
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Lagrangian Green’s function extraction, with
applications to potential fields, diffusion and
acoustic waves

Roel Snieder1,3, Evert Slob1,2 and Kees Wapenaar2

1 Center for Wave Phenomena, Colorado School of Mines,
Golden, CO 80401, USA
2 Department of Geotechnology, Delft University of Technology,
PO Box 5048, 2600 GA Delft, The Netherlands
E-mail: rsnieder@mines.edu

New Journal of Physics 12 (2010) 063013 (24pp)
Received 8 January 2010
Published 8 June 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/6/063013

Abstract. The extraction of the response of physical systems from field
fluctuations is an area undergoing rapid growth. It is of relevance because
it makes it possible to obtain the response of the system from passive field
fluctuations instead of from an active point source. The impulse response is
characterized by the Green’s function G(t). The existing theory leads to the
retrieval of G(t) − G(−t), the difference of Green’s function and its time
reversed counterpart. We show that the theory for Green’s function extraction can
be extended to many problems to yield both the difference and the sum of G(t)
and G(−t). The importance of this derivation is that it extends the type of sources
of field fluctuations that can be used for Green’s function retrieval. The new
formalism also opens up the possibility to extract the Green’s function from field
fluctuations in static systems. We show how this can be done for potential field
problems and for direct current problems in conducting media, and illustrate this
with a numerical example. For diffusive fields, the new formalism provides the
possibility to extract the Green’s function from field fluctuations excited either
by injection sources or by current sources; previously this could be done only
with injection sources. We show that with the new theory, the Green’s function
of acoustic waves can be retrieved from field fluctuations excited by body
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forces instead of from injection sources when the attenuation is constant. The
Green’s function extraction formulated here corresponds, for acoustic waves, to
a Lagrangian formulation rather than the Hamiltonian (energy) principles that
were used previously.
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1. Introduction

Green’s function extraction from field fluctuations is an area that has undergone
spectacular growth recently [1]. The technique is ultimately based on the fluctuation
dissipation theorem [2]–[5] formulated decades ago, but applications flourished when
ultrasound measurements showed that this technique could be used in practice [6]–[9].
The technique found many applications that include ocean acoustics [10]–[12], crustal
seismology [13]–[15], exploration seismology [16]–[20], structural engineering [21]–[25] and
medical diagnostics [26]. There are several derivations for the theory of Green’s function
extraction that hold for a large class of linear scalar and vector systems [27]–[30].

Derivations for Green’s function extraction yield either the sum or the difference of
the causal Green’s function G(t) and its time-reversed counterpart G(−t). In the frequency
domain, this corresponds to retrieving G(ω) + G∗(ω) or G(ω) − G∗(ω), where the superscript
asterisk denotes the complex conjugate. For example, for acoustic waves some derivations [31]
lead to G(ω) + G∗(ω), while others [32] give G(ω) − G∗(ω). Part of this confusion is related
to ambiguities in the definition of the Green’s function. Suppose that one derivation for
Green’s function extraction gives an expression for G(ω) − G∗(ω). Suppose that one defines
a new Green’s function G̃(ω) that is, in the frequency domain, related to the original Green’s
function G(ω) by the relation G̃(ω) = −iωG(ω), where the factor −iω accounts for the time
derivative. The original expression for G(ω) − G∗(ω) now leads to a new expression for
(−iω)−1(G̃(ω) + G̃∗(ω)). Similarly, when one arbitrarily includes a factor i in the excitation
of the Green’s function [31], one obtains a different superposition of G(ω) and G∗(ω) than

New Journal of Physics 12 (2010) 063013 (http://www.njp.org/)



3

when such a factor i is excluded [32]. These differences in the definition of the Green’s function
depend purely on convention and have no physical meaning.

There is, however, a more fundamental reason for analyzing the extraction of the same
Green’s function G(ω) from either G(ω) + G∗(ω) or G(ω) − G∗(ω). For wave systems, one
can extract the Green’s function either from fluctuations excited by sources on a bounding
surface [31], or from sources throughout the volume [8]. We show in this work that this
difference is related to the extraction of different superpositions of G(ω) and G∗(ω). The
different formulations for Green’s function extraction are thus applicable to the extraction
of the impulse response from field fluctuations excited by different types of sources. The
new formalism presented here thus makes it possible to extract the Green’s function for field
fluctuations generated by random sources that were not included in previous formulations of
Green’s function extraction. One such application is potential fields. For these static problems
the Green’s function is real, so G(ω) − G∗(ω) = 0, and therefore the Green’s function extraction
must be based on the sum G(ω) + G∗(ω). This new application was the original motivation for
this work, and it theoretically opens up the possibility to obtain the impulse response of potential
field problems from observed quasi-static field fluctuations.

In section 2, we analyze general scalar linear systems and generalize an earlier derivation
for G(ω) − G∗(ω) [28] to the extraction of the sum G(ω) + G∗(ω). We apply this general
formalism in section 3 to systems that are invariant under time reversal and show that for such
systems G(ω) − G∗(ω) can be obtained from sources of the field fluctuations on a surface
that encloses the receivers, while G(ω) + G∗(ω) follows from field fluctuations excited by
volume sources. In section 4, we apply the general theory to electrostatics or direct current
measurement in conducting media. We show that the static Green’s function for such problems
can be obtained from quasi-static field fluctuations excited by slowly varying electric dipoles
throughout the volume. We illustrate the extraction of the electrostatic Green’s function with
a numerical example in section 5 that is based on the electric field of a dipole within a
conducting shell as derived in appendix A. We apply the general theory to the diffusion equation
in section 6. Field fluctuations for diffusive fields can be created either by injection sources
that locally change the value of the field or by current sources that change the current of the
field. We show that G(ω) − G∗(ω) can be extracted from injection sources throughout the
volume, while G(ω) + G∗(ω) extends the previous theory by also allowing current sources in
the volume. In sections 7.1 and 7.2, we consider acoustic waves and show that G(ω) − G∗(ω)
and G(ω) + G∗(ω) can be extracted from field fluctuations, and discuss the physical meaning
of these formulations. In appendix B, we relate this to the energy of the harmonic oscillator.
We verify the expression for G(ω) + G∗(ω) for acoustic waves in closed systems in appendix C
using a normal mode expansion.

