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Abstract: Existing methods for Green’s function extraction give the
Green’s function from the correlation of field fluctuations recorded at
those points. In this work it is shown that the Green’s function for
acoustic waves can be retrieved from measurements of the integrated
energy flux through a closed surface taken from three experiments
where two time-harmonic sources first operate separately, and then
simultaneously. This makes it possible to infer the Green’s function in
acoustics from measurements of the energy flux through an arbitrary
closed surface surrounding both sources. The theory is also applicable
to quantum mechanics where the Green’s function can be retrieved
from measurement of the flux of scattered particles through a closed
surface.
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1. Introduction
Extracting the Green’s function from field fluctuations is a technique that has gone
through a rapid growth.1–7 Traditionally the Green’s function is retrieved from cross
correlation of measured field fluctuations. In this work we present a different method
that allows extraction of the Green’s function of acoustic waves by considering a
sequence of three experiments with time-harmonic sources at two locations, rA and rB.
In these experiments one first measures the total energy flux through a closed surface
surrounding the sources when each of the sources is used separately, and then measures
the total energy flux when both sources are used simultaneously. We show that these
measurements can be used to determine the Green’s function G(rA, rB). Our method
extracts the Green’s function between two source locations, as shown by Curtis et al.,8

the key difference being that we show that measurements of the total energy flux
through a closed surface are sufficient to extract the Green’s function of acoustic
waves. In holography, phase information is restored from intensity measurements of
the interference of a reference wave with waves reflected off an object.9,10 In our work
the phase information is retrieved from the energy flux through a closed surface of
waves that are excited by different time-harmonic sources.

This concept can also be applied to quantum mechanics. Existing methods for
the retrieval of the phase of the wave function11–14 are based on intensity measure-
ments taken at the location where the phase is retrieved. In the method proposed here,
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the amplitude and phase of the Green’s function is inferred from measurements of the
average flux of scattered particles through a closed surface.

2. Retrieving the green’s function of acoustic waves from the energy flux
The theory presented here is valid for time-harmonic fields with time dependence e!ixt

that are excited by volume injection sources q(r, t)¼ q(r)e!ixt. The pressure p and
particle velocity v satisfy for such sources the following equation of motion and consti-
tutive relation

rp! ixqv ¼ 0; (1)

ðr $ vÞ ! ixjp ¼ !ixq: (2)

Both the compressibility j(r) and mass density q(r) can be arbitrary functions of space,
but must be real in the following derivation. This means that the theory is not valid
for attenuating media.

We derive an expression for the energy current by forming the combination
v*(E1)þ p(E2)*þ v(E1)*þ p*(E2), where (E2)* denotes, for example, the complex con-
jugate of Eq. (2). Forming this combination, integrating over volume, averaging over
time, and applying Gauss’ law gives

! 4i
x

U ¼
ð

V

"
q'p! qp'

#
dV ; (3)

where U is the time-averaged energy flux through @V that is given by15

U ¼ 1
4

þ

@V
pv' þ p'vh i $ dS; (4)

and h$ $ $i denotes time averaging. Because p* and v vary with time as eixt and e!ixt,
respectively, the integrand in expression (4) does not depend on time. The time-
averaging thus is an average over measurements taken over a given time-interval. Such
averaging suppresses the influence of additive noise, but no further time-averaging of
the theory is needed. When the excitation is given by a superposition of point sources
at locations rn with complex spectrum Wn, the excitation is given by
q r; tð Þ ¼ RnWnd r! rnð Þe!ixt and the response is p(r, t)¼Rn WnG(r, rn)e!ixt, with G the
Green’s function. For simplicity of notation we suppress the frequency dependence of
G. From Eq. (3) and reciprocity (G(rn, rm)¼G(rm, rn)), the energy flux then satisfies

! 4i
x

U ¼
X

n;m
WnW '

m

"
Gðrn; rmÞ ! G'ðrn; rmÞ

#
: (5)

We consider the three experiments shown in Fig. 1. First, a time-harmonic
source with complex spectrum W is present at location rA. Then the experiment is
repeated with a source with the same spectrum at location rB, and then these two time-
harmonic sources are used simultaneously at locations rA and rB. For each source con-
figuration the flux through @V is denoted by UA, UB, and UAB, respectively. In the
experiment in the left panel of Fig. 1, Eq. (5) gives

