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S U M M A R Y
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of land-
slide analysis such as pseudo-static analysis and Newmark’s method focus on the effects of
earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour.
One limitation of these methods is their use Mohr–Coulomb failure criteria, which only ac-
counts for shear failure, but the role of tensile failure is not accounted for. We develop a
limit-equilibrium model to investigate the dynamic stresses generated by a given ground mo-
tion due to a plane wave and use this model to assess the role of shear and tensile failure in the
initiation of slope instability. We do so by incorporating a modified Griffith failure envelope,
which combines shear and tensile failure into a single criterion. Tests of dynamic stresses
in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile
failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive
equations that express the dynamic stress in the near-surface in the acceleration measured at the
surface. These equations are used to approximately define the depth range for each mechanism
of failure. The depths at which these failure mechanisms occur suggest that shear and tensile
failure might collaborate in generating slope failure.

Key words: Site effects; Wave propagation.

1 I N T RO D U C T I O N

Most moderate to large earthquakes trigger landslides. While cur-
rent methods used to model these landslides are useful, they are
based solely on shear failure and thus fail to account for the role of
tensile stresses in the failure process. The most commonly used cur-
rent methods include pseudo-static analysis and Newmark’s method.
These methods are based on modelling the limit-equilibrium con-
dition in terms of the factor of safety (FS), which describes the sta-
bility of a slope as the ratio of resisting to driving forces (Terzaghi
1950). When this ratio is greater than 1.0, the slope is stable; when
it is less than 1.0, the slope is unstable. Pseudo-static analysis is a
limit-equilibrium analysis where the ground acceleration from an
earthquake is computed as an additional static body force acting on
the slope. A factor-of-safety analysis based on force equilibrium is
carried out for different acceleration values to determine the critical
value that reduces the factor of safety to 1.0.

Newmark’s method goes further by estimating the permanent
slope displacement caused by an earthquake (Newmark 1965). The
critical acceleration a slope can withstand during an earthquake is
given by Jibson et al. (2000)

ac = (F S − 1)g sin(θ ), (1)

where g is gravitational acceleration and θ the slope angle. (We show

a table with the employed notation at the end of the paper.) An accel-
eration larger than this value initiates sliding. In Newmark’s method
one estimates the permanent displacement by double-integrating
the parts of an earthquake acceleration-time history that exceed the
critical acceleration (Jibson 1993; Jibson et al. 2000). Newmark’s
method models a landslide as a rigid friction block sliding without
internal deformation on an inclined plane. Therefore, it is most ap-
propriately applied to landslides in stiff material that slide on a basal
shear surface. Newmark’s method does not work very well for deep
landslides in soft material (e.g. clay), where internal deformation oc-
curs and modifies the shaking response (Rathje & Bray 1999, Rathje
& Bray 2000). There is evidence from field observations (Harp et al.
1981) and laboratory studies (Sitar & Clough 1983) of tensile fail-
ure in earthquake-triggered landslides, especially in relatively shal-
low failures in weak, brittle materials (so-called weakly cemented
soils).

While pseudo-static analysis and Newmark’s method focus on
earthquake-induced accelerations to account for shear failure, we
focus on the dynamic stress state generated from a given ground
motion and how this causes both shear and tensile failure at the
initiation of slope instability. Our work accounts both for shear
failure and tensile failure, and is more general than Newmark’s
method because it accounts for the stress throughout the subsurface
rather than describing the near-surface as a rigid block. Post-failure
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deformation of a slope is not accounted for in our work because the
employed linearized stress–strain relation does not accommodate
material properties of material that has failed.

First, we describe the static and dynamic stresses in a dry, infinite
slope and the failure criterion used to define failure. The infinite
slope model is a commonly used idealization in slope stability stud-
ies for situations where the length parallel to the slope is much
greater than the depth of the slide mass. This model is applicable
when any given element on the slope is not strongly affected by up
or down slope end-effects. By testing several wave-propagation sce-
narios, we show that two modes of failure develop in homogeneous
and layered slopes. For the conditions modelled, tensile failure due
to dynamic stresses occurs in the upper 2 m of a slope, while shear
failure takes place at greater depth within the upper 10 m.