2. General theory

In this work, we consider fields that satisfy the following scalar equation:
(

an(r, t) ∗ ∂n

∂tn
+ · · · + a1(r, t) ∗ ∂

∂t

)
∗ u(r, t) = H(r, ∇, t) ∗ u(r, t) + q(r, t). (1)

In this expression, the asterisk denotes temporal convolution, H(r, ∇, t) is a spatial differential
operator, and q(r, t) is the source of the field u(r, t). Table 1 gives examples of an and H
for a variety of physical systems. Using the Fourier convention f (t) =

∫
f (ω)exp(−iωt)dω,
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Table 1. Examples of an and H for different physical systems and the
possibilities for Green’s function retrieval. The symbols denote the following
physical quantities: κ = compressibility, D = diffusion parameter, ρ = mass
density, ε = electric permittivity and γ = inverse of quality factor.

Equation an H G − G∗ G + G∗

Diffusion a1 = 1 ∇ · (D(r)∇) Injection sources Current sources
in volume in volume

Acoustic waves a2 = κ(r, ω) ∇ · (ρ−1(r)∇) Injection sources Difference of
(no attenuation) (Im(κ) = 0) on boundary correlations
Acoustic waves a2 = κ(r, ω) ∇ · (ρ−1(r)∇) Injection sources Volume forces
(with attenuation) (Im(κ) $= 0) in volume (∇γ = 0)
Electrostatics all an = 0 ∇ · (ε(r)∇) Not possible Dipole sources
Systems invariant Re(an) = 0 for n odd H = H∗ Sources Sources
under time reversal Im(an) = 0 for n even on boundary in volume

expression (1) corresponds, in the frequency domain, to
∑

n

an(r, ω)(−iω)nu(r, ω) = H(r, ∇, ω)u(r, ω) + q(r, ω). (2)

The derivation in the remainder of this work is in the frequency domain, and for brevity we
suppress this frequency dependence in all equations. Functions without arguments depend on ω
and r.

Field equation (2) has many solutions that correspond to different values of the excitation
q(r, ω). We refer to these solutions as field states. In the following, we consider combinations of
field states and distinguish these field states with subscripts A and B. An expression for G − G∗

follows by taking the field equation for a state A and multiplying it with the complex conjugate
of a field state B. Interchanging the states A and B, taking the complex conjugate, subtracting
the resulting expressions and using delta function sources for the two fields gives [28]

G(rA, rB) − G∗(rA, rB) = −2
∑

n odd

(−iω)n
∫

V
Re(an(r))G(r, rA)G∗(r, rB) dV

−2i
∑

n even

(−iω)n
∫

V
Im(an(r))G(r, rA)G∗(r, rB) dV

+
∫

V
(G∗(r, rB)H(r, ∇)G(r, rA) − G(r, rA)H ∗(r, ∇)G∗(r, rB)) dV, (3)

where Re and Im denote the real and imaginary parts, respectively. (For brevity we suppress
the dependence of H on frequency in the above expression and the following.) Using a similar
derivation, but using the addition of G and G∗ instead of subtraction, one arrives at the following
expression for G + G∗:

G(rA, rB) + G∗(rA, rB) = 2i
∑

n odd

(−iω)n
∫

V
Im(an(r))G(r, rA)G∗(r, rB) dV

+2
∑

n even

(−iω)n
∫

V
Re(an(r))G(r, rA)G∗(r, rB) dV

−
∫

V
(G∗(r, rB)H(r, ∇)G(r, rA) + G(r, rA)H ∗(r, ∇)G∗(r, rB)) dV, (4)
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Note that H is, in general, a differential operator, hence the two terms in the last volume
integral in this expression are different. Equation (3) and its application to the diffusion equation,
acoustic waves and quantum mechanics was discussed earlier [28]. In the following, we discuss
the connection between expressions (3) and (4) and show that equation (4) opens up new
possibilities for Green’s function extraction that are not covered by expression (3).

3. Systems that are invariant under time reversal

A connection has been established between time reversal and the Green’s function extraction of
undamped acoustic waves [33]. Because of the importance of time-reversal invariance to a large
number of applications [34], we first analyze systems that are invariant under time reversal.
Time reversal corresponds, in the frequency domain, to complex conjugation. For such systems
equation (2) is equal to its complex conjugate; hence

H = H ∗, Re(an) = 0 for n odd, Im(an) = 0 for n even. (5)

Using this in expression (3) gives

G(rA, rB) − G∗(rA, rB) =
∫

V
(G∗(r, rB)H(r, ∇)G(r, rA) − G(r, rA)H(r, ∇)G∗(r, rB)) dV .

(6)

Following [28], we define the operator L via
∫

V
( f Hg − gH f ) dV =

∮

∂V
L( f, g) dS. (7)

For example, consider

H(r, ∇) f (r) = ∇ · (B(r)∇ f (r)); (8)

as shown in table 1 this covers a large number of applications for different choices of B(r).
Using Gauss’ theorem one finds, for this case, that

∫

V
( f Hg − gH f ) dV =

∮

∂V
B(r)

(
f
∂g
∂n

− ∂ f
∂n

g
)

dS; (9)

hence for this case L( f, g) = B(r)( f ∂g/∂n − ∂ f/∂ng). We are not aware of a proof that an
operator L can be found for any operator H ; hence the existence of an operator L that satisfies
equation (7) must be verified on a case-by-case basis. If the operator H is such that an operator
can be found that satisfies expression (7), then it follows, for systems invariant under time
reversal, that

G(rA, rB) − G∗(rA, rB) =
∮

∂V
L (G∗(r, rB), G(r, rA)) dS. (10)

Since the right-hand side contains a surface integral only, it is possible for systems that are
invariant under time reversal and that satisfy expression (7) to extract the Green’s function from
field fluctuations that are excited by sources acting on a closed surface that surrounds rA and rB ,
e.g. [28, 31].
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Let us next consider the combination G + G∗ for systems invariant under time reversal.
Using the conditions (5) in expression (4) gives

G(rA, rB) + G∗(rA, rB) = 2
∑

n

(−iω)n
∫

V
an(r)G(r, rA)G∗(r, rB) dV

−
∫

V
(G∗(r, rB)H(r, ∇)G(r, rA) + G(r, rA)H(r, ∇)G∗(r, rB)) dV, (11)

where, for odd n, we used the fact that i Im(an) = an (because Re(an) = 0), whereas for even
n the imaginary part of an vanishes, so Re(an) = an. The first term in the right-hand side is
symmetric in G(r, rA) and G∗(r, rB). Green’s function extraction is based on the correlation
of fields u(rA) and u(rB) that are excited by random sources. These fields are given by the
Green’s function (or its gradient), acting on these sources [1]. The resulting correlation is, in
the frequency domain, given by u(rA)u∗(rB). Since both fields depend in the same way on the
Green’s functions G(r, rA) and G∗(r, rB), respectively, the correlation is symmetric in these
Green’s functions. By contrast, a term such as G∗(r, rB)H(r, ∇)G(r, rA) is not symmetric in
G∗(r, rB) and G(r, rA) because H(r, ∇) is a differential operator that acts only on the field
on its right. The field G∗(r, rB) is the field excited by a point source, while H(r, ∇)G(r, rA)
corresponds, in general, to the field generated by a different type of source. The combination
G∗(r, rB)H(r, ∇)G(r, rA) therefore does not correspond to the correlation of field generated
by the same type of source. The terms in the second volume integral can, however, sometimes
be made symmetric in G(r, rA) and G∗(r, rB) using integration by parts. For example, for the
operator of expression (8):

∫

V
( f Hg + gH f ) dV =

∮

∂V
B

(
f
∂g
∂n

+
∂ f
∂n

g
)

dS − 2
∫

V
B(∇ f · ∇g)dV . (12)

As shown in table 1, this special case covers many physical systems for different choices
of B(r).

