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ABSTRACT

Interferometry allows for synthesis of data recorded at any
two receivers into waves that propagate between these re-
ceivers as if one of them behaves as a source. This is accom-
plished typically by crosscorrelations. Based on perturbation
theory and representation theorems, we show that interfer-
ometry also can be done by deconvolutions for arbitrary me-
dia and multidimensional experiments. This is important for
interferometry applications in which !1" excitation is a com-
plicated source-time function and/or !2" when wavefield sep-
aration methods are used along with interferometry to re-
trieve specific arrivals. Unlike using crosscorrelations, this
method yields only causal scattered waves that propagate be-
tween the receivers. We offer a physical interpretation of de-
convolution interferometry based on scattering theory. Here
we show that deconvolution interferometry in acoustic media
imposes an extra boundary condition, which we refer to as the
free-point or clamped-point boundary condition, depending
on the measured field quantity. This boundary condition gen-
erates so-called free-point scattering interactions, which are
described in detail. The extra boundary condition and its as-
sociated artifacts can be circumvented by separating the ref-
erence waves from scattered wavefields prior to interferome-
try. Three wavefield-separation methods that can be used in
interferometry are direct-wave interferometry, dual-field in-
terferometry, and shot-domain separation. Each has different
objectives and requirements.

INTRODUCTION

The main objective of seismic interferometry is to obtain the im-
pulse response between receivers without any knowledge about
model parameters !Weaver and Lobkis, 2001; Wapenaar et al., 2004;

Weaver and Lobkis, 2004". Typically, interferometry is implement-
ed by crosscorrelating recorded data !Curtis et al., 2006; Larose et
al., 2006". Many of the formal proofs and arguments surrounding in-
terferometry are based on crosscorrelations. Proofs based on corre-
lation representation theorems state the validity of interferometry
for acoustic waves !Lobkis and Weaver, 2001; Weaver and Lobkis,
2004", for elastic media !Wapenaar et al., 2004; Draganov et al.,
2006", and for attenuative !Snieder, 2007" and perturbed media
!Vasconcelos, 2007". Other proofs of interferometry based on time
reversal is offered by Fink !2006" and by Bakulin and Calvert !2006"
in their virtual-source methodology. Schuster et al. !2004" and Yu
and Schuster !2006" use correlation-based interferometry embedded
within an asymptotic migration scheme for interferometric imaging.
Snieder !2004", Sabra et al. !2004", Roux et al. !2004", Snieder et al.
!2006a", and Snieder et al. !2006b" rely on the stationary-phase
method to explain results from interferometry.

Interferometry has been applied in ultrasonics !Weaver and
Lobkis, 2001; Malcolm et al., 2004; van Wijk, 2006", helioseismol-
ogy !Rickett and Claerbout, 1999", global seismology !Sabra et al.,
2005a; Shapiro et al., 2005", and ocean acoustics !Roux et al., 2004;
Sabra et al., 2005b". Curtis et al. !2006" and Larose et al. !2006" give
comprehensive interdisciplinary reviews of interferometry. As the
understanding of interferometry progresses, new applications of the
method become feasible. For example, reservoir engineering might
benefit from interferometry; Snieder !2006" shows that principles of
interferometry also hold for the diffusion equation. In an even more
general framework, interferometry can be applied to a wide class of
partial differential equations, which include the Schrödinger and ad-
vection equations !Wapenaar et al., 2006; Snieder et al., 2007".

The goal in this paper is to gain insight into interferometry from
yet another point of view. Although interferometry is done typically
by correlations, it is natural to wonder if it could be accomplished by
deconvolutions. This issue is raised by Curtis et al. !2006" as one of
the standing questions within interferometry. We claim that interfer-
ometry can indeed be accomplished by deconvolutions for arbitrary,
multidimensional media. Deconvolution interferometry has the ad-
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vantage of being independent of source properties. Successful ex-
amples of deconvolution interferometry have been reported: Tramp-
ert et al. !1993" use deconvolution to extract the SH-wave propaga-
tor matrix and to estimate attenuation, Snieder and Şafak !2006" re-
cover the elastic response of a building using deconvolutions, and
Mehta et al. !2007b, c" obtained the near-surface propagator matrix
using deconvolutions from the recording of a teleseismic event in a
borehole seismometer array.

In a paper that spawned much of today’s work on interferometry,
Riley and Claerbout !1976" suggested the use of deconvolution to re-
trieve the earth’s 1D reflectivity response. They then turned to corre-
lation because it tends to be more stable. Loewenthal and Robinson
!2000" show that the deconvolution of dual wavefields can be used to
change the boundary conditions of the original experiment to gener-
ate only upgoing scattered waves at the receiver locations and to re-
cover reflectivity. In a series of papers on free-surface multiple sup-
pression,Amundsen and coworkers use inverse deconvolution oper-
ators designed to remove the free-surface boundary condition !e.g.,
Amundsen et al., 2001; Holvik and Amundsen, 2005". The topics of
multiple suppression and interferometry are related intrinsically be-
cause of the ability to manipulate boundary conditions !Riley and
Claerbout, 1976; Wapenaar et al., 2004; Berkhout and Verschuur,
2006; Snieder et al., 2006b; Mehta et al., 2007a". Consequently, pre-
vious work on deconvolution-based multiple suppression also is re-
lated to the practice of interferometry.

Using a combination of perturbation theory and representation
theorems !as in Vasconcelos, 2007", we first review interferometry
by correlations. In our discussion on correlation-based interferome-
try, we restrict ourselves to key aspects that help define deconvolu-
tion interferometry. Following, we give a derivation in which we
represent deconvolution interferometry by a series similar in form to
the Lippmann-Schwinger scattering series !Rodberg and Thaler,
1967; Weglein et al., 2003". We first analyze the meaning of leading-
order terms in the scattered wavefield and discuss the role of higher-
order terms of the deconvolution interferometry series in Appendix
A. Next, we compare our deconvolution-based method with cross-
correlation interferometry. We discuss the role played by different
wavefield-separation methods in seismic interferometry and, in par-
ticular, how these approaches benefit deconvolution interferometry.
Finally, using a single-layer model, we illustrate the main concepts
of deconvolution interferometry while comparing it to its correla-
tion-based counterpart. In Vasconcelos and Snieder !2008; hereafter
called Part 2", we provide results of deconvolution interferometry
for complex models that are consistent with the discussion presented
here.

Although our intent is not to discuss a specific use for interferome-
try by deconvolution, we point out that this method will be of most
use for interferometry applications that !1" require the suppression
of the source function or !2" involve some sort of wavefield-separa-
tion procedure. In Part 2, we present a specific application of decon-
volution interferometry, providing both numerical and field-data ex-
amples of drill-bit seismic imaging. Broadside imaging of the San
Andreas fault at Parkfield, California !Vasconcelos et al., 2007", was
successful because of deconvolution interferometry !see Part 2".
Apart from drill-bit seismics, complicated source signals can be gen-
erated by other types of man-made noise !e.g., traffic noise, running
engines" or by natural noise sources such as seismic and microseis-
mic events coming from the subsurface, ocean waves, or thunder-
bolts during a thunderstorm.

In examples by Trampert et al. !1993", Snieder and Şafak !2006",
and Mehta et al. !2007b, c", deconvolution is used to eliminate the
earthquake signal, which contains arrivals of different modes and/or
multiple scattered waves. In the method by Loewenthal and Robin-
son !2000", deconvolution collapses all downgoing waves into a
spike at zero time, leaving only the upgoing earth response. These
are but a few examples of applications within exploration geophys-
ics in which deconvolution interferometry plays an important role.