To further understand the regions of shear and tensile failure in
a slope, we derive dynamic stress equations that relate dynamic
stresses in the near-surface to the acceleration at the surface. By
explicitly specifying the peak ground acceleration (PGA) in this
analysis, these equations produce dynamic stresses as a function of
depth that help predict the depth ranges for each failure mechanism.
Shear and tensile failure is predicted to occur at different depths,
and we show how the two failure mechanisms collaborate to cause
slope failure. Because this model is based on a limit-equilibrium
method, we cannot model post-failure deformation of a slope, but
our analysis elucidates the roles of tensile and shear failure.

2 S TAT I C S T R E S S I N A S L O P E

We consider a one-dimensional (1-D) static stress model to compute
the initial static stress-state of a slope. For the dynamic stress we
use a 2-D model, hence the dynamic stress is a function of two
space coordinates. The coordinate system used throughout this study
(Fig. 1) defines the x-direction as parallel to the surface of the slope
and depth, z, normal to the slope.

We use a simple static stress model for near-surface stresses
caused by gravity (Savage & Swolfs 1992). In this model, the near-
surface is assumed to be linearly elastic and the infinite, planar slope
is laterally constrained so material cannot expand in the direction
parallel to the slope (Mello & Pratson 1999). Because of trans-
lational invariance of an infinite slope, stress does not depend on
the downslope location. This does not imply that there is no dis-
placement along the slope, but the x-derivatives of the displacement
vanish and do not contribute to the static stress.

Figure 1. Coordinate system used in this work, where θ is the slope angle.
The x-direction, or downslope direction, is parallel to the slope and the z-
coordinate measures the distance normal to the slope.

The equations of stress for this model are (Jaeger & Cook 1976;
Savage & Swolfs 1992)

σ static
xx = λ

λ + 2µ
ρgz cos(θ ), (2)

σ static
zz = ρgz cos(θ ), (3)

σ static
xz = ρgz sin(θ ), (4)

where λ and µ are Lamé elastic constants, ρ is the density, g is
gravitational acceleration, and θ is the slope angle. Normal stresses
are considered positive in compression and negative in tension. The
stress components are for the coordinate with the x-axis parallel to
the slope and the z-axis perpendicular to the slope. This means, for
example, that σ xx is the compressive stress parallel to the slope.

For a finite slope the stress varies along the slope. Such a slope is
weakest in the area of maximum deviatoric stress. Because of stress
concentrations near the endpoints of such a slope the deviatoric
stress in a finite slope is, in general, larger than in the infinite slope
model used in our study. For this reason, failure may occur in a
finite slope for a smaller peak ground acceleration than is predicted
for our model. The goal of this study is to understand the physics of
different failure mechanisms for landslides rather than a quantitative
prediction for which ground motion failure occurs. For such a study
one would also need to account for the focusing of wave energy by
realistic topography.

Before modelling the plane-wave propagation through a slope, we
carry out a static slope-stability analysis to find whether the unper-
turbed static slope is stable. We do so by increasing the slope angle
to see at which point a slope fails. In this way, we can define a slope
that is stable under static conditions, but that can fail dynamically.

3 DY N A M I C S T R E S S E S D U E T O A
P L A N E WAV E I N C I D E N T O N A S L O P E

We compute the dynamic stresses created from a plane wave inci-
dent on a slope using a finite element wave equation code. We use
second-order equations of motion that solve for displacement, u x

and u z (Haney 2004). This 2-D model allows us to account for ex-
tensional strain associated with wave propagation. Since we study
tensile failure, we limit the analysis to P–SV waves (Aki & Richards
2002). The elements used in the finite element span a depth of 1 m
in the z-direction each. Because of the linear interpolation within
the elements the variations of the wave field within the elements is
also known.

Solutions of the form F = F(t − px , z) describe a plane wave
moving in the x-direction in time t, with a slowness p along the slope.
In a medium where properties vary with depth only, p is constant
and known as the ray parameter of the wave incident on the surface
(Aki & Richards 2002)

p = sin(i p)
vp

= sin(is)
vs

, (5)

where i p and i s are the incidence angles that P and S waves make
with the normal axis of the slope, andv p andv s are the P- and S-wave
velocities, respectively. For this solution the downslope derivative
is related to the time derivative by

∂ F(t − px, z)
∂x

= −p
∂ F(t − px, z)

∂t
. (6)

The finite element code produces displacement, velocity and ac-
celeration as well as the stress components, σ dynamic

xx , σ dynamic
zz and

C© 2007 The Authors, GJI, 172, 770–778
Journal compilation C© 2007 RAS



772 T. L. Gipprich et al.

Figure 2. σ
dynamic
xx component of stress for both 30◦ incident P and S waves at the surface of a slope for a PGA of 0.1 g. The S wave produces larger stress at

the surface than does the P wave.

