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Estimating Intrinsic Attenuation of a Building Using Deconvolution

Interferometry and Time Reversal

by Conrad Newton and Roel Snieder

Abstract Structural engineers have measured a building’s response to strong mo-
tion from civil structures that have been instrumented with accelerometers, such as the
Robert A. Millikan Library of the California Institute of Technology. The attenuation
of the motion of this building has been measured using seismic interferometry tech-
niques in the past. We use the breaking of the temporal symmetry of the wave equation
by attenuation, in combination with seismic interferometry, to estimate attenuation.
These estimates are made from fitting the differences in acausal and causal waveforms
obtained from different deconvolution processes. We apply the method to the motion
recorded at the Millikan Library and obtain estimates of intrinsic attenuation that
compare well with past measurements. This technique has more precision for higher
frequencies than earlier measurements that are based on seismic interferometry, and it

is not dependent on radiation losses at the base of the building.

Introduction

For decades, scientists and engineers have worked to
characterize building responses with the purpose of mitigat-
ing earthquake hazards and monitoring building integrity
(Carder, 1936; Kuroiwa, 1967; Trifunac, 1972; Foutch,
1976; Celebi et al., 1993; Clinton et al., 2006; Snieder and
Safak, 2006; Chopra and Naeim, 2007; Kohler and Heaton,
2007; Prieto et al., 2010). This has been done by measuring
building motion, modal frequencies, intrinsic attenuation,
shear velocities, and other properties. After the excitation
force drives the motion of the building, intrinsic attenuation,
scattering attenuation, and radiation losses dissipate the
energy. Intrinsic attenuation estimates quantify the anelastic
dissipation of the building’s motion given by the quality fac-
tor Q or the damping coefficient (:

(=5 (1)

Improving the measurement of intrinsic attenuation
from the motion excited by complicated ground motion is
the focus of our work. Advancing the measurement of at-
tenuation, engineers can more accurately describe the motion
of civil structures (Celebi et al., 1993; Chopra and Naeim,
2007; Kohler et al., 2007), while geophysicists can produce
more accurate models of the subsurface (Calvert, 2003) and
diagnose the presence of fluids and the migration of these
fluids in reservoirs (Bakulin et al., 2007).

Much has been learned from advanced instrumentation
installed into buildings such as the Factor Building of the
University of California at Los Angeles and the Millikan
Library of the California Institute of Technology. These

networks have produced large volumes of data for under-
standing wave propagation in buildings. Monitoring these
types of buildings suggests that analysis be done over time
to observe changes in the response of the building. Typically
this analysis is done for the motion excited by earthquakes
(Clinton et al., 2006; Snieder and Safak, 2006; Kohler et al.,
2007), ambient noise (Derode et al., 2003; Clinton et al.,
2006; Larose et al., 2006; Prieto et al., 2010), or controlled
sources (Kuroiwa, 1967; Clinton et al., 2006; Kohler and
Heaton, 2007). Recently, seismic interferometry has been
used for acquiring attenuation estimates (Snieder and Safak,
2006; Kohler et al., 2007; Prieto et al., 2010).

Seismic interferometry has received much attention in
the seismology community. The use of seismic interferome-
try has been explored for extracting Green’s functions, and
from this, other parameter estimations (Bakulin and Calvert,
2006; Snieder et al., 2006; Vasconcelos and Snieder, 2008;
Halliday and Curtis, 2010; Wapenaar et al., 2010). Decon-
volution interferometry is preferable, for reasons discussed
later, for retrieving attenuation estimates. Snieder and Safak
(2006) and Kohler et al. (2007) use deconvolution interfero-
metry for the Millikan Library and Factor Building, respec-
tively, to acquire attenuation estimates. Our approach is
similar, but we use upgoing and downgoing decomposed
waves and time reversal to attain attenuation measurements.

The concept that attenuation breaks time-reversal sym-
metry facilitates our measurements of attenuation (Fink,
2006; Gosselet and Singh, 2007). Wave-field decomposition,
in combination with deconvolution interferometry, generates
acausal and causal waveforms (Snieder et al., 2006). Here,
we define acausal to describe the waveforms occurring
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before time = 0. We compare these waveforms, and from
their differences, estimate intrinsic attenuation. Because our
estimate of attenuation hinges on a comparison of causal and
acausal waveforms, we obtain an estimate of intrinsic at-
tenuation because scattering attenuation is causal and invar-
iant for time reversal. In the following, we use the term
attenuation for intrinsic attenuation.