THEORY OF INTERFEROMETRY

Review of interferometry by crosscorrelations

Let frequency-domain wavefield u!rA,s,!" recorded at rA be the
superposition of the unperturbed and scattered Green’s functions
G0!rA,s,!" and GS!rA,s,!", respectively, convolved with a source
function W!s,!" associated with an excitation at s; hence,

u!rA,s,!" ! W!s,!"#G0!rA,s,!" " GS!rA,s,!"$ . !1"

Although here, and throughout the text, we call GS the scattered
wavefield, GS formally represents a wavefield perturbation. In our
derivations, we rely on perturbation theory !Weglein et al., 2003;
Vasconcelos, 2007", such that the quantities G0 and G ! G0 " GS

represent background and perturbed wavefields, respectively, that
satisfy the equation for acoustic !Vasconcelos, 2007", elastic !Wap-
enaar et al., 2004", and possibly attenuative waves !Snieder, 2007".
The quantities G0 and GS can represent generally unperturbed waves
and wavefield perturbations, respectively.

For simplicity, we refer to G0 and GS in the context of classical
scattering theory !e.g., Rodberg and Thaler, 1967", where G0 is a di-
rect wave and GS contains all scattered waves. However, our discus-
sion is not restricted to the classical scattering problem. Throughout
this paper, we treat only acoustic waves. Both the background medi-
um and medium perturbation can be arbitrarily heterogeneous and
anisotropic. In addition, W!s,!" can be a complicated function of
frequency and can vary as a function of s.

The crosscorrelation of wavefields measured at rA and rB !equa-
tion 1" gives, in the frequency domain,

CAB ! %W!s"%2G!rA,s"G*!rB,s"; !2"

where the asterisk denotes complex conjugation. From equation 2, it
follows that the crosscorrelation CAB depends on the power spectrum
of W!s". Note that we omit the frequency dependence of equation 2
for brevity; we do the same for all subsequent equations.

Next, we integrate the crosscorrelations in equation 2 over a sur-
face #V !Appendix A" that includes all sources s, giving

&
#V

CABds ! '%W!s"%2(#G!rA,rB" " G*!rA,rB"$ , !3"

where '%W!s"%2( is the source average of the power spectra !Snieder et
al., 2007" and where G!rA,rB" and G*!rA,rB" are the causal and anti-
causal Green’s functions, respectively, for an excitation at rB and re-
ceiver at rA. For equation 3 to hold, G corresponds to the pressure re-
sponse in acoustic media !e.g., Wapenaar and Fokkema, 2006". If G
is the particle-velocity response, the plus sign on the right-hand side
of equation 3 is replaced by a minus sign !e.g., Wapenaar and
Fokkema, 2006". Equation 3 is valid strictly for lossless media.
Snieder !2007" shows how interferometry can be accomplished in
attenuative acoustic media.

S116 Vasconcelos and Snieder



The average of the power spectrum of source '%W!s"%2( can be a
complicated function of frequency !or time"; hence, recovering the
response between receivers at rA and rB through equation 3 can be
difficult. Most authors suggest deconvolving '%W!s"%2( after the inte-
gration in equation 3 !Wapenaar et al., 2004; Fink, 2006; Snieder et
al., 2006a; Snieder et al., 2006b". This assumes an independent esti-
mate of the power spectrum of the source is available. Indeed, in
some applications, such an estimate can be obtained !Mehta et al.,
2007a"; often, however, independent estimates of the power spec-
trum of the source are not available. Part 2 deals with specific drill-
bit seismic examples for which independent estimates of source
function are not available, and correlation-based interferometry
!equation 3" does not provide acceptable results. In the next two sec-
tions, we provide alternative interferometry methodologies that re-
cover the impulse response between receivers without requiring in-
dependent estimates of the power spectrum of the source function.

For the moment, we assume a source function independent of
source position s !W!s" ! W" in equations 1–3. By combining equa-
tions 1 and 2, we can expand CAB into four terms:

CAB = u(rA, s)u∗(rB, s)

= u0(rA, s)u∗
0(rB, s)

︸ ︷︷ ︸

C1
AB

+ uS(rA, s)u∗
0(rB, s)

︸ ︷︷ ︸

C2
AB

+ u0(rA, s)u∗
S(rB, s)

︸ ︷︷ ︸

C3
AB

+ uS(rA, s)u∗
S(rB, s)

︸ ︷︷ ︸

C4
AB

!4"
where u0 ! WG0 and uS ! WGS !see equation 1". The four terms,
CAB

1 through CAB
4 , can be inserted into equation 3, giving

&
#V

CAB
1 ds " &

#V
CAB

2 ds " &
#V

CAB
3 ds " &

#V
CAB

4 ds

! %W%2#G0!rA,rB" " GS!rA,rB"
" G0

*!rA,rB" " GS
*!rA,rB"$ . !5"

Each of the four integrals on the left-hand side of equation 5 has a
different physical meaning. Using representation theorems, Vascon-
celos !2007" analyzes how each integral in equation 5 relates to
terms in the right-hand side of the equation. For imaging purposes,
we only want to use the GS terms !scattered waves" in equation 5.
The first integral relates to unperturbed terms on the right-hand side
of equation 5 to give

&
#V

u0!rA,s"u0
*!rB,s"ds ! %W%2#G0!rA,rB" " G0

*!rA,rB"$ .

!6"

The relationship in equation 6 is not surprising because unper-
turbed wavefields u0 satisfy the unperturbed wave equation. Conse-
quently, interferometry of unperturbed wavefields on the left-hand
side of equation 6 must yield the causal and anticausal unperturbed
wavefields between rB and rA !right side of equation 6". A less obvi-
ous relationship between the terms in equation 5 is that, as described
in Appendix A, the dominant contribution to the causal scattered
wavefield between rB and rA comes from the correlation between the
unperturbed wavefield at rB and scattered wavefield at rA:

)
#V1

uS!rA,s"u0
*!rB,s"ds * %W%2GS!rA,rB" , !7"

where #V1 is a portion of #V that yields stationary-phase contribu-
tions to GS!rA,rB" !Appendix A". Based on Appendix A, we argue
that this relationship holds for most types of experiments in explora-
tion seismology !surface seismic, many vertical seismic profiling
experiments, etc.".

Equation 7 is an approximate relationship because it neglects the
influence of a volume integral that corrects for medium perturba-
tions located on the stationary paths of unperturbed waves that prop-
agate from sources s to a receiver at rB !Appendix A; see also Part 2".
In the context of seismic imaging, the extraction of GS!rA,rB" is the
objective of interferometry.

An important requirement for the successful application of inter-
ferometry is that waves must be propagating at all directions at each
receiver location. This condition is referred to as equipartioning
!Weaver and Lobkis, 2004; Larose et al., 2006; Sánchez-Sesma and
Campillo, 2006; Snieder et al., 2007". Other authors !Wapenaar et
al., 2004; Draganov et al., 2006" mention the necessity of having
many sources distributed closely around a closed-surface integral,
such as in equation 3. However, in exploration experiments, it is im-
possible to surround the subsurface with sources. Consequently, we
end up with only a partial source integration instead of the closed-
surface integration necessary for equation 3 to hold.

As pointed out by Snieder et al. !2006a" and Snieder et al. !2006b"
truncation of the surface integral can introduce spurious events in the
final interferometric gathers. This holds for general 3D models as
well, and it can be verified because

)
#V1

CAB ds " )
#V2

CAB ds

! %W%2#G!rA,rB" " G*!rA,rB"$ , !8"

where #V1 and #V2 are surface segments such that #V1 !#V2 ! #V.
Suppose that in an actual field experiment we could acquire only
data with waves excited over the surface #V1 !such as in equation 7".
Then, as we can see from equation 8, the integration over all avail-
able sources !the integral over #V1" would result in the desired re-
sponse !right-hand side of equation 8" minus the integral over #V2.
In this case, if the integral over #V2 were nonzero !i.e., stationary
contributions are associated with sources placed over #V2", then data
synthesized from interferometry over #V1 would contain spurious
events associated with the missing sources on #V2.