It follows from expression (12) that for the operator H from expression (8), the sum
G + G∗ can be written in a way where each term in the right-hand side is symmetric in G(r, rA)
and G∗(r, rB), but one cannot avoid a volume integral in the right-hand side. This means that
Green’s function extraction applied to G + G∗ from field fluctuations requires sources of these
fluctuations throughout the volume. This leads to the important conclusion that for systems that
are invariant under time reversal and with H given by equation (8), one can extract G − G∗ from
field fluctuations excited on the surface ∂V , whereas for extraction of G + G∗ one needs field
fluctuations excited by sources throughout the volume. The use of G + G∗ thus theoretically
opens up the possibility of Green’s function extraction of systems invariant for time reversal
from field fluctuations excited by volume sources. Table 1 summarizes, for the examples shown
in the work, the types of sources needed for the retrieval of G − G∗ or G + G∗.

4. Green’s function extraction in electrostatics

In linear dielectric media, the electric displacement D is related to the electric field E by
the relation D = εE, with ε(r) being the electrical permittivity [35]. Using the field equation
(∇ · D) = q, with q(r) being the charge density, and the relation E = −∇u, with u(r) being the
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electric potential, the following field equation is obtained:

0 = ∇ · (ε(r)∇u(r)) + q(r). (13)

In this section and the next, the field u(r) is the electrostatic potential. In the notation of
expression (2), all an = 0, while H is given by expression (8) with B replaced by ε. We make
this replacement throughout this section. If instead of the electrostatic problem we consider
direct currents in a conducting medium, then the charge density q(r) is replaced by a volume
density of charge injection or extraction rate −q̇(r) (the minus sign comes from the historical
convention that the loss of charge from the source region constitutes a positive electric current),
and the electric permittivity ε(r) is replaced by the conductivity σ (r). This leaves equation (13)
intact with different symbols [36]. This results in a formulation for direct current methods in
conducting media.

First note that the Green’s function solution to expression (13) is real, so G − G∗ = 0,
and therefore one cannot retrieve G from the difference G − G∗. Expression (4) together with
equation (12) leads, however, to the following nontrivial relation for G + G∗:

G(rA, rB) + G∗(rA, rB) = −
∮

∂V
ε(r)

(
G(r, rA)

∂G∗(r, rB)

∂n
+

∂G(r, rA)

∂n
G∗(r, rB)

)
dS

+ 2
∫

V
ε(r) (∇G(r, rA) · ∇G∗(r, rB)) dV . (14)

We now assume either that the potential G or the normal component of the electrical field
En = −∂G/∂n vanishes at ∂V or that the boundary is at infinity. In those cases, the surface
integral vanishes and

G(rA, rB) + G∗(rA, rB) = 2
∫

V
ε(r) (∇G(r, rA) · ∇G∗(r, rB)) dV . (15)

In order to establish the connection of this equation with the Green’s function extraction
from field fluctuations we use the field generated by an electric dipole distribution p(r) [35]

u(r0) =
∫

V
(∇G(r0, r)) · p(r) dV . (16)

We next consider random dipole sources that are spatially and directionally uncorrelated and
satisfy

〈pi(r1)p j(r2)〉 = |S|2ε(r1)δ(r1 − r2)δi j , (17)
where |S|2 measures the strength of the dipole sources. For the moment we consider an ensemble
of identical electrostatic systems, each with their own excitation by dipoles, and 〈· · ·〉 denotes
the average over this ensemble of identical electrostatic systems that are excited by different
dipoles. Multiplying expression (15) with |S|2, using the fact that for this problem G is real and
using the summation convention, we obtain

G(rA, rB)|S|2 = |S|2
∫

V
ε(r)∂i G(r, rA)∂i G∗(r, rB) dV

=
∫

V

∫

V
|S|2ε(r1)δ(r1 − r2)δi j∂i G(r1, rA)∂ j G∗(r2, rB) dV1 dV2

=
〈∫

V
∂i G(r1, rA)pi(r1) dV1

∫

V
∂ j G∗(r2, rA)p j(r2) dV2

〉

= 〈u(rA)u∗(rB)〉, (18)
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where the identity
∫

fi(r)gi(r) dV =
∫∫

fi(r1)δ(r1 − r2)δi j g j(r2) dV1dV2 has been used in the
second identity, expression (17) in the third equality and expression (16) in the last identity.
Expression (18) states that the electrostatic Green’s function G(rA, rB) follows from the
ensemble average of the correlation of field fluctuations recorded at rA and rB that are excited
by uncorrelated dipole sources.

In reality one may not have an ensemble of identical electrostatic systems, but one may
have a system where random sources fluctuate with time. When the characteristic time of the
temporal variations in these dipole sources is large compared with the time it takes for light
to propagate through the system, the response of the system is quasi-static. In that case, the
ensemble average can be replaced by a temporal average over the field fluctuations. In fact, the
approach to replace an ensemble average by an average over time is common in seismology
where averaging over multiple non-overlapping time windows is used to extract the dynamic
Green’s function [14, 37, 38]. By applying the same principle to quasi-static field fluctuations,
one can extract the electrostatic Green’s function from temporal field fluctuations.

5. Numerical simulation of Green’s function retrieval in electrostatics

In this example, we illustrate the theory for the Green’s function extraction for the electrostatic
potential by cross-correlating the fields generated by random electric dipoles within a
conducting spherical shell with radius R at which the potential vanishes. Using the method
of images, we show in appendix A that the potential generated by a dipole p at location r
inside the shell vanishes at the shell r = R when one adds the fields generated by a monopole
q ′ = (R/r 2)(p · r̂) and a dipole p′ = −(R/r)3(p − 2(p · r̂)r̂), both at location r′ = (R/r)2r
outside the shell. We use a system of units scaled in such a way that 4πε0 and R are both
equal to 1.

