back into the smoothed velocity model from the receiver locations.

viously stated, the source wavelet was first injected into the correct
velocity model at the source location. The horizontal and vertical
displacements were then recorded at the receivers. Once these sig-
nals were recorded, time reversal and deconvolution methods were
applied in order to calculate our backpropagating signals. These
signals calculated using the two methods would then be propagate
back into the smoothed velocity model from the receiver positions.
We then decomposed the wavefield into the P and S component at
the time of focus by taking the divergence and curl, respectively, of
the displacements.

The top panels of Figs 6 and 7 show the P and S wavefield’s radi-
ation patterns after the vertical point force is emitted and represents
the pure angular degree l = 1. As stated previously, one would be
able to reconstruct the radiation patterns in perfect source imaging.
However, we use the same numerical model as used for the hori-
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S, TR S, DC 

P, TR P, DC 

Figure 8. Temporal focused images due to a vertical point force produced by backpropagating the calculated time-reversed signals using time reversal and
deconvolution for vertical borehole array. Parts (a) and (b) are temporal focus of the S wave due to time reversal and deconvolution, respectively. Parts (c) and
(d) are temporal focus of the P wave due to time reversal and deconvolution, respectively.

zontal point force. Thus, we do not expect to be able to reconstruct
the radiation patterns perfectly.

We first calculated the temporal focuses achieves using time re-
versal or deconvolution for the P and S components. Because the
radiation patterns of the vertical point force are rotated 90◦ from
the horizontal point force’s, we take the derivative of the P wave-
field in the z-direction and the derivative of the S wavefield in the
x-direction in order to take the radial derivatives perpendicular to
the nodal lines for each wave type. Comparing Figs 8(a) to (b),
one can clearly note that deconvolution has significantly improved
the temporal focusing compared to time reversal for the S wave;
whereas, in Figs 8(c) and (d), time reversal and deconvolution pro-
duce a similar temporal focus for the P wave. Therefore, the results
for the vertical point force are the reverse of that for the horizontal
point force. This is expected as the radiation patterns are rotated by
90◦, which cause the nodal lines to rotate. We have seen the impact
of these nodal lines upon the focus we are able to achieve. As stated
previously, because improved temporal focusing implies better spa-
tial focusing, see eq. (26), one would expect to see an improved
spatial focus now for the S wave using deconvolution compared to
using time reversal. However, we do not expect to see any improve-
ment in spatial focusing for the P component because deconvolu-
tion and time reversal generated comparable temporal foci for the
P component.

Once shown that deconvolution improves the temporal focus for
the S wave due to a vertical point force, we compare the spatial foci
achieved using deconvolution or time reversal for both the P and
S components. Figs 6 and 7 show the backpropagated wavefields

at t = 0 using either time reversal (middle panel) or deconvolu-
tion (bottom panel) for the P and S component, respectively. Fig. 7
shows that deconvolution significantly improves the spatial focus
achieved for the S wave; Fig. 6 demonstrates that the spatial foci
achieved for the P wave are comparable using either deconvolution
or time reversal. These results were as expected because deconvo-
lution improved the temporal focus for the S wave while generating
a comparable temporal focus for the P wave.

In order to visualize the dipole foci achieved using either method,
we generate 1-D slices through Figs 6 and 7. Figs 9(a) and (b)
and (c) and (d) shows cross-sections of the backpropagated wave-
fields in Figs 2 and 3 in the x- and z-directions. Fig. 8(a) illustrates
that time reversal is not able to create a well-defined dipole fo-
cus in the x-direction, which represents the radiation pattern of an
S-wave due to a vertical point force. Fig. 9(b) shows that decon-
volution is able to reconstruct the dipole radiation pattern of the
S wave due to a vertical point force. Figs 9(c) and (d) demon-
strate that there seems to be no significant difference between time
reversal (c) and deconvolution (d) to reconstruct the P wave’s fo-
cus. These results are a different way to illustrate what was shown
in Figs 6 and 7.

Our numerical results for the vertical point force reiterate what we
have seen in the horizontal point force results. We conclude that, for
an elastic media without a perfect aperture and true velocity model,
improved temporal focusing leads to improved spatial focusing.
We have shown this both theoretically and numerically to be the
case. Because deconvolution has the ability to improve the temporal
focusing, one can improve the spatial focusing.
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S, TR S, DC 

P, TR P, DC 

Figure 9. Spatial focused images due to a vertical point force produced by backpropagating the calculated time-reversed signals using time reversal and
deconvolution. Parts (a) and (b) are 1-D slices of Fig. 2 through depth 2.68 km. Parts (c) and (d) are 1-D slices of Fig. 3 through x location 0.51 km. Note the
different scales used for the cross-section in the x- and z-direction.

C O N C LU S I O N

We have introduced deconvolution which improves the temporal
focusing of microseismic events. The workflow for this approach
is similar to imaging with time-reversed signals. The only differ-
ence is that instead of sending the time-reversed recorded signals
into the medium, we send the inverse signal, as obtained by de-
convolution, into the medium. The key result of this work is that
we demonstrate theoretically and numerically that this improved
temporal focusing leads to improved spatial focusing for each wave
type in an elastic medium. This improved spatial focusing is ben-
eficial for enhancing the focus of the elastic waves. The simplicity
and robust nature of this method allows for a simple incorporation
into existing reverse-time imaging methods. Additionally, the cost
of deconvolution is minimal compared to running the finite differ-
ence modelling. Therefore, it can be added as a pre-processing step
without significant additive cost.
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APPENDIX: DETAILS OF THE DERIVATION

In this appendix, we derive an equation representing the spatial
focusing in an elastic medium and demonstrate that has improved
temporal focusing implies improved spatial focusing for each wave
type.