Although this may appear to be a practical limitation of interfer-
ometry, the lack of primary sources in the subsurface is, in practice,
somewhat compensated by multiple scattering or by reflections be-
low the region of interest !Wapenaar, 2006; Halliday et al., 2007". In
field experiments, some of the desired system equipartioning can be
achieved with longer recording times, making up for some of the
missing sources over #V2. For long recording times, equipartioning
can arise in multiple scattering regimes that produce waves carrying
similar amounts of energy propagating in all directions. Because this
is a model-dependent problem, it is difficult, in practice, to predeter-
mine the influence of missing sources and to what extent longer re-
cording times make up for the absence of these sources.
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Deconvolution interferometry

As we have seen, the crosscorrelation of wavefields u!rA,s" and
u!rB,s" contains the power spectrum of the excitation function
!equation 2". Instead, deconvolution of u!rA,s" with u!rB,s" gives

DAB !
u!rA,s"
u!rB,s" !

u!rA,s"u*!rA,s"
%u!rB,s"%2 !

G!rA,s"G*!rB,s"
%G!rB,s"%2 .

!9"

Now the source function W!s" !equation 1" is canceled by the decon-
volution process. Although no multidimensional deconvolution in-
terferometry approach has been presented to date, it is intuitive to
proceed with the integration

&
#V

DAB ds ! &
#V

G!rA,s"G*!rB,s"
%G!rB,s"%2 ds !10"

to mimic interferometry by crosscorrelation !equation 3".
The existing proofs for the validity of interferometry by crosscor-

relation !equation 3" are not immediately applicable to interferome-
try by deconvolution. For example, representation theorems !e.g.,
Wapenaar et al., 2004; Wapenaar et al., 2006; Vasconcelos, 2007" are
not applicable to the spectral ratio of wavefields. In addition, station-
ary-phase evaluation of the integral in equation 10 for a specified
model !such as used by Snieder et al., 2006a" is compromised by the
presence of %G!rB,s"%2 in the denominator. Despite being zero phase,
%G!rB,s"%2 contains cross terms between unperturbed and scattered
wavefields !see below", which make the denominator in equation 10
an oscillatory function that prevents the stationary-phase method
!Bleistein and Handelsman, 1975" from being applied directly to
equation 10.

Our solution to evaluating the integral in equation 10 is to expand
the denominator in a power series, which then allows us to give a
physical interpretation to deconvolution interferometry. We begin
by making the expansion

1
G!rB,s" !

1
G0!rB,s" " GS!rB,s"

!
1

G0!rB,s"!1 " GS!rB,s" /G0!rB,s""

!
1

G0!rB,s"+1 " ,
n!1

"

!#1"n+GS!rB,s"
G0!rB,s"-n- ,

!11"

which is valid for small perturbations, i.e., when %GS%2! %G0%2. After
inserting equation 11 into equation 9, we get

DAB !
G!rA,s"
G0!rB,s" "

G!rA,s"G0
*!rB,s"

%G0!rB,s"%2

# ,
n!1

"

!#1"n+GS!rB,s"
G0!rB,s"-n

. !12"

From now on we refer to equation 12 as the deconvolution interfer-
ometry series. This representation of equation 9 is more convenient
to describe the physics of deconvolution interferometry, as we dis-
cuss in the next sections.

Contributions to first order in the scattered wavefield

We focus our discussion on terms that dominate contributions to
the deconvolution interferometry integral in equation 10. These
terms are of interest in geophysical applications such as interfero-
metric imaging !Wapenaar, 2006". After inserting equation 12 into
the integral in equation 10 and keeping only terms that are linear in
the wavefield perturbations GS, we get

∮

∂V

DAB ds =

∮

∂V

G0(rA, s)G∗
0(rB, s)

|G0(rB, s)|2
ds

︸ ︷︷ ︸

D1
AB

+

∮

∂V

GS(rA, s)G∗
0(rB, s)

|G0(rB, s)|2
ds

︸ ︷︷ ︸

D2
AB

−

∮

∂V

G0(rA, s)G∗
0(rB, s)GS(rB, s)

|G0(rB, s)|2 G0(rB, s)
ds

︸ ︷︷ ︸

D3
AB

!13"
Equation 13 shows that, to leading order in the scattered wave-

field, the deconvolution integral in equation 10 can be represented
by integrals DAB

1 through DAB
3 . In fact, equation 13 is a Born-like ap-

proximation !e.g., Born and Wolf, 1959; Weglein et al., 2003" of
equation 10. In contrast with %G!rB,s"%2 in equation 10, %G0!rB,s"%2 in
equation 13 does not contain cross terms between unperturbed and
scattered wavefields. Therefore, %G0!rB,s"%2 is a slowly varying zero-
phase function of s; only the numerators determine the stationary-
phase contributions to the integrals in the right-hand side of equation
13. This property allows direct comparison between the phase of in-
tegrands in equation 13 and terms in equation 5.

Physical insights into deconvolution interferometry come from
observing that the integrands of DAB

1 and DAB
2 !equation 13" have the

same phase as CAB
1 and CAB

2 in equations 4 and 5. Based on these ob-
servations and on equation 6 !Vasconcelos, 2007", we can conclude
that DAB

1 provides the causal and anticausal unperturbed wavefield
that propagates from rB to rA. More importantly, integrands of DAB

2

and CAB
2 have the same phase; it is controlled by GS!rA,s"G

0
*!rB,s".

Thus, according to the representation theorem in Appendix A, DAB
2

gives the causal scattered waves that are excited at rB and recorded at
rA.

We give a simple explanation of the causal nature of DAB
2 for the

special case of a classical scattering problem !e.g., Born and Wolf,
1959; Rodberg and Thaler, 1967", where G0 is a transmitted wave
and GS contains the scattered waves. Scattered waves usually arrive
at a later time than the direct wave. The phase of DAB

2 is given by the
traveltime difference TS,A # T0,B. !Here, TS,A is the arrival time of the
scattered wave arriving at receiver A and T0,B is the arrival time of the
direct wave at receiver B." At the stationary point that yields a scat-
tered wave propagating between rB and rA, TS,A ! T0,B " TS,AB !see
Appendices A and C", where TS,AB is the traveltime of a scattered
wave propagating from B to A. So the stationary phase of DAB

2 is
!TS,AB.

In the process of deriving equation 13 !see equations 9–12", terms
that carry the same phase as CAB

3 and CAB
4 do not appear in deconvolu-

tion interferometry. This implies that interferometry by deconvolu-
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tion does not recover the anticausal scattering response between the
two receivers, whereas correlation interferometry !equation 13" re-
covers both causal and anticausal scattered waves.

The term DAB
3 has no counterpart in correlation interferometry. Be-

cause of their opposite sign, DAB
3 and DAB

2 in equation 13 cancel when
rA ! rB. As the offset between the two receivers increases, the sum
DAB

2 " DAB
3 becomes nonzero. To address the physical significance

of DAB
3 , it is useful to analyze the result of deconvolution interferom-

etry when rA ! rB. This consists of the zero-offset trace in the pseu-
doshot gather obtained by interferometry. From equation 9, it fol-
lows that in the frequency domain, DBB ! 1 !i.e., when rA ! rB". Ze-
ro-offset deconvolution interferometry thus gives

DBB!t" ! $ !t" !14"

in the time domain. Equation 14 states that, in deconvolution inter-
ferometry, scattered waves with nonzero traveltimes vanish at zero
offset. This is an extra boundary condition imposed on the interfero-
metric experiment in which waves are excited at rB and recorded at
rA. The consequence of this boundary condition is the creation of
nonphysical events such as DAB

3 that interfere destructively with scat-
tered waves that arrive at zero offset with nonzero traveltimes.

We use Figure 1 to summarize the physics of the extra boundary
condition imposed by deconvolution interferometry !equation 14".
If G is the pressure response, we refer to this boundary condition in
the interferometric experiment as the free-point boundary condition.
We use this term because the physical meaning of this boundary con-
dition is analogous to that of a free-surface boundary condition
!where pressure is equal to zero", but instead it applies only to a point
in space !in this case, rB". When G stands for particle-velocity re-
sponse, the condition in equation 14 corresponds to clamping the
point rB so that it cannot move for t$0. In that case, we refer to equa-
tion 14 as the clamped-point boundary condition. Throughout this
paper, we use the term free-point when referring to the condition giv-
en by equation 14 because in previous equations G represents pres-
sure waves !e.g., equations 3 and 6".