The Green’s function extraction is applied to equation (18). In each realization, the field
u(r) is generated by ten random dipoles at locations that are drawn from a uniform distribution
within the sphere. Each component from each dipole is drawn from a uniform distribution
between −1 and +1. In equation (18), we use rB = (0.3, 0.2, 0) and choose rA along the
x-axis of a coordinate system that has its origin at the center of the sphere. Figure 1 shows
the potential in 200 realizations at three points along the x-axis. The potential at each point has
the character of white noise, which is not surprising because the dipoles in every realization are
uncorrelated and have zero mean. The potential at the different locations is, however, correlated.
It is these correlations in the fields generated by random sources that contain the information
that ultimately leads to the extraction of the Green’s function. Note that it does not matter
whether one considers figure 1 to show different realizations or whether it shows a time series
of the quasi-static electric response of a system that exhibits quasi-random electric dipoles as a
function of time.

Figure 2 shows the cross-correlation of 50 000 realizations of the field fluctuations recorded
at location rB = (0.3, 0.2, 0) and various locations along the x-axis. In all examples shown, the
realizations are divided in ten bins that each contain 5000 realizations that are drawn from the
same statistical distribution. The cross-correlation of field fluctuations in the different bins is
used to compute the mean of the cross-correlation of field fluctuations and the standard deviation
in this mean [39]. The standard deviation of the mean is shown with the error bars in figure 2.
The mean and error thus computed do not depend much on the number of bins chosen, which
means that the averaging over the bins has the same statistical effect as the averaging over
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50 100 150 200
Realization number

x=0

x=0.1

x=0.2

Figure 1. Two hundred realizations of the potential at the x-axis at x = 0, 0.1,
and 0.2, respectively.
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Dipole sources
50,000 realizations

Figure 2. Open symbols: the potential and its standard deviation reconstructed
from 50 000 realizations of random dipoles. Solid line: the true potential for a
monopole at (0.3, 0.2, 0).

realizations within each bin. The solid line in figure 2 shows the potential due to a unit point
charge at location rB , which is the desired Green’s function. The cross-correlations of field
fluctuations, and their errors, are multiplied with a common scale factor that minimizes the
difference of the cross-correlation and the Green’s function. This scale factor accounts for the
term |S|2 in equation (18). Note that the potential estimated from the cross-correlation of field
fluctuations generated by random dipole sources agrees with the true Green’s function within
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Dipole sources (aligned)
50,000 realizations

Figure 3. Open symbols: the potential and its standard deviation reconstructed
from 50 000 realizations of aligned dipoles with dipole moment p = (1, 1, 1).
Solid line: the true potential for a monopole at (0.3, 0.2, 0).

the shown standard deviations. This confirms that the Green’s function for this static example
can indeed by extracted from the cross-correlation of field fluctuations.

The Green’s function in the example of figure 2 was extracted from the cross-correlation
of field fluctuations excited by random dipoles. In each realization, the field was generated by
the simultaneous action of ten dipoles. In order to investigate what happens when the dipoles do
not have a random orientation, we repeated the numerical experiment of figure 2, but now used
the fixed dipole p = (1, 1, 1) in every realization. Ten of these dipoles were placed randomly
within the spherical shell in every realization. The estimate of the Green’s function from the
cross-correlations of the associated field fluctuations is shown in figure 3. In this case, cross-
correlation of field fluctuations does not lead to an acceptable estimate of the Green’s function.
The reason for this discrepancy is that, according to equation (17), the orientation of different
dipole vectors must be uncorrelated. This assumption is violated when a constant dipole vector
is used for every dipole.

One might think that it does not really matter whether field fluctuations are generated
by dipoles or by monopoles (point charges). We show in figure 4 the field extracted from
cross-correlation of 10 000 realizations of field fluctuations generated by random monopoles.
In each realization, ten point charges are placed at uniformly chosen random positions within
the shell. Each point charge is drawn from a uniform distribution between −1 and 1. Note
that the standard deviation in figure 4 is much smaller than that in figure 2, despite the fact
that five times less realizations are used. There are two reasons for this. Firstly, for random
dipole orientations, one carries out an implicit averaging over the direction of the dipole vectors,
but such averaging is not needed for monopole sources. Secondly, the dipole fields vary more
rapidly with space than the monopole field do, so the dipole fields must be sampled more
finely by point charges to mimic the volume integrals in expression (18). Note that the cross-
correlation of field fluctuations caused by random monopoles does not lead to an acceptable
extraction of the Green’s function.
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Figure 4. Open symbols: the potential and its standard deviation reconstructed
from 10 000 realizations of random monopoles. Solid line: the true potential for
a monopole at (0.3, 0.2, 0).

The examples of figures 2 and 4 illustrate the paradox that one needs field fluctuations
excited by random dipoles to extract the monopole field. This is fortunate; natural field
fluctuations cannot be caused by monopoles because the random occurrence of monopoles is
not consistent with charge conservation. Charges are neither created nor destroyed in a source-
free region. This means that only dipoles or higher-order multipoles can excite field fluctuations.
For the expected localized fluctuations, where the local charge separation is orders of magnitude
smaller than that of the measurement scale, the contribution of the dipole moments dominates
the potential field, and the electric potential is given by equation (16). The occurrence of dipole
moments in a material can have four basic causes: electronic, ionic, dipolar and space-charge
polarization [40]. Relaxation times of the first three processes are usually smaller than 1 µs,
whereas for the last process the relaxation time can be as large as 1 s. These timescales are
extremely long compared with the propagation time of light through a system of the size of
a laboratory experiment or geophysical field experiments. Field fluctuations can be generated,
for example in natural rocks by electromagnetic radiation in fracturing rocks or in stressed
rocks before fracturing. During fracturing, bonds are broken. The larger the number of cut
bonds, the larger the number of excited atoms and hence the greater the electromagnetic
radiation amplitude. These electromagnetic oscillations behave like surface vibrational optical
waves, where positive charges move together in a diametrically opposite phase to the negative
ones and decay exponentially into the material like Rayleigh waves. The resulting oscillating
electric dipole is the source of the electromagnetic radiation. The pulse amplitude decays due
to an interaction with bulk phonons, and the lifetime of the measurable electric field varies
between several microseconds and 100 µs [41]. Random field fluctuations caused by charge
separation have been observed in water-saturated porous media that were drained [42]. Each
charge separation in that system is thought to be caused by the burst of a meniscus in the
pore space, the so-called Haines jump. The application to direct current resistivity problems
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and the connection with the fluctuation–dissipation theorem are discussed elsewhere in more
detail [43].