σ dynamic
xz for a given incoming wave. At the free surface, the tractions

vanish (Aki & Richards 2002):

σ dynamic
zz (z = 0) = σ dynamic

xz (z = 0) = 0. (7)

Once the dynamic stresses are known, the total stress state is given
by the sum of the dynamic and static stress:

σ total
i j = σ static

i j + σ
dynamic
i j . (8)

Failure depends on the peak ground acceleration (PGA) of the
incoming wave, and for each slope, there exists a PGA that initiates
failure at one location for a given instant in time. As that PGA
value increases, the values of the dynamic stresses also increase and
the slope fails, but the employed linear model does not account for
post-failure behaviour. A PGA between 0.1g and 1.0g is common
during earthquakes (Jibson 1993). We normalize the wavefield in
all simulations such that the PGA is equal to 0.1g. The incoming
wave used in this analysis has a peak frequency of 1.0 Hz, which is
near the centre of the range of frequencies normally associated with
earthquake-triggered landslides (Jibson et al. 2004; Bray & Rathje
1998).

We analyse both P and S waves. When both waves are normalized
to the same PGA as described above, the dynamic stresses produced
by the S wave are larger at the surface of the slope than for the P
wave. Fig. 2 is a comparison of the σ dynamic

xx component of stress for
P and S waves with a 30◦ angle of incidence that are normalized
to a PGA of 0.1 g. This example shows that for a given PGA the
stress is greater at the surface for the S wave than for the P wave. As
the angle of incidence changes, the stress components also change,
which may influence the initiation of slope failure. Regardless of the
type of incident wave, for a variety of incidence and slope angles,
both shear and tensile failure can occur. In this paper, we show
examples of slope failure due to dynamic stresses generated by a
30◦ incident wave.

4 FA I L U R E C R I T E R I A

When analysing static slope stability, a discrepancy arises between
the static stress model given by expressions (2)–(4) and other tra-
ditional models. In a Mohr–Coulomb slope-stability analysis, the
limiting-equilibrium condition of an infinite slope is expressed as a
factor-of-safety against failure along a surface parallel to the slope.
The model discrepancy is best illustrated in the simplest condition—
a dry, cohesionless slope—in which the FS is simply

F S = tan(φ)
tan(θ )

, (9)

where φ is the internal angle of friction and θ is the slope angle.
Slope instability occurs when φ is equal to θ , or when FS = 1.0.
In contrast to this, the static stress state defined by eqs (2)–(4) for
a plane infinite slope, produces failure at a critical angle, θ c, that is
smaller than the internal angle of friction φ. This also is the case
when cohesion is included in the static stress model.

Although the source of the discrepancy between the two models
is not completely clear, it likely relates to our assumption of a later-
ally constrained, infinite slope. In such a model, the slope-parallel
derivatives vanish, and the material cannot expand laterally. This
stress model is widely used in soil mechanics, and we work with
the equations in this model to understand how changes in the total
stress state due to dynamic stresses lead to slope failure.

When a wave passes through a slope, dynamic stresses are gen-
erated that can cause certain locations within the slope to fail. To
understand the potential for shear failure, a Mohr–Coulomb failure
analysis is commonly employed which tests whether stress exceeds
strength. The shear strength (τ ) of a failure surface in dry conditions
is characterized by the Mohr–Coulomb failure criterion (e.g. Bourne
& Willemse 2001),

τ = c + σ tan(φ), (10)

where c is cohesion of a material and σ is the normal stress. In this
analysis, we consider sands having cohesions of 0–20 kPa (Selby
1993; Middleton & Wilcock 1994) and friction angles of 30◦–34◦

(Selby 1993; Das 1997). Fig. 3 shows a Mohr circle and Mohr–
Coulomb failure envelope. Shear failure takes place at the critical
angle, θ c = (90◦ + φ)/2 (Das 1997). A post-failure state of stress
represented by a Mohr circle lying outside of the envelope is not
accounted for by our dynamic model.