! 4i

x Wj j2
UA ¼

"
GðrA; rAÞ ! G'ðrA; rAÞ

#
: (6)

The right hand side is, strictly speaking, given by the time average, but since we have
used that the Green’s function is given by G(r, rA, x)e!ixt, the frequency domain
Green’s function G(r, rA, x) does not depend on time and the time averaging can be
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omitted. The right hand side of Eq. (6) is equal to 2iIm(G(rA, rA)), with Im denoting
the imaginary part. Since the imaginary part of the Green’s function satisfies a homo-
geneous equation, it is finite at the source,16,17 and the right hand side of Eq. (6) there-
fore is finite. The experiment in the middle panel of Fig. 1 gives the same result as
expression (6) but for the source at rB

! 4i

x Wj j2
UB ¼

"
GðrB; rBÞ ! G'ðrB; rBÞ

#
: (7)

In the experiment in the right panel of Fig. 1, Eq. (5) reduces to

! 4i

x Wj j2
UAB ¼

"
GðrA; rAÞ þ 2GðrA; rBÞ þ GðrB; rBÞ

! G'ðrA; rAÞ ! 2G'ðrA; rBÞ ! G'ðrB; rBÞ
#
:

(8)

Subtracting Eqs. (6) and (7) from Eq. (8) gives

GðrA; rBÞ ! G'ðrA; rBÞ ¼
2i

x Wj j2
ðUA þ UB ! UABÞ: (9)

The left hand side gives the imaginary part of G(rA, rB) at angular frequency x.
One might think that this is not enough information to recover the full Green’s func-
tion, but repeating the experiment for all frequencies x of interest and Fourier trans-
forming to the time domain changes the left hand side of Eq. (9) into G(rA, rB, t) –
G(rA, rB, –t). Since the Green’s function is causal, G(rA, rB, t) is only nonzero for t> 0
and G(rA, rB, –t) is only nonzero for t< 0. By parsing these contributions the full
Green’s functions can be determined. The right hand side of Eq. (9) depends on the
measured energy fluxes. This means that expression (9) can be used to determine the
Green’s function from the measurement of the integrated energy fluxes for the experi-
ments in Fig. 1.

3. Experimental aspects
The measurements of UA and UB in Sec. 2 are presumed to be carried out with identi-
cal point sources at rA and rB. Consider next a point source at rA with spectrum
WA¼RAeiuA with positive amplitude RA and phase uA, and a point source with spec-
trum WB¼RBeiuB at rB. Repeating the derivation of the previous section generalizes
Eq. (6) into

FIG. 1. Three source configurations and their energy currents. The currents in the three configurations corre-
spond to fluxes UA, UB, and UAB, respectively.
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! 4i
x

UA ¼ R2
A

% &"
GðrA; rAÞ ! G'ðrA; rAÞ

#
: (10)

The phase shift eiuA cancels in the measurements of UA, hence there is no need to con-
trol the phase of the source for the measurements with a single source. The situation is
different for the measurement of UAB for two simultaneous sources, because this mea-
surement relies on the interference of waves excited at rA and rB. Repeating the deriva-
tion leading to expression (9), and assuming that the amplitude and phase variations
are independent, gives in this case

RARBh i cosðuA ! uBÞh i
"

GðrA; rBÞ ! G'ðrA; rBÞ
#
¼ 2i

x
ðUA þ UB ! UABÞ: (11)

When the sources are incoherent during the averaging, cosðuA ! uBÞh i ¼ 0 and the
Green’s function cannot be retrieved. Hence the sources must be coherent and have a
constant phase difference when used simultaneously. This phase difference needs not
vanish, as long as it is different from uA – uB¼6p/2. Note that it is not necessary to
know the absolute phase uA and uB of the sources, and that we did not assume that
the phase of the sources in the three experiments of Fig. 1 is identical. A constant
phase shift between the sources at rA and rB thus only gives an overall amplitude
change, as do variations in amplitudes of the sources. Note that the amplitudes of the
sources need not be equal, as long as their average product hRARBi is known.

