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Extraction of near-surface properties for a lossy layered medium
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S U M M A R Y
Near-surface properties play an important role in advancing earthquake hazard assessment.
Other areas where near-surface properties are crucial include civil engineering and detec-
tion and delineation of potable groundwater. From an exploration point of view, near-surface
properties are needed for wavefield separation and correcting for the local near-receiver struc-
ture. It has been shown that these properties can be estimated for a lossless homogeneous
medium using the propagator matrix. To estimate the near-surface properties, we apply de-
convolution to passive borehole recordings of waves excited by an earthquake. Deconvolution
of these incoherent waveforms recorded by the sensors at different depths in the borehole with
the recording at the surface results in waves that propagate upwards and downwards along
the array. These waves, obtained by deconvolution, can be used to estimate the P- and S-wave
velocities near the surface. As opposed to waves obtained by cross-correlation that represent
filtered version of the sum of causal and acausal Green’s function between the two receivers,
the waves obtained by deconvolution represent the elements of the propagator matrix. Finally,
we show analytically the extension of the propagator matrix analysis to a lossy layered medium
for a special case of normal incidence.
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1 I N T RO D U C T I O N

Near-surface properties are useful in quantifying seismic hazards. These properties are important for applications, such as civil engineering
and groundwater detection. The variability of the near-surface properties is caused by changes in porosity, permeability, fractures, fluids,
compaction, diagenesis and metamorphism (Toksöz et al. 1976). The lateral and temporal variations in the near-surface properties are a
major cause of poor repeatability of the source radiation pattern (Aritman 2001), and hence reduce the repeatability of time-lapse surveys.
Knowledge of these near-surface properties is, hence, crucial for time-lapse monitoring. The local near-surface properties are also required to
determine the free-surface reflectivity which is useful to perform wavefield decomposition (Dankbaar 1985; Wapenaar et al. 1990). Estimation
of the near-surface properties for a lossless homogeneous medium using the propagator matrix and wave-equation inversion is shown for SH
waves by Trampert et al. (1993) and for P-SV waves by van Vossen et al. (2004).

Seismic interferometry (Elgamal et al. 1995; Haddadi & Kawakami 1998a,b; Kawakami & Haddadi 1998; Lobkis & Weaver 2001;
Derode et al. 2003; Kawakami & Oyunchimeg 2003; Schuster et al. 2004; Shapiro & Campillo 2004; Snieder 2004; Wapenaar 2004; Shapiro
et al. 2005; Wapenaar et al. 2005; Snieder et al. 2006a) is a technique based on combining signals recorded at different sensors, to estimate the
response between them. Until recently cross-correlation is a widely used tool for applying seismic interferometry. Instead of cross-correlation,
deconvolution can also be used as a seismic interferometric tool (Snieder & Şafak 2006; Vasconcelos & Snieder 2006). To estimate the near-
surface properties, we apply deconvolution to borehole recording of earthquake data. Deconvolution of the incoherent waveforms recorded
by the sensors at different depths in the borehole with the recording at the surface results in waves that propagate upwards and downwards
along the array. These waves obtained by deconvolution can be used to estimate near-surface properties such as 1-D P- and S-wave velocity
profiles. To get the near-surface properties using deconvolution, it is required to have recording in a borehole with two or more downhole
sensors. This method is limited to linear systems and hence cannot be applied in the presence of non-linearity.

Following the study by van Vossen et al. (2004), we establish a connection between the waveforms obtained after deconvolution and the
elements of the propagator matrix. Further, we show analytically the extension of this analysis to a lossy layered medium for a special case
of normal incidence. Section 2 describes the data recorded by a downhole array of sensors during an earthquake in 1994. The application of

C© 2007 The Authors 271
Journal compilation C© 2007 RAS



272 K. Mehta, R. Snieder and V. Graizer

deconvolution to these data and connection of the deconvolved waves with the propagator matrix elements for lossy medium are shown in
Section 3. Finally, in Section 4 we extend the propagator matrix analysis to a lossy layered medium.