6. Different types of noise sources and the diffusion equation

In this section, we compare different strategies for Green’s function extraction for the diffusion
equation

∂u
∂t

= ∇ · (D∇u) + q, (19)

with D(r) being the diffusion parameter. In the notation of equation (1), a1 = 1, all other an

vanish, and H is given by expression (8) with B(r) being the diffusion parameter D(r). For
simplicity, we consider the situation where either the field u or the current D∂u/∂n vanishes on
the boundary ∂V . This is, for example, the case when the boundary is at infinity.

Using expression (3) and equation (9) to convert the volume integral into a vanishing
surface integral gives the following expression for G − G∗ [44]:

G(rA, rB) − G∗(rA, rB) = 2iω
∫

V
G(r, rA)G∗(r, rB) dV . (20)

Alternatively, equation (4) can be used to derive the following expression for G + G∗:

G(rA, rB) + G∗(rA, rB) = 2
∫

V
D(r) (∇G(r, rA) · ∇G∗(r, rB)) dV, (21)

where equation (12) has been used to convert a volume integral into a vanishing surface integral.
Both expressions can be used to extract the Green’s function from field fluctuations. As

shown earlier [44], for uncorrelated sources that satisfy 〈q(r1)q∗(r2)〉 = δ(r1 − r2)|S(ω)|2, with
|S(ω)|2 being the power spectrum of the sources, the difference G − G∗ can be retrieved from
the correlation of the field fluctuations

G(rA, rB) − G∗(rA, rB) = 2iω
|S(ω)|2

〈u(rA)u∗(rB)〉 , (22)

where u(rA) =
∫

G(rA, r)q(r)dV are the field fluctuations at rA generated by sources q(r). A
similar expression holds for u(rB). Using reasoning similar to that used in deriving expression
(18) one can extract G + G∗ by assuming that random spatially and directionally uncorrelated
current sources J are present that satisfy

〈Ji(r1)J ∗
j (r2)〉 = |S(ω)|2 D(r1)δ(r1 − r2)δi j . (23)

The current sources generate field fluctuations u(J ), and using the same arguments as used in
the derivation of expression (18), it follows that

G(rA, rB) + G∗(rA, rB) = 2
|S(ω)|2

〈u(J )(rA)u(J )∗(rB)〉. (24)

Expressions (22) and (24) show that both G − G∗ and G + G∗ can be extracted from field
fluctuations, but for G − G∗ these fluctuations must be excited by sources of the field itself
(monopole sources), whereas for G + G∗ the fluctuations must be excited by current sources
(dipole sources). The new formalism for G + G∗ opens up the possibility to extract the Green’s
function for diffusive systems from field fluctuations excited by current sources.
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7. Acoustic waves

As the next example we treat acoustic waves where the pressure p and sources q are related by

κ(r, t) ∗ ∂2 p(r, t)
∂t2

= ∇ ·
(

1
ρ(r)

∇ p(r, t)
)

+ q(r, t), (25)

with ρ being the mass density and κ the compressibility. For attenuating media the
compressibility is a relaxation function. This corresponds, in the frequency domain, to a
frequency-dependent compressibility that, because of the Kramer–Kronig relation, has a
nonzero imaginary part. In the notation of expression (1), a2 = κ , all other an vanish, and H
is given by equation (8) with B replaced by 1/ρ (see table 1). In the following subsections, we
analyze the pressure generated by injection rate sources and body forces, so we first discuss
the pressure response generated by both types of sources. The excitation q is related to the
injection rate sources Q and body forces f by the relation q = Q̇ − ∇ · (f/ρ), where the dot
denotes the time derivative. With the employed Fourier convention, this corresponds, in the
frequency domain, to

q(r) = −iωQ(r) − ∇ ·
(

f(r)
ρ(r)

)
. (26)

For a general excitation q(r), the pressure is given by p(r0) =
∫

G(r0, r)q(r) dV . Using the
decomposition (26) in injection sources and body forces, the pressure can be written as

p(r0) = −iω
∫

G(r0, r)Q(r) dV −
∫

G(r0, r)∇ ·
(

f(r)
ρ(r)

)
dV . (27)

Using Gauss’s law, the last integral can be written as
∮

∂V G(r0, r)f(r)/ρ(r) · dS −∫
(∇G(r0, r)) · (f(r)/ρ(r)) dV . When the body force vanishes on the boundary ∂V , the first

term in this expression vanishes, and the pressure is given by

p(r0) = −iω
∫

G(r0, r)Q(r) dV +
∫

(∇G(r0, r)) ·
(

f(r)
ρ(r)

)
dV . (28)

7.1. Extracting G − G∗ for acoustic waves

We first analyze the expression for G − G∗ and take ∂V a large sphere and assume there is no
attenuation (Im(κ) = 0), and that the field satisfies a radiation boundary condition on ∂V

∂p
∂n

= ikp on ∂V, (29)

where k = ω/c, with c being the wave velocity. The Green’s function satisfies the same
boundary condition. Using equation (3) with expression (9) then gives the following expression
for G − G∗:

G(rA, rB) − G∗(rA, rB) = 2iω
∮

∂V

1
ρc

G(r, rA)G∗(r, rB) dS. (30)

This well-known equation [28, 33, 45] states that the Green’s function can be extracted from
field fluctuations excited by sources on a closed surface surrounding rA and rB .
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Let us next consider the case of a closed body where either p or its normal derivative ∂p/∂n
vanishes at the boundary, and consider the Green’s function that satisfies the same boundary
condition. In that case, expression (3) reduces with equation (9) to

G(rA, rB) − G∗(rA, rB) = 2iω2
∫

Im (κ(r)) G(rA, r)G∗(rB, r) dV . (31)

The imaginary part of the compressibility Im(κ(r)) denotes the local attenuation. Consider the
case where random injection sources are present that are spatially uncorrelated and satisfy

〈Q(r1)Q∗(r2)〉 = Im (κ(r1)) |S(ω)|2δ(r1 − r2). (32)

We assume there are no body forces acting (f = 0), so the response is given by the first term
in the right-hand side of equation (28), and the cross-correlation of the corresponding pressure
fluctuations satisfies

〈p(rA)p∗(rB)〉 = ω2

〈∫
G(rA, r1)Q(r1) dV1

∫
G∗(rB, r2)Q∗(r2) dV2

〉

= ω2
∫ ∫

G(rA, r1)G∗(rB, r2)〈Q(r1)Q∗(r2)〉 dV1 dV2

= ω2|S(ω)|2
∫

Im (κ(r)) G(rA, r)G∗(rB, r) dV, (33)

where expression (32) has been used in the last identity. Equation (31) reduces in this case to

