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In a recent technical article in First Break, Gausland
(2004) made the case that the result of stacking is not lim-
ited to the often quoted factor of reduction in noise
where n is the fold of a CMP-gather. Through his figures
and illustrations, Gausland showed that stacking also acts
as a frequency and wavenumber filter. Although the inten-
tions of the article were not to, as Gausland put it, ‘give
methods or formulae’ and that a ‘simplified analysis can be
made using simulation’ instead of mathematics, we could
not help but see a connection between his main points and
the method of stationary phase (Born & Wolf, 1980). In
this comment, we give our interpretation of Gausland’s
results within the language of stationary phase. Gausland’s
conclusions are supported by the stationary phase analysis,
save for some details concerning the time-delay induced by

mis-stacking. In addition, we find other factors affecting
the stacking response that were not pointed out by
Gausland. The issues on fold versus spreadlength brought
up by Gausland cannot be addressed explicitly within the
stationary phase analysis; we return to them at the end of
this comment. Arguments based on stationary phase have
been used extensively in the literature on imaging and
migration (Bleistein et al., 2001). Hence, a result of this
mathematical excursion is a clear connection between
stacking and migration, which Gausland alluded to briefly
when he stated that ‘a further analysis of the similarities
between . . . stacking and migration is necessary for a full
understanding of these important aspects of seismic data
processing . . .’.

Suppose that in a CMP-gather there is a single event, with
a zero-offset waveform ƒ(t) at zero-offset two-way-time T0,
that has hyperbolic moveout with NMO-velocity v and a
wavelet that does not change with offset (see Fig. 1). The
event is stacked with a hyperbola whose apex is at T0 using a
stacking velocity vst not necessarily equal to v. When vst does
not equal v, a time shift ∆tk occurs at the k-th offset trace
before stacking. Hence, the normalized stacking response,
neglecting NMO-stretch, is

(1)

where 2n + 1 is the total number of traces in the CMP-gath-
er. In equation (1), we have included a trace at zero offset,
though this would not occur in practice. We have also
assumed that the traces have been corrected for geometrical
spreading. For hyperbolic moveout and hyperbolic stacking,
the time delays are (Yilmaz, 1987)

(2)
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Figure 1 A CMP-gather containing an event at zero-offset
two-way-time T0. The horizontal axis is offset, with h repre-
senting the half-offset spacing. The event is mis-stacked
because the moveout curve uses too high a stacking velocity,
shown as a dashed line. The mis-stacking induces a time shift
between the moveout curve and the event, ∆ t.



(8)

This type of integral can be approximately evaluated by the
method of stationary phase (Born & Wolf, 1980; Bleistein et
al., 2001). Within this approximation, I(ω) is given by

(9)

with xst the stationary point of the phase function φ (x) of
equation (8) where 

(10)

In equation (9), the subscript x = xst indicates the quantity is
to be evaluated at the stationary point. To find the stationary
point, we set the x-derivative of φ (x) to zero and identify the
stationary point xst = 0, where the moveout curve and the
stacking curve are tangent (see Fig. 1).

After calculating the second x-derivative of the phase
function and evaluating it at the stationary point, the scaled
transfer function I(ω) can be expressed, in the stationary
phase approximation, as

(11)
where

(12)

Note that the stationary phase approximation is an asymp-
totic series - it is valid in the limit of ω � ∞. The limiting
quantity can be expressed in terms of a dimensionless num-
ber instead of ω (Bleistein et al., 2001; p. 131). In this way,
the accuracy of the stationary phase approximation depends
on ω being large relative to another quantity. Equation (11)
states that, when an event is stacked with a velocity that is
not the true velocity, a phase shift of ±45 results depending
on whether the stacking velocity is higher or lower than
the true velocity. The amplitude of I(ω) scales with and

as a function of stacking velocity. It is
worth noting that the amplitude of the scaled transfer func-
tion I(ω) ‘blows up’ when vst = v. This is due to the fact that
the stationary phase approximation is not valid for vst = v; in
that case, the entire moveout curve is tangent to the stacking
curve. The stationary phase approximation is therefore
meaningful only when vst ≠ v. From equation (11), the ampli-
tude response is inversely proportional to . Hence, stack-
ing errors cause the stacked waveform to be enriched in
lower frequencies - an effect identical to stacking NMO-
stretched waveforms. This low-pass filtering of the wave-
forms due to stacking errors has been mentioned previously

where h is the half-offset spacing (assumed to be regular) and
the subscript k represents the k-th trace from zero-offset (see
Fig. 1). Note that the time delays vanish when vst = v (perfect
stacking). Denoting the Fourier transforms of ƒ(t) and g(t) as
F(ω) and G(ω), the transform of equation (1) may be written