2 E A RT H Q UA K E DATA R E C O R D E D B Y T R E A S U R E I S L A N D A R R AY

Downhole arrays of triaxial accelerometers have been installed in California by the California Strong Motion Instrumentation Program
(CSMIP). A geotechnical array, known as the Treasure Island array (Shakal et al. 2004), was installed in San Francisco Bay by CSMIP in
co-operation with other agencies (Graizer et al. 2000). The array was installed in 1992 in an area that experienced liquefaction during the
Loma Prieta earthquake in 1989. It recorded waveforms excited by an earthquake on 1994 June 26 at 08:42:50.31 (UTC). The earthquake
occurred near Richmond, CA and hence, in this paper, is referred to as the Richmond earthquake. It was a 4.0 mag earthquake with focal depth
of 6.6 km and epicentral distance of 12.6 km from the sensors in the borehole. The downhole Treasure Island array had six three-component
sensors located at different depths with the deepest one at a depth of 104 m. Each of the sensors is located in a different borehole separated
by a horizontal distance of 3 m. Graizer et al. (2000) and Graizer & Shakal (2004) analysed these data to study site amplification effects as a
function of depth. Fig. 1(a) shows the radial component of the acceleration recording of the raw data. In this paper, we restrict our analysis to
the body waves that arrive in the time windows in Fig. 1(a) that are labelled as ‘P’ and ‘S’.

3 D E C O N V O L U T I O N A N D P RO PA G AT O R M AT R I X

We use deconvolution to analyse the earthquake data recorded by the Treasure Island Array. The deconvolution of two signals A(ω) and B(ω)
in the frequency domain is given by

D(ω) = A(ω)
B(ω)

. (1)

The deconvolution may be unstable due to zeros of the spectrum of B(ω). To avoid this instability, we perform a regularized deconvolution
given by

D(ω) = A(ω)B∗(ω)
|B(ω)|2 + ε

, (2)

where the asterisk ‘*’ denotes complex conjugate and ‘ε’ refers to a constant added at the denominator to prevent the instability of eq. (1).
For our analysis, we choose ‘ε’ to be 1 per cent of the average spectral power of B(ω).

For the Richmond earthquake data, we deconvolve the waveforms recorded at each of the sensors with the waveforms recorded by the
sensor on the surface. Since all three components of the ground motion are recorded at the Treasure Island array, we apply deconvolution to
all the three components. For the analysis of the three components, we apply deconvolution to the waves arriving in the P- and the S-windows
separately. Fig. 1(a) shows the time windows we use for defining P waves (1.0–4.5 s) and S waves (4.5–15.0 s) before applying seismic
interferometry.

Fig. 2 shows the transverse component of the waveforms after deconvolving the waves in the S-window of the transverse component at
each level with the waves in the S-window of the transverse component at the surface. The deconvolved waves show an up- and a down-going
wave. In order to highlight the waveforms at deeper sensors, we normalize the trace amplitudes with the maximum. Graizer & Shakal (2004)
showed the 1-D profile of the P-wave velocity and the S-wave velocity at the Treasure Island array location using suspension logging and
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Figure 1. Figure (a) shows the acceleration recording of the radial component of the ground motion recorded by the Treasure Island array near San Francisco
during the Richmond earthquake in 1994. The array consists of six three-component sensors located at depths of 0, 7, 16, 31, 44 and 104 m. The time windows
used for gating the P waves (1.0–4.5 seconds) and the S waves (4.5–15.0 seconds) are shown at the top. Figure (b) shows the 1-D velocity profile of the
subsurface (Graizer & Shakal 2004) down to 120 m. The triangles show the location of the downhole sensors.
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Figure 2. Up- and down-going waves obtained by deconvolving the waveforms in the S window of the transverse component of each of the sensors with the
waveforms in the S window of the transverse component of the sensor on the surface [eq. (2)]. The sloping dashed lines show the traveltime curve of the up-
and the down-going S waves computed from the S-wave velocity model from Graizer & Shakal (2004).
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Figure 3. Up- and down-going waves obtained by deconvolving the waveforms recorded by the vertical component of each of the sensors with the waveforms
recorded by the vertical component of the sensor on the surface [eq. (2)]. The sloping dashed lines show the traveltime curve of the up- and the down-going
P waves computed from the P-wave velocity model from Graizer & Shakal (2004).