The effect of the free-point boundary condition is illustrated in
Figure 1a for a 1D homogeneous medium. Starting at x ! x0 and t
! 0, arrows in Figure 1a describe the path of a wave that propagates
toward a scatterer at xS and bounces off this scatterer to be scattered
again at the free point at x ! x0. This wave continues to be scattered
between xS and x0.As in the free-surface boundary condition, the free
point at x0 reflects, in one dimension, waves with reflection coeffi-
cient r !#1.

The extension of the free-point concept to 3D inhomogeneous
media is shown in Figure 1b. In Figure 1b, a physical-scattered wave
excited by the pseudosource rB is recorded rA with traveltime t ! t1

" t2. The wave that is backscattered at xS !Figure 1b" scatters once
more at rB because of the free-point boundary condition. The free-
point scattered wave !dotted arrow" then travels directly to rA, where
it is recorded with the traveltime t ! 2t1 " t3. This arrival corre-
sponds to term DAB

3 in equation 13. When rA ! rB, t2 ! t1, and t3

! 0, the singly and free-point scattered waves have the same travel-
time. This agrees with our previous discussion on the phase of terms
in equation 13. In this case, for a fixed rB and variable rA, the travel-
time of the free-point scattered wave is controlled only by t3 because
t1 stays constant.

Note that t3 is also the traveltime of the direct wave that travels
from rB to rA, which in turn is given by term DAB

1 in equation 13. Be-
cause DAB

3 is controlled by the direct-wave traveltime t3 for a fixed rB,
it has the same moveout as the direct wave in an interferometric shot

gather with a pseudosource at rB. This observation is valid for point
scatterers but not for waves that scatter at an interface. For interface-
scattered waves, all paths in Figure 1b would change with varying rA

!see the section on numerical examples". Figure 1b illustrates only
one of the many free-point scattered waves produced by deconvolu-
tion interferometry !Appendix B". In contrast to physical waves,
which are reflected specularly, waves scattered by the free-point
boundary condition that constitute the spurious events are weaker in
two or more dimensions than in one dimension because of geometric
spreading.

Free-point scattered events such as DAB
3 !equation 13" do not al-

ways result in artifacts in images produced from deconvolution in-
terferometry. In Appendix B, we discuss the multiple scattering in-
teractions that arise from the free-point boundary condition and their
influence in imaging data reconstructed by deconvolution interfer-
ometry.

The role of wavefield separation

In previous sections, we learned that interferometry by direct de-
convolution of measured data u!rA,r" by u!rB,r" !equation 9" impos-
es an extra boundary condition on waves excited by a pseudosource
at rB and recorded at rA. This free-point boundary condition gener-
ates additional undesired waves that can present a problem to imag-
ing data reconstructed by deconvolution interferometry.

An alternative form of interferometry that does not generate the
free-point scattered waves is given by the deconvolution of scattered
waves with unperturbed waves:

b)a)

Figure 1. The free-point boundary condition in deconvolution inter-
ferometry. !a" Interpretation of the free-point boundary condition for
1D media with constant wave speed c. The gray area is where the
wavefield is nonzero, rB is the location of the receiver that acts as a
pseudosource !and of the free-point", and xS is the location of a point
scatterer.Arrows represent waves, excited by the source in rB, propa-
gating in the medium. Waves denoted with solid arrows propagate
with opposite polarity with respect to waves represented by dotted
arrows. The wavefield is equal to zero at the dashed white line, and
the black vertical line indicates the region of influence of the scatter-
er at xS. !b" The free-point boundary condition in a 3D inhomoge-
neous acoustic medium. The pseudosource, located at rB, is shown
with the white triangle. The receiver is represented by the gray trian-
gle at rA. The medium perturbation is a point scatterer at xS, denoted
by the black circle. The solid arrow depicts a direct wave excited at
rB. This wave is scattered at xS and propagates toward rA and rB, as
shown by the dashed arrows. The dotted arrow denotes a free-point
scattered wave recorded at rA. Waves represented by dashed and dot-
ted arrows have opposite polarity. Labels t1 through t3 are the travel-
times of waves that propagate from rB to xS, xS to rA, and rB to rA, re-
spectively.
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DAB$ !
uS!rA,s"
u0!rB,s" !

GS!rA,s"
G0!rB,s" . !15"

After summation over all sources s on #V, this type of deconvolution
interferometry yields only DAB

2 in equation 13. Thus, it follows from
our previous arguments regarding DAB

2 !see Appendix A" that inter-
ferometry using equation 15 results only in the desired causal scat-
tered waves GS!rA,rB". Although reconstructing causal and anti-
causal perturbed waves in G!rA,rB" !e.g., using equation 3" can, in
principle, correctly retrieve both the kinematic and dynamic wave
behavior, reconstructing the causal GS!rA,rB" is likely to yield dis-
torted amplitudes. This distortion arises from neglecting a volume
integration !seeAppendix A and Part 2".

To perform deconvolution interferometry according to equation
15, it is necessary to separate the wavefields uS!rA,r" and u0!rB,r"
from recorded data u!rA,r" and u!rB,r", respectively. Different tech-
niques are available in seismic interferometry to perform this separa-
tion. These techniques have different requirements and meet differ-
ent objectives. Below we briefly discuss three such methods.

Direct-wave interferometry

One relatively simple way to perform wavefield separation re-
quired by equation 15 is to use recorded direct waves as u0 and re-
corded data without the direct wave as uS. This is the principle of the
virtual source method presented by Bakulin and Calvert !2004,
2006" and Korneev and Bakulin !2006". The virtual source method
of Bakulin and Calvert !2004, 2006" uses crosscorrelations along
with a filter to account for the source spectrum, instead of the direct
deconvolution in equation 15. Ramirez et al. !2007a" and Ramirez et
al. !2007b" generalize the concept of direct-wave interferometry
through a formalism based on Green’s theorem, similar to ours in
Appendix A and in Part 2.

In typical geophysical experiments, when the physical sources are
above or at the same level as receivers and scattered waves come
from below the sensors, direct-wave interferometry reconstructs
only upgoing waves that scatter below receivers. When sensors are
buried !e.g., a VSP or ocean-bottom survey" and the direct wave is
not the only recorded downgoing wave, this type of interferometry
can contain artifacts because of scattering above the receivers. Di-
rect-wave interferometry requires a picking and subsequent win-
dowing of direct waves, so it is only practical when the number of re-
ceivers is small !e.g., in a VSP survey", when direct-wave window-
ing is straightforward !e.g., in ocean-bottom surveys", and when the
source-time function is sufficiently short that the direct wave does
not interfere with reflected waves.

Dual-field separation

This type of wavefield separation relies on independent measure-
ments of both the pressure wavefield u and particle velocity
!i!%"#1%u at the observation points. When such measurements are
available, it is possible to separate upgoing from downgoing waves
at any receiver point by summing and subtracting u and a suitable
component of !i!%"#1%u !e.g., Loewenthal and Robinson, 2000;
Amundsen, 2001; Amundsen et al., 2001". Interferometry based on
dual-sensor wavefield separation has a similar objective to that of di-
rect-wave interferometry: It reconstructs upgoing waves propagat-
ing between rB and rA by the interference of upgoing waves recorded
at rA with downgoing waves recorded at rB.

Mehta et al. !2007a" extend the virtual source method of Bakulin
and Calvert !2004, 2006" to include this type of wavefield separa-
tion, providing a field data example. Their approach uses crosscorre-
lations !e.g., as in equation 7" along with a source-shaping filter to
extract waves propagating between receivers. Equation 15 can be
used as an alternative to the method of Mehta et al. !2007a". In agree-
ment with our analysis, Loewenthal and Robinson !2000" show that
deconvolution of the upgoing with downgoing waves at a single re-
ceiver !i.e., set rA ! rB in equation 15" in a 1D medium results in the
zero-offset reflectivity response GS!rB,rB".