To determine the locations of both shear and tensile failure of
cohesive soils, we incorporate the Griffith failure criterion to account
for tensional failure. Thin, microscopic cracks dominate the tensile
strength and propagate under stress conditions defined by the Griffith
criterion (Bourne & Willemse 2001),

τ 2 = 2cσ + c2. (11)

A modification of this failure envelope has been introduced by Brace
(1960), who defines a single stress criterion that includes both shear
and tensile failure (Fig. 4). For negative values of normal stress,
the curved part of the envelope is defined by eq. (11). For positive
values of normal stress, the envelope is defined by eq. (10). The
region of the failure envelope first encountered by the Mohr circle
defines the type of failure of the stress state (Bourne & Willemse
2001). As shown in Fig. 4, we use the stress-difference-to-failure
(SDF) to quantify the proximity of a stress state to either shear or
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Figure 3. The Mohr circle and Mohr–Coulomb failure envelope. C is the
cohesion and φ is the internal angle of friction. When failure occurs, α refers
to the angle between the normal to the failure plane and the principal stress
direction corresponding to the most compressive stress, σ 1.

Figure 4. The Mohr circle and modified Griffith failure envelope. The dark
arrow displays how far the circle is from failing in tension indicated by the
Griffith portion of the envelope. The white arrow displays the distance the
circle is to failing in shear indicated by the Coulomb portion of the envelope.

tensile failure. A stable stress state is represented by negative values
of SDF. Failure takes place when either SDFshear or SDFtensile is equal
to zero, whichever occurs first. The equations to calculate SDF for
the modified Griffith envelope are given by (Bourne & Willemse
2001)

SDFshear =
(

σ1 − σ3

2

)
−

(
σ1 + σ3

2

)
sin(φ) − c cos(φ), (12)

SDFtensile =
(

σ1 − σ3

2

)
−

(
σ1 + σ3

2

)
− c

2
= −σ3 − c

2
, (13)

where σ 1 and σ 3 are the maximum and minimum principal stress
components, respectively.

When one of these quantities is zero or negative at a point, the
material locally fails. This does not necessarily mean that the slope
in its entirety fails, because such collective behaviour depends on
the presence of defects as well as on the material properties of the
slope in regions that fail. Such post-failure material behaviour is not

modelled here. The regions where the stress distance to failure is
non-negative should thus be viewed as areas where failure has the
potential to take place.

5 H O M O G E N E O U S S L O P E

We use this stress model to analyse triggered failure in an unsat-
urated, 26◦ slope that has a constant density of 2000 kg m−3, c =
10 kPa and φ = 32◦. Before propagating a plane wave through the
slope, failure of the static slope occurs at a slope angle of 37◦ (as
determined by eqs (12)–(13). When a slope is cohesive, such as in
this example, static failure can occur at a slope angle larger than the
internal angle of friction.

Even though an S wave generates larger dynamic stresses at the
slope surface than does the P wave, our analysis shows that a P wave
with the same PGA produces the same type of failure mechanisms
at the same depth. Using eqs (12)–(13), the following figures depict
a snapshot in time showing the initiation of tensile and shear fail-
ure in the slope. Fig. 5 shows SDF tensile due to a P wave with an
angle of incidence of 30◦,with a PGA of 0.1 g. For one instant in
time, dynamic stresses are great enough to produce tensile failure
shown as the circled region in dark red near the surface of the slope.
Negative values of SDF tensile in most of the area indicate that the
region has not failed in tension. Shear failure, as shown in Fig. 6,
takes place at greater depth than tensile failure. There is a limited
depth interval for shear failure; the approximate location of shear
failure is circled.

Figure 5. Right-hand panel: SDF tensile for a slope of 26◦ and c = 10 kPa
due to a P wave with an incidence angle of 30◦, normalized to a PGA = 0.1
g. The shaded area in the left-hand panel shows the region of the slope shown
on the right-hand side at a given instant in time. Failure occurs near the free
surface, indicated by the circled region. Negative values of SDF tensile in the
colourbar indicate the amount of stress necessary for tensile failure to occur.

Figure 6. Right-hand panel: SDF shear for a slope of 26◦ and c = 10 kPa
due to a P wave with an incidence angle of 30◦, normalized to a PGA =
0.1 g. The shaded area in the left-hand panel shows the region of the slope
shown on the right-hand side. Initiation of shear failure is located within the
dashed line.
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Figure 7. The total principal stress components and directions computed
for the 26◦ slope due to a P wave with an incidence angle of 30◦, normalized
to a PGA = 0.1 g shown in the coordinate system of Fig. 1. Inward arrows
represent compression, while outward pointing arrows indicate tension. The
box in (a) is enlarged in (b) to show that tensile stress exists to a depth of
1 m and below this depth, the principal stresses are compressive.