G(rA, rB) − G∗(rA, rB) = 2i|S(ω)|−2〈p(rA)p∗(rB)〉. (34)

In this case, G − G∗ follows from field correlations that are excited by volume sources with
a strength proportional to the local attenuation rate. Physically, this requirement implies that
the energy in the system is balanced because the attenuation is everywhere proportional to the
excitation by field fluctuations. This energy balance is required by the fluctuation–dissipation
theorem, which is based on thermal equilibrium [2]–[5], [46]. Note that in the absence of
dissipation, Im(κ) = 0, and expression (31) reduces to G − G∗ = 0. This result simply states
that in this case G is real, but otherwise provides no information about the Green’s function.
We show in appendix B that the energy of an undamped oscillator that receives random kicks
with zero mean grows linearly with time. Such an oscillator therefore cannot be in equilibrium.
Similarly, an undamped closed acoustic medium cannot be in equilibrium when excited by
random injection rate sources with zero mean. In the absence of equilibrium, one cannot obtain
G − G∗ from the expectation value of field fluctuations, because the statistical properties of
these field fluctuations change with time. In that case one needs to consider G + G∗ instead.

7.2. Extracting G + G∗ for acoustic waves

We next consider the case when either radiation boundary conditions or homogeneous boundary
conditions hold on ∂V . In both cases, equations (4) and (12) give the following expression:

G(rA, rB) + G∗(rA, rB) = 2
∫

V

(
1
ρ

(∇G(r, rA) · ∇G∗(r, rB))

−ω2Re (κ(r)) G(r, rA)G∗(r, rB)

)
dV . (35)
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The last term on the right-hand side comes from the contribution of a2 to expression (4). This
term has the same dependence on the Green’s function as does the surface integral in expression
(30), but now appears in a volume integral.

It is possible to retrieve G + G∗ from expression (35) from the following contrived
procedure that considers the difference of two states of field fluctuations. Consider first an
experiment where only random injection sources excite field fluctuations and that these injection
sources are spatially uncorrelated and satisfy

〈Q(r1)Q∗(r2)〉 = Re (κ(r1)) |S(ω)|2δ(r1 − r2). (36)

Using a derivation analogous to the one used in equation (33), the correlation of the associated
pressure fluctuation pQ is given by

〈pQ(rA)pQ∗(rB)〉 = ω2|S(ω)|2
∫

V
Re (κ(r)) G(r, rA)G∗(r, rB) dV . (37)

Consider next another experiment where the field fluctuations are excited by uncorrelated body
forces that satisfy

〈 fi(r1) f ∗
j (r2)〉 = ρ(r1)|S(ω)|2δ(r1 − r2)δi j , (38)

and that there are no injection sources (Q = 0). The pressure field p f for these sources is given
by the last term of expression (28), and the correlation of the field fluctuations satisfies

〈p f (rA)p f ∗(rB)〉 =
〈∫

(∂i G(rA, r1))
fi(r1)

ρ(r1)
dV1

∫
(∂ j G∗(rB, r2))

f ∗
j (r2)

ρ(r2)
dV2

〉

=
∫ ∫

(∂i G(rA, r1))(∂ j G∗(rB, r2))

ρ(r1)ρ(r2)
〈 fi(r1) f ∗

j (r2)〉 dV1 dV2

= |S(ω)|2
∫

1
ρ

(∇G(rA, r)) · (∇G∗(rB, r)) dV, (39)

where expression (38) is used on the last identity. Inserting equations (37) and (39) into equation
(35) finally gives

G(rA, rB) + G∗(rA, rB) = 2
|S(ω)|2

(
〈p f (rA)p f ∗(rB)〉 − 〈pQ(rA)pQ∗(rB)〉

)
. (40)

The sum G + G∗ can thus be found by measuring the field fluctuations generated by injection
sources and body forces and subtracting the cross-correlations of the associated pressure
fluctuations. This procedure is, however, usually not practical because one usually does not
have the ability to separately record the field fluctuations excited by injection sources and by
body forces.

Unfortunately one cannot use expression (35) for the much more practical case where
injection sources and body forces act simultaneously. Suppose that the injection sources and
body forces satisfy equations (36) and (38), and that these different types of sources are mutually
uncorrelated: 〈Qf〉 = 0. Following the steps of the derivation of equations (33) and (39) then
gives the sum 〈p f (rA)p f ∗(rB)〉 + 〈pQ(rA)pQ∗(rB)〉 rather than the difference that is needed in
expression (35). Yet the minus sign in the latter expression is correct, as we verify in appendix C
using a normal mode expansion of the Green’s function.
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Expression (35) can be used to extract G + G∗ from a single type of field fluctuations for
the special case when the ratio of Im(κ) and Re(κ) does not depend on location:

γ (ω) = Im(κ(r, ω))

Re(κ(r, ω))
. (41)

In the following, γ may depend on frequency. Since γ is the inverse of the quality factor,
condition (41) states that the quality factor does not depend on position. In that case, equation
(31) is given by

G(rA, rB) − G∗(rA, rB) = 2iω2γ

∫
Re (κ(r)) G(rA, r)G∗(rB, r) dV . (42)

This expression can be used to eliminate the last volume integral in equation (35) to give

(1 + iγ )G(rA, rB) − (1 − iγ )G∗(rA, rB) = 2iγ
∫

V

1
ρ

(∇G(r, rA) · ∇G∗(r, rB)) dV . (43)

Applying the steps leading to equation (39) to the above expression implies that the Green’s
function can be extracted from field fluctuations extracted by body forces rather than injection
sources. Note that in this case G and G∗ have different weights, but since G is causal and G∗

acausal, this is no restriction. In fact, one can, in principle, determine γ by considering the
amplitude ratio of the extracted causal and acausal responses. Note that expression (31) can be
used for Green’s function extraction from field fluctuations excited by injection sources for an
arbitrary attenuation that may be position dependent. In contrast, equation (43) can be used to
retrieve the Green’s function from field fluctuations excited by body forces, but this expression
can only be used when the attenuation, as defined in expression (41), is constant in space.