classical downhole measurements (performed by the USGS), as shown in Fig. 1(b). In Fig. 2, we also show the traveltime curve (sloping
dashed lines) for up- and down-going S waves inferred from the velocity models of Fig. 1(b). Different slopes of the traveltime curve at
different depths are due to changes in the shear velocity at these depths. This suggests that the structure around the Treasure Island array is
heterogeneous. The traveltime curve agrees with the up- and the down-going waves obtained by deconvolution.

For the vertical component, we apply deconvolution to the waves in both the P and the S windows. Fig. 3 shows the waveforms after
deconvolving the waves recorded at each of the sensors with the waves recorded at the sensor on the surface. Similar to Fig. 2, there is an up-
and a down-going wave, but they propagate with velocity higher than the deconvolved waves in Fig. 2. We show the traveltime curve (sloping
dashed lines) for up- and down-going P waves inferred from this model using the 1-D velocity profile for P waves shown in Fig. 1(b). These
traveltimes agree with the up- and the down-going waves obtained by deconvolution.

Similar to the transverse component, deconvolution of the waves recorded by the radial component at each of the sensors with the waves
recorded at the sensor on the surface also results in an up- and a down-going wave. When the waves in the S window are used for deconvolution,
it results in an up- and a down-going S wave shown in Fig. 4. The sloping dashed line that represents the S-wave traveltime curve agrees
well with these up- and down-going waves. The agreement of the traveltime curve with the wave-propagation obtained by deconvolution
for all the three components suggests that deconvolution can be used to extract near-surface properties such as 1-D P- and S-wave velocity
profiles.

We extracted the P- and S-wave velocities by deconvolving the waves recorded by a given component at different depths with the same
component recording at the surface (z = 0). Deconvolution of waves recorded at different depths with the sensor located at a different depth
(z #= 0) also gives up- and down-going waves propagating with P- or S-wave velocities, depending on the component and the time window
(Snieder et al. 2006b). Similar analysis for multiple recordings at the borehole sensors can be used to get better confidence in the results
and estimate on the uncertainty in the 1-D P- and S-wave velocities. Along with the velocity estimation using the traveltimes, comparison
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Figure 4. Up- and down-going waves obtained by deconvolving the waveforms in the S-window of the radial component of each of the sensors with the
waveforms in the S window of the radial component of the sensor on the surface [eq. (2)]. The sloping dashed lines show the traveltime curve of the up- and
the down-going S waves computed from the S-wave velocity model from Graizer & Shakal (2004).

of the amplitudes of the up- and the down-going waves at the same depth can be used to estimate the quality factor, a measure of seismic
attenuation.

3.1 Analysis with propagator matrix

The signal obtained by correlating two waveforms recorded at different receivers represents the filtered version of the sum of causal and
acausal Green’s function that characterizes the wave propagation between the two receivers (Lobkis & Weaver 2001; Derode et al. 2003;
Schuster et al. 2004; Shapiro & Campillo 2004; Snieder 2004; Wapenaar 2004; Shapiro et al. 2005; Wapenaar et al. 2005; Snieder & Şafak
2006). If instead, the two signals are deconvolved, as in our analysis of the Richmond earthquake data, what do the resultant waveforms
represent? To address this question, we first treat the connection between the up- and the down-going waves obtained by deconvolution and
propagator matrix analysis for SH waves that was shown by Trampert et al. (1993). For a general layered medium with one of the sensors in
a borehole (depth z) and another one at the free surface (z = 0), the displacement-stress vector for an SH wave at a depth z is expressed as a
matrix multiplication of the propagator matrix with the displacement-stress vector at the free surface (z = 0) (Aki & Richards 2002). Since
the traction at the free surface is zero, this matrix multiplication can be written as
(

uy(z, ω)