Each failure mechanism can be analysed by computing the prin-
cipal stress components and directions of the sum of the static and
dynamic stress. Fig. 7 shows the principal stresses for the 26◦ slope
due to the incident P wave at the same instance in time as in Figs 5
and 6. The directions of the arrows indicate principal stress direc-
tions while the length represents the magnitude of the principal stress
component. Inward pointing arrows represent compression and out-
ward pointing arrows near the surface indicate tension. The stress
is tensile near the surface, therefore, the location of the box in (a) is
enlarged for clarity in panel (b).

Tensile stress shown in Fig. 7 is limited to the uppermost meter,
which is the same location where tensile failure occurs in Fig. 5.
At a depth of 3 m, both principal stresses are compressive, hence
tensile failure cannot occur at this depth.

To further understand the depths of shear and tensile failure, we
derive approximations of the dynamic stresses in terms of the accel-
eration at the surface, the slowness of the incoming wave, and the
dominant frequency. These stress equations follow from Newton’s
Law and Hooke’s Law. The derivation of the approximations for
σ dyneq

xx , σ dyneq
zz , σ dyneq

xz is in Appendix A:

σ dyneq
xx (z) = 4µ(λ + µ)

λ + 2µ

(
p

2π f

)
ax , (14)

σ dyneq
zz (z) = −ρaz z, (15)

Figure 8. Stress components as a function of depth for the example out-
lined in Figs 5–6, at a downslope distance of 2000 m. Tensile failure for
this 26◦ slope is indicated by the upper shaded region, while shear fail-
ure takes place in the lower shaded region. The dotted lines represent
the components of σ dyneq, produced by eqs (14)–(16), which are used in
place of σ dynamic with depth. The solid lines represent the components
of σ static.

σ dyneq
xz (z) = −

{
ρax +

[
4µ(λ + µ)

λ + 2µ

] (
p

2π f
∂ax

∂x

)}
z, (16)

where p is the slowness of the incoming wave along the slope, f
the peak frequency, a x the acceleration in the direction parallel to
the slope and a z the acceleration in the direction normal to the
slope. Using a first-order Taylor expansion in z these expressions
relate the stress in the near-surface to the acceleration at the free
surface. Note that the tractions at the free surface vanish, while
σ dyneq

xx is not a function of z and can be non-zero. Gipprich (2005)
shows that these equations are a good approximation to the dynamic
stresses produced by the finite-element model by comparing the
stress computed from eqs (14) to (16) with those predicted by the
finite element model.

We use eqs (14)–(16) to estimate the depth of failure more closely.
Fig. 8 shows the static and dynamic stress components as a function
of depth for the stress state of Figs 5 and 6 at a downslope distance of
2000 m, which is the distance at which failure takes place. In Fig. 8,
we use the dynamic stress eqs (14)–(16) instead of the modelled
dynamic stresses with depth. The region of tensile failure is shaded
at the near surface, and the region for shear failure is shaded at
depth. The tensile failure near the surface is due to σ dyneq

xx , since the
other stress components approach zero near the surface. To further
understand what determines the depth of tensile failure, we make the
assumption that failure takes place when the dynamic tensile stress
σ dyneq

xx overcomes the compressive static stress σ static
xx . We use σ static

zz
as a proxy for the horizontal compressive stress, because according
to expressions (2)–(3) σ static

xx is of the same order of magnitude as
σ static

zz . The tensile stress is larger than the compressive stress when
∣∣σ dyneq

xx

∣∣ > σ static
zz , (17)

substituting the static stress eq. (3) for σ static
zz gives

∣∣σ dyneq
xx

∣∣ > ρgz cos(θ ), (18)

and solving for the estimated depth of failure,

z <

∣∣σ dyneq
xx

∣∣

ρg cos(θ )
. (19)
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At the point of failure, for the particular case outlined above, the
tensile stress is equal to the tensile strength of the slope. Because
σ dyneq

xx is constant with depth, and is the only source of stress causing
tensile failure, its value at failure is approximately equal to tensile
strength, represented by c/2,
∣∣σ dyneq

xx

∣∣ ≈ c
2
, (20)

and substituting this into eq. (19) gives:

z <
c

2ρg cos(θ )
. (21)

Therefore, the estimated depth of tensile failure depends on the
tensile strength of the slope, and varies with density and slope angle.
For this example, c = 10 kPa, ρ = 2000 kg m−3 and θ = 26◦ and
from (21) the depth of tensile failure is z < 0.3 m.