The dual-field method of wavefield separation has the advantage
that all downgoing waves can be used for interferometry, unlike di-
rect-wave interferometry. However, it requires the simultaneous
measurement of pressure and particle velocity, which is typically
only available in four-component ocean-bottom cable seismic sur-
veys.

Shot-domain wavefield separation

Up/down wavefield separation by either direct-wave windowing
or dual-sensor summation generates interferometric sources that ra-
diate energy toward one fixed direction !i.e., downward". Vasconce-
los et al. !2007" devise a procedure to create pseudosources that radi-
ate energy in a preferred direction. For example, for a subsalt walk-
away VSP survey in a deviated well, recorded internal multiples can
be used to image the salt structure from below with no knowledge of
the salt velocity model !Vasconcelos et al., 2007".

This target-oriented interferometry approach selects arrivals in
the shot domain based on their apparent shot-domain wavenumbers.
The wavefield separation is given by

u0!rB,r" !) HB!krB"u!krB
,r"eirkrBdkrB

!16"

and

uS!rA,r" !) HA!krA"u!krA
,r"eirkrAdkrA

, !17"

where krB
and krA

are apparent shot-domain wave vectors !i.e., wave
vectors measured directly from recorded shot gathers". Functions
HB and HA are filters that select which portions of wave vectors krB

and krA
are kept. These filters carry out beam steering of the direct

and scattered waves, respectively, used for interferometry. Integrals
in equations 16 and 17 represent a multidimensional inverse Fourier
transform that maps krB

!rB and krA
!rA, respectively.

After the shot-domain directional filtering procedure described by
equations 16 and 17, data are sorted into receiver gathers, which are
then used for interferometry. In this approach, the choice of which
sources r to use also influences wavefield separation. Our work
shows that interferometry of wavefields using the wavefield separa-
tion according to equations 16 and 17 results in a pseudosource at rB

that radiates energy in the direction of the krB
vectors preserved by

the filter HB. In the interferometric experiment, waves recorded at rA

arrive in the krA
directions determined by the choice of HA.

Apart from allowing for the design of pseudosources with a spe-
cific radiation property, this type of wavefield separation uses all ar-
rivals with chosen directions for interferometry. We have shown that
this method can be used in the interferometry of internal multiples to
image salt structures from below. The main drawback of this method
is that it cannot separate waves that propagate in the direction per-

S120 Vasconcelos and Snieder



pendicular to the receiver line/plane. So, for instance, it cannot do
strictly up/down wavefield separation for data recorded in a horizon-
tal line of receivers, although this is accomplished by the two prior
wavefield separation methods. With four-component sensors, such a
wavefield separation can be achieved even when waves propagate
perpendicular to the array.

NUMERICAL EXAMPLE

The model we use is composed of a water layer with a wavespeed
of 1500 m/s. A flat, horizontal interface is located at 2500-m depth.
Contrast at the interface is produced by a velocity step from 1500 to
2200 m/s with a constant background density of 1000 kg/m3. Re-
ceivers were positioned in a horizontal line at 750-m depth, starting
at lateral position x ! 1500 m and ending at 3000 m, with incre-
ments of 25 m. The source line also was horizontal at a depth of
400 m, ranging from x ! 500 m to 4500 m, with increments of
50 m. Data were modeled by 2D acoustic finite differencing with ab-
sorbing boundary conditions. Figure 2 shows common-receiver
gathers that consist of direct and single-reflected waves.

First, we use data in Figure 2 to analyze integrands in equations 3
and 10. Deconvolution of the wavefield in Figure 2a with the wave-
field in Figure 2b yields Figure 3a; the crosscorrelation yields the
field shown in Figure 3c. The deconvolution gather !Figure 3a" dis-
plays causal term DAB

2 , whereas both causal !CAB
2 " and anticausal

!CAB
3 " contributions are present in the crosscorrelation gather !Figure

3c". This confirms our claim that deconvolution interferometry gives
only causal scattering contributions. The term CAB

4 also does not have
a corresponding term in the deconvolution gather, as predicted by
equation 13. Waveforms in Figure 3a are sharper than those in Figure
3c because deconvolution suppresses the source function. We use a
water-level regularization method for deconvolutions !see Appen-
dix A in Part 2".

Arrival times predicted with perturbation theory !bottom panels
in Figure 3" provide an accurate representation of modeled results in
the top panels of Figure 3. In particular, the deconvolution series
!equation 12, Figure 3b" accurately describes deconvolution inter-
ferometry !equation 10, Figure 3a". As predicted, terms DAB

2 and DAB
3

have opposite polarity. The extrema of curves in Figure 3 are station-
ary source positions. Thus, the stationary traveltime of each term is
the time associated to the extremum of its curve in Figure 3. The sta-
tionary traveltimes from DAB

1 and CAB
1 are at t !%1 s, representing

causal and anticausal direct waves. DAB
2 and CAB

2 result in a stationary
time of approximately 2.5 s, which coincides with the traveltime of a
causal single-scattered wave.

Other events present in the lower left-hand corner of Figure 3a are
not present in Figure 3b. These events are described by higher-order
terms of the deconvolution series !equation 12". Figure 4 shows how
events are described by second- and third-order terms in the scat-
tered wavefield. Events corresponding to third-order terms have
considerably smaller amplitude than the ones related to second-or-
der terms. Second-order terms are in turn weaker than the leading-
order terms !Figure 3a". A decrease in the power of events with in-
creasing order in the scattered wavefield is expected, given the ex-
pansion of equation 12. These examples confirm the accuracy of the
deconvolution series in describing the results of using deconvolu-
tions to perform interferometric reconstruction of acoustic wave-
fields !equation 10".

The integration over sources !e.g., equations 3 and 10" corre-
sponds to the horizontal stack of plots in Figure 3a and c. For exam-
ple, stacking Figure 3c results in a single trace that represents a
wavefield excited at a lateral position of 1500 m and recorded at
3000 m. We create an interferometric shot gather with a pseudoshot
placed at 1500 m by computing and stacking all deconvolution and
crosscorrelation gathers !Figure 3a and c" for the receiver fixed at
1500 m but varying the lateral position of the other receiver from
1500 to 3000 m. Interferometric shot gathers are shown in Figure 5.

Both gathers in Figure 5 show both causal and anticausal direct
waves. Only the gather produced from crosscorrelation !Figure 5b"
shows causal and anticausal reflections, which agrees with equation
3. The interferometric gather produced from deconvolution interfer-
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Figure 2. Common-receiver gathers for receivers placed at !a" 3000
and !b" 1500 m.
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Figure 3. Deconvolution and crosscorrelation gathers for the first
and last receivers, whose lateral positions are, respectively, 1500 and
3000 m. !a" The deconvolution gather obtained from deconvolving
the common-receiver gather in Figure 2a with that in Figure 2b. !b"
Ray-theoretical traveltimes for the terms in equation 13. !c" Analo-
gous to !a", the crosscorrelations gather generated from source-
by-source correlation of the two receiver gathers. !d" The asymp-
totic traveltimes corresponding to the phase of the integrands in
equation 5.
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ometry !Figure 5a" indeed shows only the causal scattered wave. The
first-order term DAB

3 !equation 13" can be seen in Figure 5a with op-
posite polarity and steeper-sloping character compared with the
physical reflection. The reflection and the DAB

3 spurious events con-
verge at zero offset where they cancel. This is caused by the free-
point boundary condition !equation 14" imposed by deconvolution
interferometry. Other events are related to the truncated source inte-
gration !see the section titled Review of interferometry by crosscor-
relations", such as the upward-sloping linear events appearing be-
tween the direct arrivals and reflections in all three gathers.