Much like the method used by Snieder and Safak
(2006), we base our estimates on a linear least-squares fit to
the natural logarithm of the deconvolved waveform envel-
opes. We acquire accurate and precise estimates of attenua-
tion that are frequency-dependent and compare well with
previous attenuation estimates. Our method acquires
frequency-dependent attenuation estimates that do not re-
quire any normal mode analysis and estimates are more pre-
cise than estimates taken from traveling waves.

The recorded shear waveforms were excited by the
Yorba Linda earthquake and consist of two north—south
accelerations and one east—west acceleration of the Millikan
Library in 10 floors above the surface and a basement below
the surface. Only one north—south acceleration dataset was
used for this investigation (Fig. 1). There were some instru-
ment coupling issues in the other two datasets as well. Build-
ing dimensions and details pertaining to the structure and
instrumentation can be found in many articles, but most his-
torical and recently notable are Kuroiwa (1967) and Clinton
et al. (2006), respectively. Using only the north—south
motion of the building constrains our analysis to 1 degree of
freedom. The geometry of the building allows for a clamped
beam model to represent the motion of the structure. The
Millikan Library naturally has 3 degrees of freedom in build-
ing motion, and 3n degrees of freedom if we consider a num-
ber of floors denoted by n (Safak, 1999). Our purpose is to
demonstrate the application of this method, but our method
can be extended to include more degrees of freedom.
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Figure 1.  Yorba Linda earthquake data recorded at the Millikan

Library, California Institute of Technology, Pasadena, California.
The waveforms indicate accelerations in the north—south direction,
and the floor numbers correspond to the location in the building
where the data were recorded. Floor 0O is the basement floor.
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We first discuss the basic theory behind deconvolution
interferometry and time reversal. We give an example of why
deconvolution interferometry is chosen, and how the devia-
tion from time-reversal symmetry indicates the presence of
attenuation and facilitates the measurement of attenuation.
Next, we discuss the methodology used to achieve these re-
sults. We finish by comparing estimates of attenuation with
those made from past interferometric methods of the Yorba
Linda earthquake data recorded at the Millikan Library.

Theory

Seismic interferometry using deconvolution has become
increasingly popular for applications in seismic imaging,
parameter estimation, and passive monitoring (Curtis et al.,
2006; Snieder and Safak, 2006; Snieder et al., 2006; Kohler
et al., 2007; Vasconcelos and Snieder, 2008; Prieto et al.,
2010; Minato et al., 2011). Typically cross-correlation repre-
sentation theorems are used to acquire the correct Green’s
function between receivers. Snieder (2007) shows that in
the presence of dissipation, cross-correlation type seismic
interferometry cannot accurately determine the attenuation
response between receivers unless the medium is completely
covered by sources. We first briefly explore the reasons why
deconvolution seismic interferometry is preferred over cross-
correlation seismic interferometry in estimating attenuation,
especially with passive seismic data.

We consider a simple 1D seismic interferometry experi-
ment in a homogeneous dissipative medium to illustrate our
decision to use deconvolution interferometry. Consider a
source located at position rg, and receivers located at r4 and
rg (Fig. 2). If a dissipating wave propagates away from the
source and is recorded by receivers, seismic interferometry
can be used to determine the response between those recei-
vers. Seismic interferometry is a tool to measure the response
between receivers, where the source position is redatumed to
a known receiver location by the virtual source method
(Schuster, 2009). Though the source signature of the actual
source and virtual source are indeed different, the wave state
obtained from seismic interferometry obeys the same wave
equation as the original system (Snieder et al., 2006), and we
can determine the system response to a virtual source. Ex-
amining the deconvolution and cross-correlation operations,
for this example, gives insight why deconvolution is pre-
ferred for measuring attenuation. In our thought experiment,
the receivers record the following frequency-domain wave
fields:
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Figure 2. Definition of geometric parameters for 1D wave
propagation example.
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U(ry,w) = S(rS,w)e‘W(’A_’S)eik(rA—rs), )

and
U(rg,w) = S(rs, w)e—w(rg—rs)eik(rg—rs)’ 3)

where S(rg,w) is the source spectrum, k is the wavenumber,
and ~ the attenuation coefficient.