This analysis provides an estimate of the maximum depth of ten-
sile failure without having to analyse SDFtensile. As σ dyneq

xx is constant
with depth and the absolute value of the static stresses increase with
depth, tensile failure does not occur at greater depth due to the
growth of the compressive, static stress components with depth.

As shown in Fig. 8, shear failure takes place when all static stress
components are larger than the corresponding dynamic stresses.
Shear failure occurs at a depth when the smallest static stress com-
ponent σ static

xz is approximately equal to the largest dynamic stress,
σ dyneq

xx :

σ dyneq
xx ≈ σ static

xz . (22)

For this particular situation, substituting the static stress eq. (4) for
σ static

xz gives:

σ dyneq
xx ≈ ρgz sin(θ ), (23)

and solving for depth,

z ≈ σ dyneq
xx

ρg sin(θ )
. (24)

The depth of failure can be found by substituting dynamic stress
eq. (14) for σ dyneq

xx ,

z ≈
4µ(λ+µ)

λ+2µ

(
p

2π f

)
ax

ρg sin(θ )
. (25)

The input parameters for this example are λ = 5.0 × 108 Pa, µ =
5.0 × 109 Pa, p = 0.000289 s m−1, f = 1.0 Hz and a x = 0.3 m s−2.
Given this information, the depth of initial shear failure is about z =
3 m. Eq. (25) demonstrates that the depth of shear failure depends
on several factors that include the PGA, as well as the horizontal
slowness of the incoming wave (p).

This homogeneous slope analysis allows us to relate the depths
of shear and tensile failure in the slope to the dependence of the
dynamic stresses with depth. Statically, the entire slope at 26◦ is
stable, but when a plane wave is incident on the slope, in the near-
surface, it is the σ dyneq

xx component of stress that causes tensile failure
in the x-direction. Deeper within the slope, σ dyneq

xx is the largest dy-
namic stress component, but smaller than the static stresses. When

Table 1. Parameter values used in the slope models.

Model α (m s−1 ) β (m s−1 ) ρ (kg m−3 ) φ (◦) c (kPa )

Homogeneous 1730 500 2000 32 10
Layered: low velocity 1500 800 1500 32 10
Layered: sedimentary 2200 1000 2200 40 50

each principal stress component of the total stress is positive, ten-
sile failure can no longer take place. We see in eqs (14)–(16) that
the dynamic stress state accounts for both the horizontal and verti-
cal components of the PGA, while the static stress eqs (2)–(4) are
related to gravitation al acceleration. Therefore, when the PGA is
normalized to a value less than the gravitational acceleration, such
as in this example, the static stress components eventually become
larger than the dynamic stress components at depth. At a depth
where dynamic stresses are small in comparison to static stresses,
the dynamic stress state has little influence on the total stress field
and no longer triggers failure, which in this example, takes place at
a depth near 9 m.

6 L AY E R E D S L O P E

Terzaghi et al. (1996) characterize a layered slope as a simple two-
layer medium consisting of an upper layer representing a weak,
weathered zone overlying rock. We follow this description by fo-
cusing on the failure analysis of an unsaturated slope with two lay-
ers parallel to the surface. In our analysis, the upper 5 m represent a
weathered layer overlying a stronger, sedimentary layer. The shallow
layer has P- and S-wave velocity α1 and β 1, respectively, density
ρ 1, internal friction angle φ1, and cohesion c1, that are smaller than
those for the stronger layer, α2, β 2, ρ 2, φ2 and c2. The values used
in the layered and homogeneous models are shown in Table 1. The
weathered layer has the same values of cohesion and internal angle
of friction as the homogeneous model, so that we can compare fail-
ure in the upper meters of the slope, where tensile failure is found.
We use this model to investigate the influence of the amplification
of the wave in the near-surface layer on slope failure.

The interface between the two layers is a solid/solid boundary.
An incoming wave that hits this interface produces a different set of
reflected and transmitted waves than for the homogeneous model.
According to Snell’s law, the slope-parallel slowness of the incident
wave remains the same while crossing the interface between layers
during the reflection/transmission process (Aki & Richards 2002).
Because the upper layer has velocities less than the sedimentary
layer, the angles of the transmitted waves in the upper layer are less
than those of the reflected P and S waves in the lower layer.