In experiments the source at rA may not be a point source, but a finite real
source distribution q(r)¼SA(rA – r) centered at rA. The waves radiated by a source of
finite extent at rA are given by pðrÞ ¼

Ð
Gðr; r0ÞSAðrA ! r0ÞdV 0, and the right hand side

of Eq. (3) contains
Ð

q'ðrÞpðrÞdV ¼
Ð Ð

SA rA ! rð ÞGðr; r0ÞSAðrA ! r0ÞdVdV 0. Suppose
that the source at rB is given by a distribution SB(rB – r), centered at rB that is also
real. Generalizing the derivation given earlier then gives

ðð
SAðrA ! rÞfGðr; r0Þ ! G ' ðr; r0ÞgSBðrB ! r0ÞdVdV 0 ¼ 2i

x
ðUS

A þ US
B ! US

ABÞ; (12)

where US denotes the flux generated by the finite sources SA and SB. In this case a
double convolution of the Green’s function with the source functions is obtained.
By deconvolution one can, in principle, obtain G – G*. In practice this may not be
possible for all frequencies; in that case one can only obtain a band-limited version of
G – G*.

4. Quantum mechanics
The treatment of Sec. 2 for acoustic waves can be extended to the Schrödinger equa-
tion. This application may be relevant because the wave function cannot be directly

FIG. 2. Comparison of the traditional method for Green’s function extraction (Ref. 27) from random sources
(right panel), with the method for Green’s function extraction proposed in this work (left panel). Sources are
denoted by stars, receivers by circles.
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measured,18 but the expectation value of the probability density flux, as derived below,
is an observable quantity.

Consider a wave function w that satisfies Schrödinger equation18 Hw ¼ i!h@w=@t,
where H denotes the Hamiltonian, and an unperturbed wave w0 that satisfies
H0w0 ¼ i!h@w0=@t, where H0 does not need to denote a homogeneous medium. Decom-
posing the wave function w¼w0þwS into unperturbed waves w0 and scattered waves wS,
and decomposing the Hamiltonian as H¼H0þH0, gives the following inhomogeneous
Schrödinger equation for the scattered waves: HwS ¼ i!h@wS=@tþH 0w0. For time-
harmonic problems the wave function of the scattered waves thus satisfies

r2wSðrÞ þ k2 ! 2m
!h2 VðrÞ

( )
wSðrÞ ¼ 4pqðrÞ; (13)

where !h is Planck’s constant divided by 2p, m is the mass, x is the angular frequency,
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx=!h

p
is the wave number, and V(r) is a real, but otherwise arbitrary, potential

that influences the scattered waves. The source q(r) of the scattered waves is due to the
action of H0 (but not of V) on w0. When H0 is localized in space, H0w0 acts as point
source with a time dependence given by w0. We next derive an expression for the proba-
bility density current of the scattered waves by considering w'S E13ð Þ ! wS E13ð Þ', where
the asterisk denotes complex conjugation and (E13) stands for Eq. (13). Integrating the
result over a volume V, with boundary @V , and applying Green’s theorem, gives

! mi
2p!h

U ¼
ð

V
q'wS ! qw'S
% &

dV ; (14)

where U is the average probability density flux of scattered waves U
¼ !h=2mið Þ

Þ
@V ðw

'
SrwS ! wSrw'SÞ $ dS

% &
. This quantity, which is also used in the defini-

tion of the scattering cross section, accounts for the probability per unit time that scat-
tered particles traverse the surface.18 This probability density flux takes the place of
the energy flux of the acoustic waves in Sec. 2. For charged particles, U is proportional
to the mean scattered electrical current through @V ,19,20 which reduces measurement
of U to a measurement of perturbations in electrical current.