As discussed, the free-point spurious events can be avoided by
different forms of wavefield separation. Although our objective is
not to provide a detailed discussion of the effects of wavefield sepa-
ration in interferometry, we briefly illustrate the effect of separating
wavefields in this simple example in Figure 6. Results are an exam-
ple of the direct-wave interferometry method.

By comparing deconvolution gathers in Figures 3a and 6c, we ob-
serve that only term DAB

2 is recovered by interferometry after wave-

field separation. Analogously, the correlation gather in Figure 6d re-
covers only term CAB

2 . Deconvolution and correlation gathers in Fig-
ure 6 demonstrate that direct-wave interferometry isolates the de-
sired reflected wave in GS!rA,rB". The deconvolution gather in Fig-
ure 6c is wider band with respect to its correlation counterpart in
Figure 6d because the source pulse is spiked naturally by deconvolu-
tion interferometry. The virtual source method of Bakulin and Cal-
vert !2004, 2006" adds an additional source-shaping step to the cal-
culation of correlation gathers in Figure 6d, which brings it closer to
the response in Figure 6c.

Images obtained by shot-profile migration of gathers in Figure 5
are shown in Figure 7. The shot-profile migration was done by wave-
field extrapolation with a split-step Fourier extrapolator !e.g., Stoffa
et al., 1990". The reflector is placed at the correct depth of 2500 m in
both images. The images are remarkably similar, despite differences
between gathers in Figure 5. When compared with the image from
correlation interferometry !Figure 7b", the deconvolution-based im-
age !Figure 7a" does not show noticeable artifacts arising from spuri-
ous events produced by deconvolution interferometry. The only ex-
ception is a weak event with negative polarity at approximately 4-
km depth in Figure 7a, which is not present in Figure 7b. This event
is caused by a term that corresponds to setting n ! 1 in equation B-5
!Appendix B". The effect of other free-point scattered waves cannot
be seen in Figure 7a because they are weaker than the physically
scattered primaries. For a more detailed discussion regarding multi-
ple scattering caused by the free-point boundary condition, see Ap-
pendix B.

Ideally, the pseudoacquisition geometry !geometry of the receiv-
ers in the interferometry experiment" should be designed to repro-
duce offsets long enough to provide an image aperture comparable
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to that of standard active-shot experiments. In that case, spurious ar-
rivals produced by deconvolution interferometry can interfere de-
structively in the migration process !e.g., common shot or common
offset" and not map coherently onto image artifacts !Appendix B".
This is the case in the example in Figure 7.

DISCUSSION

Ideally, we want interferometry to give us the best possible repre-
sentation of the impulse response between two given receivers.
Crosscorrelation interferometry yields an accurate representation of
waves propagating between receivers, but it requires additional pro-
cessing to result in an impulsive response. Deconvolution interfer-
ometry yields an impulsive response, but it does so at the cost of gen-
erating artifacts. Another option is to design an inverse filter that
generates a pseudosource with signature and radiation properties
chosen by the user !J. Sheiman, personal communication, 2006". If
there is some knowledge about the model, this tailor-made inverse
filter can be designed to replicate an estimate of a desired wavefield
!e.g., Amundsen, 2001". In this case, the output of the inverse filter
approximates an impulsive version of crosscorrelation interferome-
try. The form of the deconvolution interferometry series is similar to
that of scattering series such as the Lippmann-Schwinger !Rodberg
and Thaler, 1967; Weglein et al., 2003". Forward- and inverse-scat-
tering series serve, for instance, as the basis for methodologies in im-
aging and multiple suppression !e.g., Weglein et al., 2003; Malcolm
et al., 2004". Hence, an inverse deconvolution interferometry series,
in principle, could be devised for imaging pseudoshots generated by
deconvolution interferometry.

There are other important potential applications for deconvolu-
tion interferometry. Deconvolution interferometry gives only causal
wavefield perturbations, whereas unperturbed waves are present at
both positive and negative times. For an ideal source coverage, sub-
tracting the deconvolution-derived anticausal wavefield from the
causal response results only in wavefield perturbations. This can be
useful for processing data from time-lapse experiments as well as for
preprocessing procedures such as direct- or surface-wave suppres-
sion. Apart from reconstructing pseudoshot experiments, interfer-
ometry can be applied to perform stable imaging in poorly known
models !e.g., Borcea et al., 2005, 2006; Dussaud, 2005; Sava and Po-
liannikov, 2008". This type of interferometric imaging is done by
crosscorrelations in the data domain !e.g., Borcea et al., 2005, 2006;
Dussaud, 2005" or image domain !Sava and Poliannikov, 2008". The
use of deconvolution in this type of interferometry application is
likely to be worth pursuing as an alternative to the crosscorrelations
used currently.

Numerical examples with impulsive source data show that decon-
volution interferometry can successfully retrieve the causal re-
sponse between two receivers. This response can be used to build in-
terferometric shot gathers that, in turn, can be imaged. Imaging of
deconvolution interferometric shot gathers shows that most of the
free-point scattered waves do not map onto images. The free-point
boundary condition in deconvolution interferometry makes the dy-
namics of the interferometric experiment different from a real exper-
iment in which a source is placed at the receiver point. This means
that data reconstructed by deconvolution interferometry are suitable
for structural imaging but not for conventional amplitude analyses
!e.g., amplitude-variation-with-offset analysis". However, in princi-
ple, it is possible to design an inverse-scattering procedure using the
deconvolution series presented here to extract meaningful ampli-
tudes from data reconstructed by deconvolution interferometry.

CONCLUSION

By representing recorded wavefields as a superposition of trans-
mitted and scattered wavefields, we derive a series expansion that
describes deconvolution interferometry of receiver gathers before
summing over sources. This derivation shows that interferometry by
deconvolution, before stacking over sources, gives only the causal
scattered wavefield, as if one receiver acted as a source. Because de-
convolution interferometry requires the zero-offset wavefield to
vanish at nonzero times, it generates spurious events to cancel scat-
tered arrivals at zero offset. We refer to this condition as the free-
point boundary condition at the pseudosource location. The decon-
volution interferometry series we derive here provides a detailed
physical description of what we refer to as free-point scattering. Un-
like previously described spurious arrivals in interferometry, free-
point scattered waves do not arise from the truncation of the surface
integral or from the far-field approximation invoked commonly in
interferometry. They are a consequence of using the deconvolution
operator in interferometry.

Our goal is to demonstrate the feasibility of using deconvolutions
to recover the impulse response between receivers. Deconvolution
interferometry has proven to be an important tool for interferometric
imaging from complicated excitation such as coda waves from
earthquakes. In other applications, the complicated character of the
excitation can be related to the source itself. One such example is
drill-bit seismology. When independent measures of the drill-bit
stem noise are not available, deconvolution interferometry is neces-
sary. This is the focus of Part 2.

Other important applications for deconvolution interferometry
can arise when wavefield separation methods are used along with in-
terferometry. In this context, we found deconvolution interferome-
try to be a useful tool for imaging internal multiples in VSP experi-
ments. We also believe that deconvolution interferometry can play
an important role in interferometric imaging of OBC data, but this
topic is the subject of ongoing research.
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APPENDIX A

A REPRESENTATION THEOREM IN PERTURBED
ACOUSTIC MEDIA

The claim that terms such as CAB
2 !equation 5" and DAB

2 !equation
13" yield causal scattered waves in arbitrarily heterogeneous acous-
tic media comes from a representation theorem in perturbed media
!Vasconcelos, 2007". From the derivation in Vasconcelos !2007", we
reproduce here only those aspects of immediate relevance to inter-
ferometry.

Let p and v be pressure and particle velocity, which obey the
wave-equation systems for unperturbed and perturbed media, re-
spectively, given by

%p0
A!r,!" # i!%0!r"v0

A!r,!" ! 0

% · v0
A!r,!" # i!'0!r"p0

A!r,!" ! qA!r,!"
!A-1"

and

%pA!r,!" # i!%!r"vA!r,!" ! 0

% · vA!r,!" # i!'!r"pA!r,!" ! qA!r,!" ,

!A-2"

where ' and % are the compressibility and density, respectively. As
in the main text, subscript zero denotes unperturbed quantities
whereas its absence indicates perturbed quantities. Thus, p ! p0

" pS and v ! v0 " vS, where the fields with subscript S are pertur-
bations !e.g., scattered waves". The source term q is of the volume
injection-rate density type. Superscript A indicates a particular wave
state !Vasconcelos, 2007".