(3)

where the transfer function, K, is

(4)

At this point, since we are in the frequency domain, NMO-
stretch could be included as amplitude and dilation factors in
the exponentials appearing in the series (Yilmaz, 1987); how-
ever, in the interest of simplicity, we do not account for it
here. For the particular case of linear moveout (T0 = 0), the
series in equation (4) is a geometric series and can be evalu-
ated exactly (Lu, 1993). The ‘familiar array equation’ point-
ed out by Gausland comes from this approach. The series is
geometric because the respective time delays are regularly
spaced (∆tk = k∆t1). When the moveout is nonlinear, for
instance hyperbolic, the time delays are not regularly spaced
and the series in equation (4) cannot be evaluated exactly. To
obtain his results, Gausland chose some values for T0, n, ω,
h, and v and numerically calculated K(ω) with equation (4).

We proceed by approximating equation (4) with an inte-
gral and evaluating it by the method of stationary phase
(Born & Wolf, 1980; Bleistein et al., 2001). First, note that the
fold of the CMP-gather, 2n + 1, is related to the spreadlength,
Ls, and the half-offset spacing, h

(5)

Using the definition from equation (5), the finite series of
equation (4) may be rewritten as

(6)

The finite series in equation (6) looks like a discretized inte-
gral (Riemann sum) over offset. Taking the limit of continu-
ous sources and receivers, n � ∞ and h � 0, and allowing the
discrete variable 2kh to become the continuous variable x
results in

(7)

We simplify the evaluation of the integral in equation (7) by
letting the spreadlength go to infinity, Ls � ∞. This simplifi-
cation avoids accounting for Cornu’s spiral (Born & Wolf,
1980). Denoting I(ω) = K(ω) Ls as a scaled version of the
transfer function gives
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by Bleistein et al. (2001). On page 15, the authors state that
‘the high frequencies of the data may be suppressed by stack-
ing. This is because the arrivals may not be exactly aligned
before stacking, causing the stacking process to sum higher
frequency components out of phase’. Through figures show-
ing the amplitude and time delay of the stacking response as
a function of stacking velocity, Gausland (2004) limited his
discussion of the stacking response to the amplitude decay
term, , and the phase shift, sgn(vst - v)π/4.

In Figs. 2 and 3, we plot the amplitude and phase as a
function of stacking velocity for the acquisition parameters
used by Gausland (T0 = 2 s, ω = 25 Hz, v = 2500 m/s, n = 48,
and Ls = 4800 m) and for the scaled transfer function in the
stationary phase approximation, equation (11). The trend of
the exact solution agrees with the stationary phase approx-
imation. Note that, in his article, Gausland (2004) plotted
the phase shift θ, shown in Fig. 3, as a time-delay by using
tdelay = θ/ω. With this relationship between time-delay and
phase shift, Gausland claimed that the timedelay ‘. . . is fre-
quency dependent, and will be inversely proportional to fre-
quency . . .’. However, as seen in equation (11), the effect of
mis-stacking is not purely amplitude decay and phase-shift as
a function of stacking velocity. There is the factor of 1/ ,
which, when coupled with the ±450 phase-shifts, acts to half-
integrate a waveform in the process of mis-stacking. This effect
can be thought of as both a time-delay and blurring.

If an event had an infinite moveout velocity (v � ∞) and
was stacked in the offset domain with a finite stacking veloc-
ity, an analogy would exist between the stacking response,
equation (11), and migration by diffraction summation. This
analogy exists because an event with an infinite moveout
velocity in the offset domain looks like a horizontal reflector
in the midpoint domain, as shown in Fig. 4. To pursue this
further, as v � ∞, equation (11) becomes

(13)

Two of the three corrections made to simple diffraction sum-
mation for Kirchho migration are shown in equation (13).
The factor requires multiplying the result of diffrac-
tion summation by to recover the true waveform
after diffraction summation. Yilmaz (1987) calls this the 2D
geometrical spreading factor. Furthermore, recovery of the
true waveform after diffraction summation also requires
multiplying by exp(iπ/4) , the half-derivative. This correc-
tion is called the wavelet shaping factor (Yilmaz, 1987). The
final correction to diffraction summation, known as the
obliquity factor (Yilmaz, 1987), does not appear in this anal-
ogy since the reflector we study here is horizontal. The obliq-
uity factor is relevant only for dipping reflectors.