The same three experiments shown in Fig. 1 can be applied to this quantum
mechanical system, and using the reasoning that led to Eq. (9) for identical sources
(qA¼ qB¼W) gives for the quantum case

GSðrA; rBÞ ! G'SðrA; rBÞ ¼
mi

4p!h Wj j2
ðUA þ UB ! UABÞ: (15)

This means that for quantum mechanics the Green’s function GS that accounts for
wave propagation of scattered waves between rA and rB can be constructed by meas-
uring the probability density fluxes through @V for the three source configurations of
Fig. 1. Just as in acoustics the full Green’s function, including the phase, can be found
by measuring fluxes for three different experiments.

5. Discussion
The theory presented here provides a method to obtain the Green’s function for acoustic
waves from measurements of the integrated energy flux through a closed surface surround-
ing two sources. Measurement of the acoustic energy flux21 can be carried out by using
two nearby microphones,22–24 or using devices that contain a microphone and an acceler-
ometer.25,26 The proposed method for Green’s function extraction can be applied to such
measurements. The theory holds for an arbitrary real density q(r) and compressibility j(r).
The derivation breaks down when the imaginary parts of these quantities are nonzero,
which means that the system may not be attenuating. Physically, this makes sense, because
in the presence of attenuation the energy flux changes as the surface @V is taken further
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away from the sources. As shown in Eq. (11), the used sources need not be in phase, but
their phase difference must remain constant during measurement. The two sources need
not have the same amplitude, as long as the average product of the amplitudes is known.
Both a nonzero phase difference and amplitude variations of the source change the ampli-
tude of the estimated Green’s function, when not properly accounted for, but not its
phase. We show in Sec. 4 that the theory can be extended to the Schrödinger equation for
an arbitrary real potential V(r), and that in this case the integrated intensity flux is to be
replaced by the integrated flux of scattered particles.

The method for Green’s function extraction is based on a subtraction of quan-
tities that are quadratic in the field variables. For example, for the term p*v in Eq. (4),
the method relies on the identity

ðp'A þ p'BÞðvA þ vBÞ ! p'AvA ! p'BvB ¼ p'AvB þ p'BvA: (16)

Note that the right hand side only contains cross-terms of the two states A and B,
hence the subtraction selects interference terms between the two states. In quantum
mechanics this concept can be generalized to the following subtraction of the expecta-
tion values18 of any operator O

wA þ wB Oj jwA þ wBh i! wA Oj jwAh i! wB Oj jwBh i ¼ wA Oj jwBh iþ wB Oj jwAh i; (17)

which follows from the bilinear properties of the expectation value.
We next establish the connection between Green’s function retrieval from

measurements of the total energy flux presented here and earlier formulations. Insert-
ing expressions (16) and (9) into Eq. (4), using the equation of motion (1) to eliminate
v, and substituting the Green’s function G(r, rA,B) for pA,B

GAB ! G'AB ¼
1

2x2

þ

@V

1
q

(
Gðr; rAÞrG'ðr; rBÞ ! G'ðr; rBÞrGðr; rAÞ

)
$ dS; (18)

where GAB¼G(rA, rB). This integral has the same form as the integral used in Green’s
function extraction for acoustic waves [e.g., expression (9) of Wapenaar et al.],27 except
that in Eq. (18) the Green’s function has arguments G(r, rA,B), whereas in traditional
Green’s function extraction the integrand depends on G(rA,B, r).27

The Green’s function extraction of expression (18) relies on field fluctuations
that are generated by pressure sources and forces27 (monopole and dipole sources).
When the surface is far away and spherical, the forces can be replaced by pressure sour-
ces,27 but when the surface does not meet these criteria, pressure sources do not suffice.
In contrast, the theory presented here is exact, and measurements of the energy current
suffice for a surface of arbitrary shape, even when it is in the near field of the sources.

The integral (18) corresponds to the situation shown in the left panel of Fig. 2
where the energy flux of the field excited by sources at rA and rB is measured at locations
r at @V . In Green’s function extraction, shown in the right panel of Fig. 2, one cross
correlates the fields measured at locations rA and rB that are excited by uncorrelated
sources at locations r on the surface.27 Because of reciprocity (G(r, rA,B)¼G(rA,B, r))
these two cases are identical. It was recognized earlier8 that cross-correlation methods
can yield the waves that propagate between sources. In this work we generalize this prin-
ciple to obtain the Green’s function from measurements of the total energy flux.
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