By isolating the interaction quantity % · !pAv
0

B* " p
0

B*vA", we de-
rive the following correlation reciprocity theorem in perturbed me-
dia !Vasconcelos, 2007":

&
#V

#pS
Av0

B* " p0
B*vS

A$ · dS

! )
V

pS
Aq0

B*dV # )
V

i!!'0 # '"pAp0
B*dV , !A-3"

which relates perturbed waves in state A with unperturbed ones in
state B. To obtain a representation theorem from equation A-2, we
define states A and B by setting

qA,B ! $ !r # rA,B" !A-4"

and

pA,B!r,!" ! G!r,rA,B,!"
! G0!r,rA,B,!" " GS!r,rA,B,!" . !A-5"

Using definitions in equations A-4 and A-5 in equation A-3 yields
the representation theorem,

GS!rB,rA" ! &
#V

1
i!%

#GS!r,rA" % G0
*!r,rB"

" G0
*!r,rB" % GS!r,rA"$ · dS

" )
V

i!!'0 # '"G!r,rA"G0
*!r,rB"dV .

!A-6"

Equation A-6 is exact and holds for arbitrary medium properties and
experiment geometries. For simplicity, we use equation A-6 in our
discussion. This equation is strictly valid when perturbations occur
only in compressibility, but it can be extended to account for density
perturbations as well !Vasconcelos, 2007, Vasconcelos and Sneider,
2008".

Equation A-6 describes how to reconstruct causal scattered
waves propagating from rB to rA. In its exact form, equation A-6 is
impractical for seismic interferometry because it requires !1" dipole
sources along #V or dual-field measurements at rB and rA and !avail-
able in some cases" !2" sources and knowledge of the medium per-
turbations inside the volume V. When the requirement cannot be
met, equation A-6 can be adapted for interferometry with pressure
measurements alone. This is done typically with a far-field radiation
boundary condition, by making approximation !%G" ·n ! i!c#1G
!Wapenaar and Fokkema, 2006; Vasconcelos, 2007". This results in

GS!rB,rA" ! &
#V

2
%c

GS!r,rA"G0
*!r,rB"dS

" )
V

i!!'0 # '"G0!r,rA"G0
*!r,rB"dV

" )
V

i!!'0 # '"GS!r,rA"G0
*!r,rB"dV .

!A-7"

We separate the volume integral in equation A-6 into two volume
integrals in equation A-7 using identity GA ! G0

A " GS
A. In equation

A-7, the surface integral plays the role of terms CAB
2 !equation 5" and

DAB
2 !equation 13". For a given stationary point, say, r1, that recon-

structs scattered waves in GS!rB,rA" !Figure A-1", the first volume
integral accounts for perturbations in the paths of G0!r,rA" and
G0!r,rB" !i.e., along the solid arrows in Figure A-1". When receivers
are located between the sources and scatterers as illustrated by Fig-
ure A-1, the first volume integral in equation A-7 is equal to zero be-
cause '0 # ' ! 0 along the paths of G0!r,rA" and G0!r,rB" !i.e., the
solid arrows are not affected by perturbations inP".

The second volume integral in equation A-7 results in a term with
the same phase as that resulting from the surface integral but with
different amplitude. Vasconcelos !2007" shows that the term result-
ing from the second volume integral is weaker than that resulting
from the surface integral; generally, the second volume integral can
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be ignored for perturbation and receiver configurations as in Figure
A-1. Thus, for experiments such as the one shown in Figure A-1,
equation A-7 can be reduced to

GS!rB,rA" * )
#V1

2
%c

GS!r,rA"G0
*!r,rB"dS , !A-8"

which shows why term DAB
2 !equation A-7", and thus deconvolution

interferometry, yields only causal scattered waves.
Equation A-8 is analogous to those in the main text by setting r

! s and using source-receiver reciprocity. The term #V1 is a seg-
ment of the #V surface, chosen such that the first volume integral in
equation A-7 goes to zero. The experiment configuration in Figure
A-1 is adequate to describe interferometry from seismic surveys be-
cause, in typical seismic acquisition designs, receivers lie between
the sources and the subsurface target. Equation A-8 is only valid in
the context of Figure A-1; otherwise, the volume integrals in equa-
tion A-7 cannot be neglected. Vasconcelos !2007" discusses the ef-
fects of these volume integrals for situations other than for that in
Figure A-1 as well as their role in attenuative media.

Equation A-8 provides the physical basis for use of two-way
wavefield separation in interferometry. When u0 and uS can be sepa-
rated from the recorded u, the direct evaluation of an integral, such as
that in equation A-8, becomes practical. Refer to the main text in
which we offer a more detailed account on the role of wavefield sep-
aration in seismic interferometry.

APPENDIX B

MULTIPLE FREE-POINT SCATTERING

In Appendix A, we limited our analysis of the deconvolution in-
terferometry series to first-order terms in GS. Here, we analyze the
higher-order terms, which describe multiple free-point scattering in-
teractions. We first show the connection between the deconvolution
interferometry series in equation 12 and the Lippmann-Schwinger
scattering series !Lippmann, 1956; Rodberg and Thaler, 1967", giv-
en by

GS!rA,s" ! ,
n!1

" )
V

G0!rA,rn"V!rn"

# G0!rn,rn#1" . . . V!r1"G0!r1,s"drn . . . dr1,

!B-1"

where V!r" is the perturbation operator or scattering potential !Rod-
berg and Thaler, 1967; Weglein et al., 2003". For acoustic waves
with unperturbed density, V!r" ! !2#c#2!r" # c0

#2!r"$, with c and c0

being the perturbed and unperturbed wave speeds, respectively.
Equation B-1 can be written in operator form as

GS!r,s" ! G0!r,s" ,
n!1

"

!V!r"G0!r,s""n. !B-2"

Equation 12 can be written in a form similar to that of equation B-2,
i.e.,

DAB !
G!rA,s"
G0!rB,s" ,

n!0

"

!#1"n+GS!rB,s"
G0!rB,s"-n

. !B-3"

For n ! 1, the Lippmann-Schwinger !equation B-2" series yields
the Born approximation; whereas the Born-like approximation in
deconvolution interferometry series gives equation 13. Any term in
equation B-2 describes n interactions !i.e., nth-order scattering" be-
tween G0 and the medium perturbation !i.e., the scatterers" repre-
sented by V!r". Likewise, terms with n$0 in equation B-3 describe
n interactions between the waves in G!rA,s"G0

#1!rB,s" and those in
GS!rB,s"G0

#1!rB,s". Note that the interactions described by equation
B-2 are actual physical interactions, whereas the free-point interac-
tions described by equation B-3 are artificial interactions imposed
by the free-point boundary condition in deconvolution interferome-
try.

It follows from equation B-3 that for the classical scattering case
where GS denoted scattered or reflected waves that arrive after the di-
rect wave, all free-point scattered waves are causal. In the main text
!along with Appendices A and C", we show that all of the physical
scattered waves reconstructed by deconvolution interferometry are
causal !i.e., they are recorded at positive times". Because the free-
point scattered waves must cancel physical scattered waves arriving
at zero offset, the zero-offset traveltime of the free-point scattered
waves is always positive.

Furthermore, in the classical scattering problem !see Appendix
A", the traveltime of any scattered wave is larger than the traveltime
of the corresponding unperturbed wave, thus TS,B # T0,B ( 0.
Therefore, according to equation 12, if traveltimes in the first term
are given by TA,B # T0,B, then it follows from the second term that
TA # T0B " n!TSB # T0B" ( TA # T0B. Thus, the finite-offset trav-
eltime of the free-point scattered waves is always larger than that of
the physical scattered waves. With causal zero-offset traveltimes
and finite-offset arrival times larger than those of physical scattered
waves, free-point scattered are always causal.