Finally, we come back to the issue why the important
parameter for the stack response is the spreadlength and not
the fold. Gausland (2004) nicely made this observation in his
discussion of the stack as an array; where does the fold ver-

sus spreadlength issue appear in our stationary phase analy-
sis? Since we (a) took the sources and receivers to be contin-
uously distributed in equation (7) and (b) let the
spreadlength be infinite in equation (8), the result of the sta-
tionary phase analysis, equation (11), does not contain either
the fold or the spreadlength. Hence, equation (11) says noth-
ing about the fold versus spreadlength issue. Knowing the
assumptions that brought the derivation to the point of
applying the stationary phase approximation, though, we
can see why the spreadlength is the parameter which governs
the stack response and not the fold. The fold issue has to do
with our allowing the sources and receivers to be continuous-
ly distributed. Having a finite number of sources and
receivers instead is identical to approximating an integral of
a curve with a finite number of rectangles underneath the
curve. This is why we invoked continuous receivers in mov-
ing from a series to an integral in equation (7). Therefore,
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Figure 2 Amplitude of the stacking response in the station-
ary phase approximation (thick, black line) and the exact
solution (thin, blue line) for the acquisition parameters: 
T0 = 2 s, ω = 25 Hz, v = 2500 m/s, n = 48, and Ls = 4800 m.

Figure 3 Phase of the stacking response in the stationary
phase approximation (thick, black line) and the exact
solution (thin, blue line) for the acquisition parameters:
T0 = 2 s, ω = 25 Hz, v = 2500 m/s, n = 48, and Ls = 4800 m.
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differences in fold translate into differences in sampling of
the integrand of equation (7). As long as the sampling is
sufficient to avoiding aliasing, the series quickly approach-
es the integral. This fact is evident in Gausland’s third fig-
ure where the seemingly random ‘chatter’ at low stacking
velocities, or steep moveouts, disappears when moving
from a fold of 12 to a fold of 48. As long as aliasing is not
a problem, the issue of fold is purely one of sampling.
Regarding spreadlength, we earlier mentioned, prior to
equation (8), that taking the spreadlength to be infinite
meant not accounting for Cornu’s spiral. Cornu’s spiral is a
parametric plot (see Fig. 5) of the Fresnel cosine and sine
integrals as their upper limit (the spreadlength) goes to ∞
(Born & Wolf, 1980). These integrals are central in the
development of the stationary phase approximation. As the
spreadlength gets larger and larger, the two integrals
approach the same value, as seen in Fig. 5. At this limiting
point, the angle they make with the x-axis is 450; this is an
indication of the 450 phase shifts appearing in the station-
ary phase approximation, equation (11). Away from this
limiting point, the two integrals spiral around; this gives
rise to the ‘wobble’ seen in the phase shift versus stacking
velocity plot in Fig. 3. The spiralling also gives rise to the
‘wobble’ seen in the amplitude versus stacking velocity plot
in Fig. 2. As seen in Fig. 2 and Gausland’s fourth figure, the

length scale of the ‘wobble’ is directly related to the width
of the main lobe. Hence, the main factor of importance to
the stack response, as long as aliasing is not an issue, is the
spreadlength, as witnessed by its role in Cornu’s spiral. In
closing, we wish to thank Xiaoxia Xu of CSM for bringing
to our attention the book by Lu (1993).
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Figure 4 Migration of a horizontal reflector by diffraction
summation in the midpoint domain. Stacking an event with
infinite moveout velocity would look the same as in this
plot, except that it would be in the offset domain (compare
with Fig. 1). Hence, an analogy exists between migration
and stacking in this case.

Figure 5 Cornu’s spiral; adapted from Born & Wolf (1980).
The x-axis is the Fresnel cosine integral (FresnelC) and the y-
axis is the Fresnel sine integral (FresnelS). This is a paramet-
ric plot where the Fresnel cosine and sine integrals are plotted
as a function of their upper limit, with their lower limit at
zero. When the upper limit is zero, the curve is at the origin.
As the upper limit � ∞, the curve spirals in toward the point
(0.5,0.5). Similarly, as the upper limit � – ∞, the curve spirals
in toward the point (-0.5,-0.5). The fact that the Fresnel
cosine and sine integrals have equal values at their limiting
point is an indication of the 450 phase shift that comes from
the stationary phase approximation, equation (9).