We assume that the incoming wave fl(t) at angular degree l of
expression (10) is given and first show how this function constrains
the Fourier coefficient Al(ω) in eq. (9). The incoming wave is, in the
frequency domain, given by

U inc
l (r, ω) = 1

2π

∫
fl (t + r/c)

r
eiωt dt = e−iωr/c

r

1

2π

∫
fl (t)e

iωt dt

= e−iωr/c

r
Fl (ω), (A1)

where the replacement t → t − r/c is used in the second identity,
and Fl(ω) is the incoming wave in the frequency domain. Because
expressions (10) and (A1) only hold in the limit r → ∞, we pro-
ceed by analysing eq. (9) in the same limit where, according to eq.
(11.158) of Arfken & Weber (2001), the spherical Bessel functions
are given by

jl (kr ) = sin(kr − lπ/2)

kr

= (−i)l+1 eikr

2kr
+ il+1 e−ikr

2kr
as r → ∞. (A2)

The last term gives the incoming wave. Therefore, the incoming
wave component of the spherical Bessel function at large dis-
tances r is given by j inc

l (kr ) = il+1e−ikr/2kr (r → ∞). Using this in
expression (8) and equating it with eq. (A1) gives:

e−iωr/c

r
Fl (ω) = il+1 e−iωr/c

2kr
Al (ω) as r → ∞. (A3)

The r-dependence is the same on the left-hand side and the right-
hand side of this equation. Eq. (A3) can be solved to give Al(ω) =
( − i)l + 1(2ω/c)Fl(ω). Inserting this into expression (9) leads to eq.
(11). This expression relates the total wavefield to the Fourier trans-
form of the incoming wavefield. Note that this expression is valid
for all values of r. The limit r → ∞ was only used to relate Al(ω)
to the incoming wave. In practice, one can evaluate expression (A3)
for a large radius ωr/c � 1, and one does not need to take the limit
r → ∞.

The factor (−iω) corresponds in the time domain to differentia-
tion. In the following, we will apply repeated differentiations and
integrations. For this reason we employ the notation shown in eqs
(12) and (13). Note that a negative value of n corresponds to an
integration. With this notation, expression (11) can be written as

ul (r, t) = (−i)l 2

c

∫
F (1)

l (ω) jl (kr )e−iωt dω. (A4)

The total wavefield (A4) can also be related to the incoming
wave in the time domain. In order to derive this, we use expression
(11.165) of Arfken & Weber (2001) to express the spherical Bessel
function of order l into the spherical Bessel function of order 0:

jl (x) = (−x)l

(
1

x

d

dx

)l

j0(x), hence

jl (kr ) = (−1)l r l

kl

(
1

r

d

dr

)l

j0(kr ). (A5)

Using eq. (A4) and the relation k = ω/c in eq. (A5) gives

ul (r, t) = 2r lcl−1

(
1

r

d

dr

)l ∫ F (1)
l (ω)

(−iω)l
j0(kr )e−iωt dω. (A6)

Because of definition (13), F (−1)
l (ω)/(−iω)l = F (1−l)

l (ω), and we
can simplify eq. (A6) to

ul (r, t) = 2r lcl−1

(
1

r

d

dr

)l ∫
F (1−l)

l (ω) j0(kr )e−iωt dω. (A7)

The reason we relate ul(r, t) to the spherical Bessel function of order
0 is that this allows us to carry out the Fourier transform analytically.
In order to do this, we use expression (11.148) of Arfken & Weber
(2001)

j0(kr ) = sin kr

kr
= c

2iωr

(
eiωr/c − e−iωr/c

)
, (A8)
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where we use k = ω/c in the last identity. Using this result, the
integral in eq. (A7) becomes∫

F (1−l)
l (ω) j0(kr )e−iωt dω

= − c

2r

∫
F (−l)

l (ω)
(
e−iω(t−r/c) − e−iω(t+r/c)

)
dω

= c

2r

(
f (−l)
l (t + r/c) − f (−l)

l (t − r/c)
)

, (A9)

where expression (A8) was used in the first identity. Inserting eq.
(A9) into eq. (A7) gives eq. (14). This expression gives an explicit
relation between the total wavefield for all values of r and the
incident wave at great distance.

In order to determine the temporal focus (16), we need to evaluate
dljl(kr)/drl. According to eq. (11.144) of Arfken & Weber (2001),

jl (x) = 2l l!

(2l + 1)!
xl + O(xl+2) as x → 0. (A10)

Using that (d/dr)lrl = l!, we get

lim
r→0

dl

dr l
jl (kr ) = blk

l = blω
l/cl , (A11)

where bl is given by eq. (18). Combining eqs (16), (A4), and (A11)
gives the following expression for the temporal focus

Tl (t) = 2bl

cl+1

∫
(−iω)l F (1)

l (ω)e−iωt dω. (A12)

With the definition (11), this can be rewritten as

Tl (t) = 2bl

cl+1

∫
F (l+1)

l (ω)e−iωt dω. (A13)

Therefore, after taking the Fourier integral, we found a relationship
between the temporal focus and the incoming wavefield.
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