Let us consider the second term on the right-hand side of equa-
tion 12 and perform the integration over sources according to equa-
tion 10. Next, using the Lippmann-Schwinger series !equation B-2"
and identity G!rA,s" ! G0!rA,s" " GS!rA,s", we can distinguish two
types of free-point scattering interactions. One is described by

Figure A-1. Special case in perturbation-based interferometry. The
wavefield perturbation GS!rA,rB" can be reconstructed by crosscor-
relating G!rA,s", wavefield perturbations recorded at rA !represented
by the dotted arrow", with G0!rB,s", the unperturbed waves recorded
at rB !denoted by the solid arrow". The point r1 is a stationary source
point that gives rise to the primary scattered wave propagating from
rB to rA.
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Ifp,I ! &
#V

G0!rA,s"
G0!rB,s" ,

n!1

"

!#1"n+GS!rB,s"
G0!rB,s"-n

ds

! &
#V

G0!rA,s"
G0!rB,s" ,

n!1

"

!#1"n

#+,m!1

" G0!rB,s"!V!rB"G0!rB,s""m

G0!rB,s"
-n

ds

!B-4"

and the other by

Ifp,II ! &
#V

GS!rA,s"
G0!rB,s" ,

n!1

"

!#1"n+GS!rB,s"
G0!rB,s"-n

ds

! &
#V

G0!rA,s",p!1

" !V!rA"G0!rA,s""p

G0!rB,s"

# ,
n!1

"

!#1"n

#+,m!1

" G0!rB,s"!V!rB"G0!rB,s""m

G0!rB,s"
-n

ds .

!B-5"

The sum of these two integrals, Ifp,I " Ifp,II, gives the surface inte-
gral of the second term in equation 12. Integrals Ifp,I !equation B-4"
and Ifp,II describe two distinct types of free-point scattering interac-
tions, which we refer to as type 1 and type 2.

The physics of these two types of free-point scattering interac-
tions are illustrated in Figure B-1. Type 1 interactions are shown in
Figure B-1a, and type 2 interactions are represented in Figure B-1b.
The type 1 interaction is the same as in the example we used to de-
scribe the free-point scattering effect in Figure 1b. In both types of
interaction !Figure B-1", physical waves excited by the pseudo-
source at rB !solid arrow" bounce at the scatterer at xS !dashed arrow"
and then scatter off the free point at rB. The difference between type 1
and type 2 interactions lies in what happens to the waves after scat-
tering at the free point. In the type 1 interaction !Figure B-1a", the
free-point scattered wave !dotted black arrow" travels to the receiver

at rA without interacting with the scatterer at xS. After the free-point
scattering at rB, type 2 waves !Figure B-1b, dotted red arrow" first in-
teract with the scatterer at xS and then are recorded at rA.

When the scattering properties are arbitrary !i.e., many scatterers
of arbitrary size, shape, and scattering strength", the second line in
equation B-4 says that type 1 waves are described by m interactions
of waves excited at rB with the scatterers, interacting n times with the
free-point scatterer. Under the same conditions, type 2 waves !equa-
tion B-5" are described by waves departing from the pseudosource at
rB that interact m times with the scatterers, interact n times with the
free-point, and again interact with the medium p times before being
recorded at rA.

Two important physical observations must be made regarding
the free-point scattering interactions. First, when the objective is ul-
timately to image primary reflections from deconvolution interfer-
ometry !seeAppendix A", the type 2 free-point scattered waves !e.g.,
Figure B-1b" can result in image artifacts because their moveout can
be close to that of physical primaries. For examples in Figures 1b and
B-1b, the primary and free-point scattered moveout are the same for
constant !rB,xS" and varying rA. When the scattering occurs at inter-
faces !i.e., reflectors", the difference between the moveout of prima-
ries and free-point scattered waves increases as rA is placed farther
from rB. This occurs because, for interface-scattered waves, all paths
in Figure B-1 change with fixed rB and varying rA.

The second important remark concerning the free-point scattered
waves is that for any given value of n, the type 2 waves !equation
B-5" are one order higher in the scattered wavefields GS with respect
to the type 1 waves !equation B-4". Therefore, at a given n interac-
tion with the free-point !see equations B-4 and B-5", type 1 waves
are always stronger than their type 2 counterpart.

APPENDIX C

NUMERICAL ANALYSIS OF THE FREE-POINT
SCATTERED WAVES

The main objective in studying spurious terms such as DAB
3 is to

determine their influence in imaging data from deconvolution inter-
ferometry. Once a model is specified, we compute the ray-based
traveltimes of each spurious arrival for all source positions accord-
ing to equations B-4 and B-5. From the maxima of the phases of each
spurious event, we determine their corresponding stationary travel-
time and source position. We do this for a fixed position rB as a func-
tion of a laterally varying rA. Given the receiver positions, stationary
traveltimes, and model parameters, we predict the imaged depth of
any given term !e.g., DAB

2 " through common-shot migration
!Bleistein et al., 2001". The result of this analysis is shown in Figure
C-1. Geometry and model parameters used in computations in Fig-
ure C-1 are the same as in the numerical model we discuss in the
main text. For these computations, rA and rB are kept at the same con-
stant depth level.

Only term DAB
2 represents physical scattered waves in Figure C-1.

As expected, DAB
2 is mapped at the same depth for all offsets, as

shown by the solid black line in the figure. On the other hand, the
spurious terms in Figure C-1 map to depths that increase with in-
creasing offset. This suggests that when a sufficiently large range of
offsets is used, most spurious events interfere destructively when
imaged. The only exception is the type 2 free-point term that corre-
sponds to n ! 1 in equation B-5 whose mapped depth varies slowly
with offset. This happens because type 2 free-point scattered waves

a) b)

Figure B-1. The two types of free-point scattering interactions in de-
convolution interferometry. Here, as in Figure 1b, solid arrows indi-
cate the outgoing waves excited by the pseudosource at rB, dashed
arrows represent physically scattered waves, and dotted arrows de-
note the free-point scattered waves. In !a", the free-point scattered
wave !dotted black arrow" travels from rB to rA without interacting
with any scatterers. The other type of interaction is shown in !b", in
which the free-point scattered wave !dotted red arrow" interacts with
the scatterer at xS before being recorded at rA.
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can behave as physical multiples; thus, their moveout can be close to
that of primary reflections !see main text and Figure B-1".

Events corresponding to solid and dashed lines of a common col-
or in Figure C-1 have opposite polarity !see equations B-4 and B-5".
Hence, these events cancel as they approach zero offset. At zero off-
set !Figure C-1", second-order spurious events map at twice the
depth of the physical reflector relative to the receivers !receiver
depth is 750 m", third-order events map at three times that depth, and
so on. This observation can be verified by setting rA ! rB in the
terms from equations B-4 and B-5 that correspond to solid and
dashed curves of a given color in Figure C-1.
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Figure C-1. Depths obtained by shot-profile migration of stationary
traveltimes of deconvolution interferometry terms with varying re-
ceiver-to-receiver offset. Black lines correspond to the terms that are
of leading order in the scattered wavefield. The solid black line rep-
resents migrated depths from traveltimes associated with term DAB

2

!equation 13"; the dashed black line pertains to term DAB
3 !also equa-

tion 13". The blue, red, and green curves are associated, respectively,
with quadratic, cubic, and quartic terms with respect to scattered
waves. For a given order in the scattered waves, we show only the
two terms that have strongest amplitude. Of the blue curves, the solid
curve relates to the n ! 1 in equation B-5 and the dashed one per-
tains to n ! 2 in equation B-4. The imaged depths in red !i.e., the
terms cubic on the scattered fields" are computed from setting n ! 2
in equation B-5 and n ! 3 in equation B-4. The quartic terms come
from equation B-5 for n ! 3 and equation B-4 for n ! 4.
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