σyz(z, ω)

)

= P SH (z, 0)

(
uy(z = 0, ω)

0

)

. (3)

This is a system of two equations. The first equation can be solved for the SH propagator matrix element as

P SH
11 (z, 0) = uy(z, ω)

uy(z = 0, ω)
. (4)

The right-hand side of eq. (4) represents deconvolution in frequency domain. Hence, for SH waves, deconvolution of the waveforms recorded
at a depth with the waveforms recorded at the surface gives the P11 element of the propagator matrix (Trampert et al. 1993). Does this also
hold true for the P-SV waves? To answer this, we consider the frequency domain analysis using propagator matrices by van Vossen et al.
(2004). Since one of the sensors is at the free surface, the tractions at that sensor vanish. Using this property, they combine the PSV (4∗4) and
SH (2∗2) propagator matrices to give




ux (z, ω)

uy(z, ω)

uz(z, ω)



 = P(z, 0)





ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 , (5)

where

P(z, 0) =





P P SV
11 (z, 0) 0 i P P SV

12 (z, 0)

0 P SH
11 (z, 0) 0

−i P P SV
21 (z, 0) 0 P P SV

22 (z, 0)



 . (6)

In eq. (6), PPSV/SH
i j stands for ij-element of the PSV (4∗4) or SH (2∗2) propagator matrix. A derivation of combining the P-SV and the SH

propagator matrices to give eq. (6) is shown in Appendix A.
We show in Appendix B a derivation of the expressions given by van Vossen et al. (2004) to express the propagator matrix elements in

the measured displacements. The analysis of van Vossen et al. (2004) is, however, limited to a homogeneous lossless medium. To establish
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the connection between the deconvolved waveforms obtained from the Richmond earthquake and the elements of the propagator matrix, we
extend their analysis to a lossy medium.

In the presence of attenuation (Johnston & Toksöz 1981), the propagator matrix elements for a homogeneous medium can be expressed
as (Aki & Richards 2002):

P SH
11 (z, 0) = exp[iωqs z − ξs z] + exp[−iωqs z + ξs z]

= 2 cos[(ωqs + iξs)z], (7)

P P SV
11 (z, 0) = 2β2 p2[cos ωqpz cosh ξpz − i sin ωqpz sinh ξpz]

+ (1 − 2β2 p2)[cos ωqs z cosh ξs z − i sin ωqs z sinh ξs z]

= 2β2 p2 cos[(ωqp + iξp)z] + (1 − 2β2 p2) cos[(ωqs + iξs)z], (8)

iP P SV
12 (z, 0) = p

qp
(1 − 2β2 p2)[cos ωqpz sinh ξpz − i sin ωqpz cosh ξpz]

− 2β2 pqs[cos ωqs z sinh ξs z − i sin ωqs z cosh ξs z]

= −ip
qp

(1 − 2β2 p2) sin[(ωqp + iξp)z] + 2iβ2 pqs sin[(ωqs + iξs)z], (9)

−iP P SV
21 (z, 0) = −p

qs
(1 − 2β2 p2)[cos ωqs z sinh ξs z − i sin ωqs z cosh ξs z]

− 2β2 pqp[cos ωqpz sinh ξpz − i sin ωqpz cosh ξpz]

= ip
qs

(1 − 2β2 p2) sin[(ωqs + iξs)z] − 2iβ2 pqp sin[(ωqp + iξp)z], (10)

P P SV
22 (z, 0) = 2β2 p2[cos ωqs z cosh ξs z − i sin ωqs z sinh ξs z]

+ (1 − 2β2 p2)[cos ωqpz cosh ξpz − i sin ωqpz sinh ξpz]

= 2β2 p2 cos[(ωqs + iξs)z] + (1 − 2β2 p2) cos[(ωqp + iξp)z], (11)

where ω is the angular frequency, β the S-wave velocity, p the horizontal slowness, qp the vertical slowness for P waves, qs the vertical
slowness for S waves, ξ p the imaginary part of the vertical wavenumber for P waves, and ξ s the imaginary part of the vertical wavenumber
for S waves.