We use the example of acoustic waves to clarify the name Lagrangian Green’s function
extraction and return to a general compressibility κ . Using the equation of motion for acoustic
waves (−iωρv = −∇ p, with v being the particle velocity), one can write expression (35) as

G(rA, rB) + G∗(rA, rB) = 4
∫

V

(
ρω2

2
v(G)(r, rA) · v(G)∗(r, rB)

−ω2Re(κ)

2
G(r, rA)G∗(r, rB)

)
dV, (44)

where v(G)(r, r′) is the particle velocity associated with the Green’s function G(r, r′).
When rA = rB , the integral on the right-hand side is given by

∫
V ( 1

2ρω2|v(G)(r, rA)|2 −
(ω2Re(κ)/2)|G(r, rA)|2) dV . This difference of kinetic and potential energies is the Lagrangian
of the acoustic field [47]. Previous formulations for Green’s function extraction were based on
energy principles [28, 48], so they were described by a Hamiltonian formulation. As shown in
equation (44), the approach taken in this paper is, for acoustic waves, based on the Lagrangian.
For this reason, we use the phrase Lagrangian Green’s function extraction.

One might think that because of equipartitioning of kinetic and potential energy, the right-
hand side of equations (35) and (44) vanishes. For an oscillator, the kinetic and potential energies
are, however, equal to each other only when the oscillator is driven at resonance (appendix B).
We show in expressions (C.6) and (C.8) of appendix C that for a closed system the ratio of
the last term of equation (35) to the first term on the right-had side is equal to ω2/ω2

n for a
mode with angular frequency ωn. The two integrals on the right-hand side of expression (35)
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therefore do not, in general, cancel except for an isolated mode with frequency equal to that
of the excitation. Since the total response consists of a sum over all modes, the two terms in
equation (35) are, in general, not equal to each other and their difference is nonzero.

8. Discussion

Traditionally, the theory of Green’s function extraction from field fluctuations is usually
presented as if one can either extract G − G∗ or G + G∗, depending on the chosen convention
for the Green’s function. We show that for a large class of linear scalar systems one can extract
both G − G∗ or G + G∗ from field fluctuations, and that the requirements for the distribution of
the sources of these fluctuations may differ. This extends the type of sources of field fluctuations
that can be used for the retrieval of the Green’s function and thereby theoretically enlarges the
class of systems for which the impulse response can be extracted from field fluctuations. Table 1
summarizes the sources of field fluctuations required for the extraction of G − G∗ and G + G∗.
The applications shown in the right column of table 1 are made possible because of the theory
presented in this work.

For systems invariant under time reversal, one needs uncorrelated sources on a closed
surface surrounding the receivers to extract G − G∗, while one needs sources throughout the
volume to extract G + G∗. The new expression for G + G∗ makes it possible to retrieve the
Green’s function for such systems from field fluctuations that are excited by volume sources.
Because some systems may exhibit only random volume sources instead of surface sources, this
new formulation creates new opportunities for Green’s function retrieval from field fluctuations.

For static systems, the Green’s function is real, so G − G∗ is uninformative, and it was not
known how to extract the impulse response of such systems from field fluctuations. Using the
formulation based on G + G∗, we show that for electrostatic systems, the Green’s function can,
theoretically, be extracted from quasi-static field fluctuations excited by uncorrelated electric
dipole sources. This new result may have applications in geophysics where random dipoles can
be present due to the charge separation that occurs in fracture processes, streaming potentials
and the breakup of menisci during drainage of porous media [42]. It is an open research question
under what conditions electrostatics fields can be extracted robustly from naturally occurring
field fluctuations.

Just as for systems that are invariant under time reversal, one needs different sources
of field fluctuations depending on whether one extracts G − G∗ or G + G∗ for the diffusion
equation. Field fluctuations excited by injection sources (monopoles) allow for the retrieval
of G − G∗, while field fluctuations generated by current sources (dipoles) make it possible
to extract G + G∗. The new formalism thus makes it possible to extract the diffusive Green’s
function from field fluctuations excited by current sources.

For acoustic waves, the new formulation for the retrieval of G + G∗ makes it possible
to extract the Green’s function from the correlation of field fluctuations excited separately
from injection sources and body forces. The example of acoustic waves illustrates that the
new formalism for Green’s function extraction is based on Lagrangian principles instead of
Hamiltonian principles.

The possibility to extract G − G∗ and G + G∗ from field fluctuations gives the principle
of Green’s function extraction a new degree of freedom that has the potential to open up new
applications for the extraction of the system response from field fluctuations because it can
accommodate a wider range of sources of field fluctuations than is possible with only the
difference G − G∗.
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R

Figure A.1. A dipole p inside a conducting spherical shell and its image p′

outside the shell.
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Appendix A. The image charges for a dipole in a conducting spherical shell

In this section, we derive the image charges needed to ensure that the electrical potential
generated by an electric dipole p at location r vanishes at a conducting spherical shell with
radius R. The method of images can be used for this problem. As shown in [35], the potential
for a charge q at location r vanishes at the shell when one adds the field generated by a charge
q ′ at a location r′ outside the shell given by

q ′ = −
(

R
r

)
q, r′ =

(
R
r

)2

r. (A.1)

We next consider a dipole p at location r. As shown in figure A.1, we consider the dipole
to consist of the charge q+ = q at location r+ = r + d/2 and a charge q− = −q at location
r+ = r − d/2. Ultimately, we take the limit

q → ∞, d → 0 such that p = qd is finite. (A.2)

The required image charges follow by mapping q+ = q and q− = −q separately onto image
charges following expression (A.1); hence

q ′
± = ∓ R

|r ± d/2|
q = ∓ R

r

(
1 ∓ 1

2
(r · d)

r 2

)
q + O(qd2/r 2). (A.3)

The locations of these charges are, according to expression (A.1), given by

r′
± = R2

|r ± d/2|2

(
r ± d

2

)
=

(
R
r

)2 (
r ± d

2
∓ ( d · r̂)r̂

)
+ O(d2/r) . (A.4)
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The average location of these charges is given by

r′ = r+ + r−

2
=

(
R
r

)2

r + O(d2/r) →
(

R
r

)2

r , (A.5)

in the limit (A.2). Perhaps surprisingly, the total image charge does not vanish and is in the limit
(A.2) given by

q ′ = q ′
+ + q ′

− =
(

R
r

)
(d · r)

r 2
q + O(qd2) → R

r 2
(p · r̂). (A.6)

The charge difference of the image dipole is given by

q ′
+ − q ′

−
2

= −
(

R
r

)
q + O(qd/r), (A.7)

while the separation of the image charges is

r′
+ − r′

− =
(

R
r

)2 (
d − 2( d · r̂)r̂

)
+ O(d2/r). (A.8)

The image dipole vector is thus given by

p′ = (r′
+ − r′

−)

(
q ′

+ − q ′
−

2

)
= −

(
R
r

)3 (
d − 2( d · r̂)r̂

)
q + O(qd2/r), (A.9)

so that in the limit (A.2)

p′ = −
(

R
r

)3 (
p − 2(p · r̂)r̂

)
. (A.10)

Note that the image dipole and the original dipole are, in general, not parallel. In fact, these
vectors are related by a Householder transformation [49].