Our analysis for this model shows that conditions in the layered
slope produce tensile failure in the upper meters of the slope and
shear failure a few meters deeper within the upper and lower layers.
For the layered model, we show the stress difference to shear and
tensile failure produced by an S wave with an incidence angle of
30◦, normalized to a PGA of 0.1 g in Figs 9 and 10. These figures
show that there are two distinct locations of failure, each having
a different mechanism of failure. In the two-layer model, failure
takes place at shallower slopes compared with the homogeneous
case. Shear and tensile failure take place in the layered medium for
a slope of 19◦. The weathered layer initially fails in tension near the
surface down to a depth of 1 m. Below the interface, failure only
occurs at 6 m depth, which is in shear. For the tests completed and
examples demonstrated in this paper, we find that given the same
failure criteria, the locations of the failure mechanisms in the layered
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Figure 9. Right-hand panel: SDF tensile for a layered slope of 19◦ due to
an S wave with an incidence angle of 30◦, normalized to a PGA = 0.1 g.
The upper layer contains c = 10 kPa while the lower layer has c = 50 kPa.
The boundary between the two layers is indicated by the dashed line. The
shaded area in the left-hand panel shows the region of the slope shown on
the right-hand side. Tensile failure occurs at the near surface, indicated by
the circled regions.

Figure 10. Right-hand panel: SDF shear for a layered slope of 19◦ due to
an S wave with an incidence angle of 30◦, normalized to a PGA = 0.1 g.
The upper layer contains c = 10 kPa while the lower layer has c = 50 kPa.
The boundary between the two layers is indicated by the dashed line. The
shaded area in the left-hand panel shows the region of the slope shown on
the right-hand side. The initiation of shear failure is circled at 6 m depth.

slope resemble those in the homogeneous slope. This is largely due
to the fact that the presence of the layer has little impact on the
dynamic stresses in the near surface because the wavelength of the
incoming wave (800 m) is much larger than the depth of the upper
layer (5 m).

7 D I S C U S S I O N

We provide a model for the role of shear and tensile failure in the
seismic triggering of landslides. This model explains the initiation
of tensile failure in the near-surface (upper meters) and shear failure
at depth in a slope subject to dynamic stresses, and provides a use-
ful perspective on how seismic shaking triggers slope failure. For
specific slope conditions we can test the susceptibility to both shear
and tensile failure due to varying dynamic stresses. This modelling
approach is an improvement over existing approaches that only con-
sider shear failure and do not account for tensile failure. If dynamic
stresses from an earthquake can be measured or estimated, our mod-
elling can be implemented to provide insight into the generation of
slope failure and to create a more complete dynamic model than has
been previously possible.

Fig. 11 summarizes the estimates of the depth ranges for shear and
tensile failure that we derived in Section 4 and that is confirmed by
the numerical simulations shown in Figs 5, 6, 9 and 10. Fig. 11 sug-

Figure 11. The two mechanisms of failure that occur and collaborate to cre-
ate slope failure. Tensile failure occurs in the upper meters near the surface,
while shear failure takes place at greater depth, below which, failure does
not occur.

gests a plausible scenario in which shallow tensile failure combines
with deeper shear failure to cause a slope to fail . As stresses build,
tensile (or shear) failure initiates, inducing shear (or tensile) failure.
Our model examines only one simple dynamic stress condition and
deeper failures do occur during earthquakes, although these failures
are most likely triggered by other, more complex stress conditions
that we have not modelled. We are unable to determine from our
model which type of failure might occur first in a slope because our
analysis based on linear theory can not account for the details of
the post-failure process, but Fig. 11 illustrates how shear and tensile
failure may collaborate to cause slope failure.
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NOTATION
σ static Static stress components
σ dynamic Dynamic stress components produced by the model
σ dyneq Dynamic stress components produced by equations
c Cohesion
φ Internal angle of friction
λ Lamé elastic constant
µ Lamé elastic constant
ρ Density
θ Slope angle
p Slowness of a plane wave along the slope
i p , i s Angle of incidence for P and S waves
f and ω Frequency and angular frequency
u x Component of displacement parallel to slope
u z Component of displacement perpendicular to slope
v x Component of velocity parallel to slope
v z Component of velocity perpendicular to slope
a x Component of acceleration parallel to slope
a z Component of acceleration perpendicular to slope
τ Shear stress
σ Normal stress
σ i j Stress tensor
σ 1, σ 3 Largest and smallest principal stress components.
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A P P E N D I X A : D E R I VAT I O N O F
DY N A M I C S T R E S S E Q UAT I O N S F RO M
P L A N E WAV E S O L U T I O N S

Newton’s Law and Hooke’s Law are, in the frequency domain, given
by

−ρω2ux = ∂σxx

∂x
+ ∂σxz

∂z
, (A1)