As shown in eqs (7)–(11), for a lossy medium, both the vertical and the horizontal wavenumbers are complex. Complex horizontal
wavenumber implies that the horizontal slowness and hence the velocity is complex and frequency-dependent. The associated dispersion is
caused by the causality constraint in a lossy medium (Aki & Richards 2002).

In the absence of attenuation, the propagator matrix elements are real. Therefore, PPSV
11 , PSH

11 and PPSV
22 are real and i PPSV

12 and i PPSV
21 are

imaginary. We show in Appendix B how van Vossen et al. (2004) used this to solve eq. (5) for the propagator matrix elements. In the presence
of attenuation, however, the propagator matrix elements are complex and hence cannot be determined from these three equations. In that
case, it requires more information to express elements of the propagator matrix as a function of the measured displacements. An important
parameter in the expressions of the propagator matrix elements is the horizontal slowness p which depends on the angle of incidence. Using
the velocity structure of the subsurface down to the hypocentre of the earthquake (Wald et al. 1991), we show in Fig. 5 the angle of incidence
as a function of the depth. This figure shows that the waves arrive at the surface at near-normal incidence (4◦). For normal incidence (θ ≈ 0◦),

0 10 20 30 40 50 60 70 80

6000

5000

4000

3000

2000

1000

0

de
pt

h 
(m

)

angle (degrees)

Figure 5. Angle of incidence as a function of depth.
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the cross-terms PPSV
12 and PPSV

21 in the propagator matrix vanish:

P P SV
12 (z, 0) = P P SV

21 (z, 0) = 0. (12)

Substituting eq. (12) into eq. (5) gives the following simplified linear system of equations:




ux (z, ω)

uy(z, ω)

uz(z, ω)



 =





P P SV
11 (z, 0) 0 0

0 P SH
11 (z, 0) 0

0 0 P P SV
22 (z, 0)









ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 . (13)

Solving the system of eq. (13) gives the propagator elements in terms of displacements:

P SH
11 (z, 0) = uy(z, ω)

uy(z = 0, ω)
; P P SV

11 (z, 0) = ux (z, ω)
ux (z = 0, ω)

; P P SV
22 (z, 0) = uz(z, ω)

uz(z = 0, ω)
. (14)

The first equation is the same as eq. (4). The other two equations show that for vertically incident P-SV waves, we can obtain the propagator
matrix elements by applying deconvolution. This holds true for an attenuative medium in a special case of normal incidence. For the Treasure
Island data, we perform deconvolution to get the up- and the down-going waves and show in eq. (14) that these deconvolved waves correspond
to the propagator matrix elements. In this analysis, one of the sensors is always at the free surface where traction vanishes. If instead the waves
recorded at a given depth are deconvolved with the waves recorded at a different depth (z #= 0), the traction values are non-zero and should
be incorporated in the analysis.

4 E X T E N S I O N T O A L AY E R E D M E D I U M

We established the connection between the waveforms obtained after deconvolution and the propagator matrix elements for a lossy homoge-
neous medium. We extend the propagator matrix analysis to a layered medium. In this section, we show the propagator matrix analysis for a
medium consisting of two layers, which can be extended to a multilayered medium. For the two-layer case with one of the sensors at a depth
z and another one on the free surface, the displacement and stress for an SH wave at a depth z are expressed as a matrix multiplication of the
product of propagator matrices corresponding to the two layers with the displacement and stress values at the free surface (z = 0) (Aki &
Richards 2002). Since the traction at the free surface is zero, this matrix multiplication can be written as
(

uy(z, ω)

σyz(z, ω)

)

=
(

S11 S12

S21 S22

) (
R11 R12

R21 R22

) (
uy(z = 0, ω)

0

)

, (15)

where the matrices S and R are the SH propagator matrices for each layer. We multiply the propagator matrices to get
(

uy(z, ω)

σyz(z, ω)

)