Appendix B. Properties of an oscillator

Consider a damped oscillator that satisfies

ẍ + 2γ ẋ + ω2
0x = F

m
, (B.1)

where γ denotes the damping. The Green’s function for this system is given by

G(t) = 1
ω

e−γ t sin(ωt)H(t), (B.2)

with H(t) being the Heaviside function and the angular frequency ω is given by

ω =
√

ω2
0 − γ 2 . (B.3)

We first consider an impulsive random force that kicks the oscillator at time intervals τ :

F(t) =
∞∑

n=0

Fnδ(t − tn), with tn = nτ. (B.4)

We assume that the mean of the force vanishes and the forces are uncorrelated

〈Fn〉 = 0, 〈Fn Fm〉 = 〈F2〉δnm. (B.5)
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The response to the excitation is given by

x(t) =
∑

0<tn<t

G(t − tn)
Fn

m
. (B.6)

Since the force has zero mean, the expectation value of the displacement vanishes

〈x(t)〉 = 0, (B.7)

while by virtue of expression (B.5) the variance of the displacement satisfies

〈x2(t)〉 = 〈F2〉
m2

∑

0<nτ<t

G2(t − nτ ). (B.8)

We assume that τ is much smaller than the period of the oscillator. In that case, the sum can be
replaced by an integration over time

〈x2(t)〉 = 〈F2〉
m2τ

∫ t

0
G2(t − t ′) dt ′. (B.9)

Expression (B.2) can be inserted in the right-hand side, and under the assumption that γ + ω
one can replace sin2(ωt) → 1/2; hence

〈x2(t)〉 = 〈F2〉
4 m2ω2τγ

(
1 − e−2γ t

)
. (B.10)

For the damped oscillator (γ > 0), 〈x2(t)〉 exponentially reaches the equilibrium value
〈F2〉/4 m2ω2τγ as t → ∞. The response of the undamped oscillator follows by taking the limit
γ → 0; in that case, expression (B.10) reduces to

〈x2(t)〉 = 〈F2〉
2 m2ω2τ

t. (B.11)

The energy of the kicked undamped oscillator thus grows linearly with time.
Next consider the oscillator of expression (B.1) driven by a periodic force

F(t) = F0 cos(ωt) = F0Re(e−iωt). (B.12)

The angular frequency can take any value and is not necessarily given by expression (B.3). The
displacement and velocity are given by

x(t) = F0

m
(ω2

0 − ω2) cos ωt + 2ωγ sin ωt
(ω2

0 − ω2)2 + 4ω2γ 2
, (B.13)

ẋ(t) = F0ω

m
−(ω2

0 − ω2) sin ωt + 2ωγ cos ωt
(ω2

0 − ω2)2 + 4ω2γ 2
. (B.14)

The potential energy averaged over one period is

E P = 1
2

mω2
0x2 = F2

0

4m
ω2

0

(ω2
0 − ω2)2 + 4ω2γ 2

, (B.15)

where the overbar denotes an average over one period. The average kinetic energy is given by

E K = 1
2

mẋ2 = F2
0

4m
ω2

(ω2
0 − ω2)2 + 4ω2γ 2

. (B.16)
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The ratio of the average kinetic energy and potential energy is given by

E K

E P
= ω2

ω2
0

. (B.17)

Except for the special case when the oscillator is driven at angular frequency ω = ω0, the kinetic
and potential energies are different, and there is no equipartitioning among kinetic and potential
energies. As a consequence, the Lagrangian is nonzero.

Appendix C. Deriving equation (35) from a normal mode expansion

In this appendix, we consider the normal mode expansion of the Green’s function for acoustic
waves. The modes un(r) satisfy equation (25) without an excitation

∇ ·
(

1
ρ

∇un

)
+ κω2

nun = 0. (C.1)

In the absence of attenuation, the modes are real. The orthogonality relation of the modes is
obtained by multiplying this expression with a mode um , integrating over volume, interchanging
n and m and subtracting, applying Gauss’ theorem and using that on the boundary either
u = 0 or ∂u/∂n = 0 [49]. This gives the following orthogonality relation that also defines the
normalization of the modes:∫

κunumdV = δnm. (C.2)

Eliminating κun in expression (C.2) using the second term of equation (C.1) and applying
Gauss’ theorem, one obtains the following alternative orthogonality relation:

∫
1
ρ

(∇un · ∇um) dV = ω2
nδnm. (C.3)

The Green’s function has the following normal mode expansion [49]:

G(r1, r2) =
∑

n

un(r1)un(r2)

ω2
n − ω2

. (C.4)

Since the modes are real, G is a real function as well.
We next express the integrals on the right-hand side of equation (35) in normal modes.

Using the previous expression and the relation κ = 1/ρc2 gives
∫

V

ω2

ρc2
G(r, rA)G∗(r, rB) dV =

∑

n,m

ω2

(ω2
n−ω2)(ω2

m−ω2)

(∫
κ(r)un(r)um(r) dV

)
un(rA)um(rB).

(C.5)

The orthogonality relation (C.2) reduces the double sum in the right-hand side to a single sum:
∫

V

ω2

ρc2
G(r, rA)G∗(r, rB)dV = ω2

∑

n

un(rA)un(rB)

(ω2
n − ω2)2

. (C.6)

This expression differs from the normal mode expansion (C.4) by a factor ω2/(ω2
n − ω2) for

each mode n.
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The first term on the right-hand side of expression (35) can also be expressed in the normal
mode expansion (C.4):
∫

V

1
ρ

(∇G(r, rA)) · (∇G∗(r, rB)) dV =
∑

n,m

1
(ω2

n − ω2)(ω2
m − ω2)

×
(∫

1
ρ(r)

(∇un(r) · ∇um(r)) dV
)

un(rA)um(rB). (C.7)

With the orthogonality relation (C.3), the double sum can be reduced to a single sum over modes

∫

V

1
ρ

(∇G(r, rA)) · (∇G∗(r, rB)) dV =
∑

n

ω2
n

un(rA)un(rB)

(ω2
n − ω2)2

. (C.8)

Subtracting equations (C.6) and (C.8) gives
∫

V

1
ρ

(
(∇G(r, rA) · ∇G∗(r, rB)) − ω2

c2
G(r, rA)G∗(r, rB)

)
dV =

∑

n

un(rA)un(rB)

ω2
n − ω2

. (C.9)

By virtue of the expansion (C.4), this is equal to the Green’s function G(rA, rB). Since the
Green’s function is real, expression (C.9) constitutes an alternative proof of equation (35).
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