−ρω2uz = ∂σxz

∂x
+ ∂σzz

∂z
, (A2)

σxx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
, (A3)

σzz = λ
∂ux

∂x
+ (λ + 2µ)

∂uz

∂z
, (A4)

σxz = µ

(
∂uz

∂x
+ ∂ux

∂z

)
, (A5)

where u is the displacement and ω the angular frequency. At the
surface, σ zz(z = 0) = σ xz(z = 0) = 0. We want to find the stress
near the free surface and express this in terms of acelleration at the
free surface. The z-derivative of displacement is non-zero but cannot
be measured, therefore, we eliminate ∂u z/∂z from (A3) to (A4) by
taking (λ + 2µ)(A3) − (λ)(A4):

(λ + 2µ) σxx − λσzz =
[

(λ + 2µ)2 − λ2
]∂ux

∂x
. (A6)

At the surface, σ zz = 0, hence,

σ (0)
xx = 4µ (λ + µ)

λ + 2µ

∂ux

∂x
, (A7)

where σ
(0)
i j refers to the stress at the surface of the slope. Using

a Taylor series expansion, σ xx(z) = σ (0)
xx + O(z). The first term

gives the dominant contribution of σ xx near the surface, which is
expression (A7) in this approximation.

Since σ (0)
zz = 0,

σzz(z) = ∂σ (0)
zz

∂z
z + O(z2). (A8)

∂σ (0)
zz /∂z is found by evaluating (A2) at z = 0, where σ xz vanishes

at the free surface, hence

−ρω2u(0)
z = ∂σ (0)

zz

∂z
. (A9)

Inserting this into (A8) gives:

σzz(z) = −ρω2u(0)
z z + O(z2). (A10)

Similarly,

σxz(z) = ∂σ (0)
xz

∂z
z + O(z2). (A11)

Substituting (A7) into (A1) to evaluate this derivative at the free
surface gives,

−ρω2ux =
{

∂

∂x

[
4µ(λ + µ)

λ + 2µ

∂ux

∂x

]}
+ ∂σxz

∂z
, (A12)

∂σxz

∂z
= −ρω2ux −

{
∂

∂x

[
4µ(λ + µ)

λ + 2µ

∂ux

∂x

]}
. (A13)

Therefore, the dynamic stress equations for the near-surface are to
leading order given by:

σ dyneq
xx (z) = 4µ(λ + µ)

λ + 2µ

∂u(0)
x

∂x
+ O(z), (A14)

σ dyneq
zz (z) = −ρω2u(0)

z z + O(z2), (A15)

σ dyneq
xz (z) = −

{
ρω2u(0)

x + ∂

∂x

[
4µ(λ + µ)

λ + 2µ

∂u(0)
x

∂x

]}
z + O(z2).

(A16)
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Considering plane wave solutions, the displacement is given by:

u(x, z, t) = u(t − px, z), (A17)

where p is the slowness or ray parameter. Therefore, the x-derivative
of displacement is given by:

∂ux

∂x
= −p

∂ux

∂t
= −pvx , (A18)

where v x is the particle velocity in the x-direction. In the following
we consider harmonic motion with frequency f . Using eq. (A18) for
such motion and expression

v(ω) = a(ω)
−iω

, (A19)

that relates velocity to the acceleration, eq. (A18) can be written
as:

∂ux

∂x
= −p

−iω
ax = p

2π i f
ax , (A20)

where a x is acceleration, i =
√

−1, and f the frequency of
the wave. The absolute value of the derivative of displacement is

approximately equal to:
∣∣∣∣
∂ux

∂x

∣∣∣∣ ≈
∣∣∣∣

p
2π f

ax

∣∣∣∣ . (A21)

The slowness, p, is also related to the angles of incidence, i p and i s ,
and the velocities at the surface, v p and v s , of the P and S waves,
respectively,

p = sin(i p)
vp

= sin(is)
vs

. (A22)

By substituting (A21) for the derivative of displacement in eqs
(A14)–(A16), the stress components are related to slowness and,
hence, the angle of incidence of a plane wave,

σ dyneq
xx (z) = 4µ(λ + µ)

λ + 2µ

(
p

2π f

)
ax + O(z), (A23)

σ dyneq
zz (z) = −ρaz z + O(z2), (A24)

σ dyneq
xz (z) = −

{
ρax +

[
4µ(λ + µ)

λ + 2µ

](
p

2π f
∂ax

∂x

)}
z + O(z2).

(A25)
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