=
(

(S R)11 (S R)12

(S R)21 (S R)22

) (
uy(z = 0, ω)

0

)

, (16)

which has the same form as eq. (A1) for SH waves. If P and Q are the P-SV propagator matrices for the two layers, expression for P-SV waves
has the same form as eq. (A3). These SH and P-SV propagator matrices can be combined, as shown in Appendix A, to give




ux (z, ω)

uy(z, ω)

uz(z, ω)



 =





(P Q)11 0 i(P Q)12

0 (S R)11 0

−i(P Q)21 0 (P Q)22









ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 , (17)

where

(S R)i j =
2∑

k=1

Sik Rkj , (18)

(P Q)i j =
4∑

k=1

Pik Qkj . (19)

The combined matrix has the same form as eq. (A8) in Appendix A. Similar to the case of a homogeneous medium, for a lossless medium the
diagonal elements are real and the off-diagonal elements are imaginary. Following the analysis in Appendix B, eq. (17) can be solved for the
propagator matrix elements that correspond to a combination of the propagator matrix elements for each layer as shown in eqs (18) and (19).

In the case of a lossy medium, the propagator matrix elements in eq. (17) are complex valued. This makes it impossible to solve eq. (17)
for the five elements of the propagator matrix. For the homogeneous case, we assumed normal incidence to simplify the underdetermined
system in eq. (5). Let us see if the normal incidence assumption for the layered medium simplifies eq. (17). For normal incidence, the P-SV
propagator matrix for a homogeneous layer simplifies to

P P SV =





P11 0 P13 0

0 P22 0 P24

P31 0 P33 0

0 P42 0 P44




. (20)
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Near-surface properties of layered media 277

If we use the P-SV propagator matrix for vertically incident waves shown in eq. (20) for multiplication, the terms (PQ)12 and (PQ)21 in eq. (17)
vanish. Hence, the system of equations simplifies to




ux (z, ω)

uy(z, ω)

uz(z, ω)



 =





(P Q)11 0 0

0 (S R)11 0

0 0 (P Q)22









ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 , (21)

where, for a two-layer case, the diagonal terms of the matrix in eq. (21) simplify, because of normal incidence, to

(P Q)11 = P11 Q11 + P13 Q31,

(S R)11 = S11 R11 + S12 R21,

(P Q)22 = P22 Q22 + P24 Q42. (22)

Hence, for vertically incident waves in a layered medium, the propagator matrix similar to eq. (13) can be obtained by combining the
P-SV and SH propagator matrices, each of which is a combination of the corresponding propagator matrices for each layer as shown in eqs
(18) and (19). If each of the layers is homogeneous and incidence is normal, the resultant matrix is diagonal and hence can be solved for the
combination of the propagator matrix elements even in the presence of attenuation. Deconvolution applied to the waveforms recorded in a
layered medium thus results in the propagator matrix elements of the matrix obtained by combining the P-SV and the SH matrices of the
layered medium.

5 C O N C L U S I O N

We show that deconvolution as a tool for seismic interferometry, applied to data recorded by the Treasure Island array, results in a superposition
of up- and down-going P and S waves. This makes it a valuable tool in estimating the 1-D velocity profile along the recording array. Application
of deconvolution to various components of the data results in waves either propagating with P- or S-wave velocity, and depends on the time
window used for gating before applying deconvolution. For both the transverse and radial components, deconvolution of the waves in the
S-wave window results in the up- and down-going waves with S-wave velocity. Deconvolution applied to the vertical component results in
up- and down-going waves with the P-wave velocity. Finally, we establish a connection of the resultant up- and down-going waves with the
propagator matrix elements and show that this type of analysis is possible even in the presence of attenuation as long as we restrict ourselves
to normal incidence. We extend the propagator matrix analysis to a layered medium and show that even for a layered medium, the analysis
holds in the presence of attenuation for a special case of normal incidence.
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A P P E N D I X A : D E R I VAT I O N O F T H E C O M B I N E D P RO PA G AT O R M AT R I X