The choice of which seismic interferometric operation
gives an accurate estimation of the attenuation becomes ap-
parent from the application of each interferometric technique
to the waveforms U(r4,w) and U(rg,w). Cross-correlation
interferometry applied to these wave fields gives, in the fre-
quency domain,

CC(rg,rg,w) = U(rg,w)U*(ry,w)

— |S(rs,w)|2e—V(rB+rA—2"s)eik(rB—rA)_ 4)

The phase is correct, but the amplitude is incorrect, because it
depends on the sum of the positions rp 4 r, rather than the
difference rp —r,. The amplitudes estimated from cross
correlation are thus incorrect for attenuation analysis. In con-
trast, deconvolution of the fields of equations (2) and (3) in
the frequency domain gives

U(rB7w) —

225 o Wr—ra) pik(rp—ra) | 5
U(rAa (JJ) ( )

D(VB,VA,(U) =

With deconvolution interferometry, we thus obtain the
correct phase, e*5=74) and amplitude, e™5774), that ac-
count for the attenuation of the waves that propagate between
the two receivers. Note that cross correlation requires the
power spectrum of the source signal as well as the source
location, where deconvolution interferometry is independent
of the source properties. Because of these properties, we use
deconvolved waveforms for our attenuation measurements.
Equation (5) is potentially unstable when the reference spec-
trum U(ry,w) — 0. For our method, we use a stabilized
deconvolution given by

U(er w)
U(rA’ U.))

U(rg,w)U*(ry,w)
Uy, U*(ry,w) + €’

(©)

D(er ra, w) =
where we take € to be 1% of the average power of U(r,, w).

Methodology

Attenuation of waves is expressed in the quality factor
that is defined as the relative energy loss over a cycle of os-
cillation (Aki and Richards, 1980). Estimations of attenua-
tion can be made by measuring the loss in the amplitudes
as waves propagate between receivers. These estimations
are based on the assumptions that both receivers are coupled
accurately to the medium, and the amplitude picks corre-
spond to the same seismic event. Previous studies of Snieder
and Safak (2006) measured attenuation with the Millikan
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Library data using interferometry to reduce the imprint of
a variable receiver coupling. Our method estimates attenua-
tion from individual recordings deconvolved with a common
signal, and estimates can be averaged over the array of
recordings to reduce and estimate the error. Deconvolution
interferometry with a reference signal decomposed into up-
going and downgoing waves generates wave states with an
impulsive upgoing and downgoing wave, respectively, at the
base of the building (Snieder et al., 2006). The upgoing and
downgoing waveforms of an individual receiver can be com-
pared to give measurements of attenuation.

We separate the wave field at the base of the building
into upgoing (#, ) and downgoing (u#_) waves using the fol-
lowing decomposition (Robinson, 1999):

Ouy, 1 (0u  Ou

W‘z(az_caz)’ ™
and

Ou_ 1 (0u ou

W_E(E—i_cﬁ_z)' (8)

The z-derivative follows from the difference of the motion
recorded in the basement and on the first floor. We use the
value ¢ = 322 m/s as determined by Snieder and Safak
(2006).

Deconvolving the waveforms with their upgoing and
downgoing waves separates the signal into causal and acau-
sal waves (Snieder et al., 2006). The causal and acausal
waveforms would be symmetric in time if attenuation were
not present. We measure the attenuation from the differences
in the causal and time-reversed acausal waveforms of each
floor. The procedure begins by directionally separating the
wave fields in the reference floor using equations (7) and
(8). We choose the basement floor recording as our reference
signal and separate the signal into upgoing and downgoing
waves. We estimate the z-derivative from the differences in
the motion recorded in the basement and at the first floor.
This generates waveforms that are either causal or acausal
in the floors above the basement. This procedure simulates
a pure upgoing or downgoing impulsive virtual source in the
basement at r = 0.