The displacement and stress for an SH wave at a depth z can be expressed as a matrix multiplication of the propagator matrix and the values
at the free surface (z = 0) (Aki & Richards 2002). Since the traction at the free surface is zero, we can write the multiplication as
(

uy(z, ω)

σyz(z, ω)

)

= P SH (z, 0)

(
uy(z = 0, ω)

0

)

(A1)

⇒ uy(z, ω) = P SH
11 (z, 0)uy(z = 0, ω). (A2)

A similar expression for the P-SV system is given by




ux (z, ω)

iuz(z, ω)

σxz(z, ω)

iσzz(z, ω)




= P P SV (z, 0)





ux (z = 0, ω)

iuz(z = 0, ω)

0

0




(A3)

⇒ ux (z, ω) = P P SV
11 (z, 0)ux (z = 0, ω) + iP P SV

12 (z, 0)uz(z = 0, ω), (A4)

iuz(z, ω) = P P SV
21 (z, 0)ux (z = 0, ω) + iP P SV

22 (z, 0)uz(z = 0, ω). (A5)

Equations (A2), (A4) and (A5) can be combined to give the following system of equations:

uy(z, ω) = P SH
11 (z, 0)uy(z = 0, ω),

ux (z, ω) = P P SV
11 (z, 0)ux (z = 0, ω) + iP P SV

12 (z, 0)uz(z = 0, ω),

uz(z, ω) = −iP P SV
21 (z, 0)ux (z = 0, ω) + P P SV

22 (z, 0)uz(z = 0, ω).

(A6)

This system of equations can be rewritten in matrix form as




ux (z, ω)

uy(z, ω)

uz(z, ω)



 = P(z, 0)





ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 , (A7)

where

P(z, 0) =





P P SV
11 (z, 0) 0 iP P SV

12 (z, 0)

0 P SH
11 (z, 0) 0

−iP P SV
21 (z, 0) 0 P P SV

22 (z, 0)



 (A8)

is the propagator matrix relating the displacements at a depth z with the displacements at the free surface (z = 0).
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A P P E N D I X B : S O LV I N G F O R T H E P RO PA G AT O R M AT R I X E L E M E N T S I N T E R M S
O F D I S P L A C E M E N T S

For a homogeneous lossless medium, following are the expressions for the elements of SH and P-SV propagator matrices, as obtained from
Aki & Richards (2002) and simplified to agree with the expressions given by van Vossen et al. (2004):

P SH
11 (z, 0) = 2 cos(iνz)

= 2 cos(ωqs z),
(B1)

P P SV
11 (z, 0) = 1 + 2µ

ω2ρ

[
2k2 sinh2

(
γ z
2

)
− (k2 + ν2) sinh2

(
νz
2

)]

= 2β2 p2 cos[ω(qpz)] + (1 − 2β2 p2) cos[ω(qs z)], (B2)

P P SV
12 (z, 0) = kµ

ω2ρ

[
(k2 + ν2)

sinh γ z
γ

− 2ν sinh νz
]

=
[−p(1 − 2β2 p2)

qp

]
sin(ωqpz) + 2β2 pqs sin(ωqs z)

⇒ iP P SV
12 (z, 0) = −ip

qp
(1 − 2β2 p2) sin(ωqpz) + 2iβ2 pqs sin(ωqs z), (B3)

P P SV
21 (z, 0) = kµ

ω2ρ

[
(k2 + ν2)

sinh νz
ν

− 2γ sinh γ z
]

⇒ −iP P SV
21 (z, 0) = ip

qs
(1 − 2β2 p2) sin(ωqs z) − 2iβ2 pqp sin(ωqpz),

(B4)

P P SV
22 (z, 0) = 1 + 2µ

ω2ρ

[
2k2 sinh2

(
νz
2

)
− (k2 + ν2) sinh2

(
γ z
2

)]

⇒ P P SV
22 (z, 0) = 2β2 p2 cos[ω(qs z)] + (1 − 2β2 p2) cos[ω(qpz)], (B5)

where k is horizontal wavenumber, µ is shear modulus and ρ is density. ν is the vertical wavenumber for S waves and γ is the vertical
wavenumber for P waves (ν = ωq s and γ = ωq p). In the absence of attenuation, both ν and γ are real valued.

As shown by van Vossen et al. (2004), for lossless medium, we can solve eq. (A7) for the components of the propagator matrix. To solve
for the propagator matrix elements, we start with eq. (A7) rewritten as





ux (z, ω)

uy(z, ω)

uz(z, ω)



 =





P P SV
11 (z, 0) 0 iP P SV

12 (z, 0)

0 P SH
11 (z, 0) 0

−iP P SV
21 (z, 0) 0 P P SV

22 (z, 0)









ux (z = 0, ω)

uy(z = 0, ω)

uz(z = 0, ω)



 . (B6)

Since the diagonal elements are real and the off-diagonal elements are imaginary, the system of equations in eq. (B6) can be expressed as

Re(ux (z, ω)) + iIm(ux (z, ω)) = P P SV
11 (z, 0)[Re(ux (z = 0, ω)) + iIm(ux (z = 0, ω))]

+ iP P SV
12 (z, 0)[Re(uz(z = 0, ω)) + iIm(uz(z = 0, ω))],

Re(uz(z, ω)) + iIm(uz(z, ω)) = −iP P SV
21 (z, 0)[Re(ux (z = 0, ω)) + iIm(ux (z = 0, ω))]

+ P P SV
22 (z, 0)[Re(uz(z = 0, ω)) + iIm(uz(z = 0, ω))]. (B7)

In order to solve for the propagator matrix elements, we equate the real and imaginary parts to give the following equations:

Re(ux (z, ω)) = P P SV
11 (z, 0)Re(ux (z = 0, ω)) − P P SV

12 (z, 0)Im(uz(z = 0, ω)),

Im(ux (z, ω)) = P P SV
11 (z, 0)Im(ux (z = 0, ω)) + P P SV

12 (z, 0)Re(uz(z = 0, ω)),

Re(uz(z, ω)) = P P SV
21 (z, 0)Im(ux (z = 0, ω)) + P P SV

22 (z, 0)Re(uz(z = 0, ω)),

Im(uz(z, ω)) = −P P SV
21 (z, 0)Re(ux (z = 0, ω)) + P P SV

22 (z, 0)Im(uz(z = 0, ω)). (B8)
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Solving this system of equations for the elements of the propagator matrix gives

P SH
11 (z, 0) = uy(z, ω)

uy(z = 0, ω)
,

P P SV
11 (z, 0) = Re(ux (z, ω))Re(uz(z = 0, ω)) + Im(ux (z, ω))Im(uz(z = 0, ω))

Re(ux (z = 0, ω))Re(uz(z = 0, ω)) + Im(ux (z = 0, ω))Im(uz(z = 0, ω))
,

P P SV
12 (z, 0) = i[Re(ux (z = 0, ω))Im(ux (z, ω)) − Im(ux (z = 0, ω))Re(ux (z, ω))]

Re(ux (z = 0, ω))Re(uz(z = 0, ω)) + Im(ux (z = 0, ω))Im(uz(z = 0, ω))
,

P P SV
21 (z, 0) = −i[Re(uz(z = 0, ω))Im(uz(z, ω)) − Im(uz(z = 0, ω))Re(uz(z, ω))]

Re(ux (z = 0, ω))Re(uz(z = 0, ω)) + Im(ux (z = 0, ω))Im(uz(z = 0, ω))
,

P P SV
22 (z, 0) = Re(ux (z = 0, ω))Re(uz(z, ω)) + Im(ux (z = 0, ω))Im(uz(z, ω))

Re(ux (z = 0, ω))Re(uz(z = 0, ω)) + Im(ux (z = 0, ω))Im(uz(z = 0, ω))
. (B9)

Hence, for a homogeneous medium, the propagator matrix elements can be expressed in terms of displacements at the depth of interest z and
at the free surface (z = 0).
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