Using only the upgoing waves in the reference signal,
our interferometry method extracts the building response
from an upgoing impulsive source in the basement of the
building at + = 0. The deconvolutions of all the floors, in
the frequency domain, are ratios of the full wave-field spectra
of an individual floor and the upgoing wave spectra of the
reference floor. We apply this type of deconvolution to all the
floors to get 11 deconvolved waveforms (Fig. 3a). Deconvo-
Iution, with the upgoing waves in the reference floor, com-
presses all the upgoing waves in the basement into one
upgoing virtual impulse injected at t = 0. The response of
the building to this virtual source is nonzero for times ¢ > 0.
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Figure 3. Waveforms deconvolved with decomposed waves and their superpositions both before and after time reversal. (a) Waveforms
obtained by deconvolving the waves at every floor with the upgoing wave in the basement, (b) with the downgoing wave in the basement,
(c) superposition of causal and acausal waveforms of (a) and (b), and (d) superposition after time reversal of acausal waveforms.

The use of the upgoing waves for deconvolution generates
causal waveforms because the building only oscillates
after the upgoing wave enters the building. In a similar
manner, we also deconvolve the full waveforms of each
individual floor with the downgoing waveform from the
basement signal. This downgoing wave is the result of up-
going waves entering the building at earlier times (i.e.,
t < 0). Therefore, this procedure generates acausal wave-
forms (Fig. 3b). Collapsing all the downgoing waves in
the basement to one downward impulse requires energy to
be present in the building before time ¢ = 0, which corre-
sponds to the acausal waveforms seen in Figure 3b.

A superposition of the causal and acausal waveforms of
Figure 3a,b as shown in Figure 3c, reveal a quasi-symmetry
of the waveforms around ¢t = 0. Time reversal breaks down
under certain conditions, such as rotation, flow, and intrinsic
attenuation (Fink, 2006). The intrinsic attenuation in the
building has broken the time-reversal symmetry of the wave-
forms in Figure 3c. This is apparent from Figure 3d, where
the acausal waveforms generated from the deconvolution
using downgoing waves of the reference floor, have been
time reversed. This plot shows the superposition of the time-
reversed acausal waveforms and causal waveforms. Note that
the amplitudes do not match, and from this difference in
amplitudes we measure attenuation.

We band-pass filter the deconvolved signals using But-
terworth filters of the third and second order to the respective
dominant frequency bands 0.2-3.0 Hz and 5.0-7.8 Hz of the
power spectra shown in Figure 4. This allows us to retrieve
constant Q-values within each frequency band chosen for
analysis, thereby yielding a frequency-dependent Q in a dis-
crete sense. After band-pass filtering our deconvolved sig-
nals using the frequency bands of Figure 4, we compute
the envelopes of all the waveforms. To demonstrate the
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Figure 4. The root mean square power spectra of floor 7 with

horizontal bars indicating the frequency bands used for band-pass
filtering.
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Figure 5.  Signal from floor 4 deconvolved with upgoing waves
after low band-pass filtering and envelope of the corresponding
signal.

estimation of attenuation, we discuss the procedure for the
low-frequency band-passed data in detail.

The two curves depicted in Figure 5, are a deconvolved
waveform from the upgoing wave of floor 4 and the envelope
corresponding to this waveform. This deconvolved wave-
form is generated from the spectra of the fourth floor and the
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Figure 6.  The natural log of envelopes from upgoing and down-

going deconvolved waveforms after low frequency 0.2-3.0 Hz
band-pass filtering.
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Figure 7.  The difference of the curves in Figure 6 and linear fit.
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upgoing wave at the basement. We then apply the low-
frequency Butterworth band-pass filter of order 3 to this
deconvolved waveform. The envelope is acquired from
the modulus of the analytic signal using the Hilbert trans-
form. We next take the natural logarithm of this waveform
(Fig. 6). The second curve is the natural logarithm of the en-
velope of the wave from the fourth floor obtained from de-
convolution using the downgoing wave and time reversed.
The first observation is that these two curves are not the
same; this difference is due to attenuation. The second ob-
servation is that these curves decay almost linearly for the
first 2 s. During this time duration, the difference of these
natural logarithms is also linear with respect to time, and
a constant Q-value model corresponds to the slope of the
difference of these curves. This model is set up by examining
the envelopes of the deconvolved signals of an individual
floor. We define the envelopes of the deconvolved signals
to be
d,(t)=A;e™, d_(—t) = A_et™. )
Taking the natural logarithm of the ratio of d, to d_ yields an
equation suited for a linear regression where the slope
parameter solves for the attenuation coefficient m in a least-
squares sense:

| = —2m. (10)

i
In | i
This model does make the assumption that the initial ampli-
tudes are approximately equal, such that A, ~ A_. Figure 7
shows the difference of the curves of Figure 6, for the initial
2 s, and the linear least-squares fit. This procedure is repeated
for all the floors, excluding floor 8 because of receiver
coupling issues, to generate estimates of the attenuation
coefficient.

We also use this procedure for the higher frequency
band-pass filtered data of 5.0-7.8 Hz. In this case, the linear
trend of the difference of natural logarithms of the envelopes
only has a 1-s duration. The higher frequency content of the
signal is expected to lead to a more rapid decay of the
envelope than of the low-frequency content. Figure 8 shows
that noise dominates the signal after 1-s duration because the
envelope stabilizes to a near-constant value after that time.
Therefore, we do our fitting within the first second, and this
fitting of the difference of the curves of Figure 8 can be seen
in Figure 9.

To estimate the error in our measurement of ¢ due to
errors in the slope of the fitting curve and the width of the
employed frequency band, we use the following equations.
If we write the attenuation coefficient as

m= &, (11)

where w is the weighted mean of the angular frequency for a
given frequency band, and the attenuation coefficient m is
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Figure 8.  The natural log of envelopes from upgoing and down-

going deconvloved waveforms after high-frequency 5.0-7.8 Hz
band-pass filtering.

given by the slope from our fitting curve, we estimate the
error for the i-th floor using

(12)
where o, is our standard deviation of @ given by
_ JowP(W)dw
= 1
“ JoPwydw (13)
and
_ )2
o2 = Jolw—@) P(w)dw7 (14)

Jo P(w)dw

where P(w) is the power spectrum within the employed fre-
quency band §2. Our standard deviation is o, ; of the attenua-
tion coefficient of the i-th floor from estimates of the
discrepancy of the data from the least-squares linear fit
(Bevington and Robinson, 2003). This procedure for o ;
is repeated and averaged for all the floors except the eighth
floor. Equation (12) is based on the assumption that the
frequency and slope are independent measurements, and

Amplitude

0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 9.

The difference of the curves in Figure 8 and linear fit.
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Table 1
Damping Coefficients

Method ¢ o¢ Frequency Mode
TR* 1.14%  0.50% Fundamental
NMT 1.15% 0.41% Fundamental
Newton and Snieder 1.57% NA Fundamental
(half power)
Bradford et al., 2004 2.39% NA Fundamental
Clinton et al., 2006 1.63% NA Fundamental
Kuroiwa, 1967 (half power) 1.54% NA Fundamental
Kuroiwa, 1967 (mode shape) 1.47% NA Fundamental
Kuroiwa, 1967 (Hudson’s) 1.74% NA Fundamental
TR* 1.74%  0.39% First overtone
TWH# 1.58% 1.36%  First overtone

*TR, time reversal.
NM, normal mode.
*TW, traveling wave.

therefore that their covariance vanishes. The attenuation
estimates with their errors are presented in Table 1.

Relation to Previous Work

The motion of the Millikan Library has been used before
to estimate intrinsic attenuation using deconvolution inter-
ferometry (Snieder and Safak, 2006), and we compare our
results with these past measurements. Snieder and Safak
(2006) developed two techniques using deconvolution inter-
ferometry. A technique that measures attenuation from the
normal mode oscillation of the building and another that
measures attenuation from higher frequency traveling waves.

The technique employing the normal mode oscillations
of the building uses the basement floor signal as the reference
signal for the deconvolution defined by equation (6). This
technique, however, does not decompose the wave field into
up and downgoing waves. Using the full spectra of the re-
ference signal, we generate the deconvolution waveforms
in Figure 10. In this figure, the motion at the basement floor
is compressed to a band-limited spike at # = 0. For ¢ > 0, the
figure shows the response of the building to the impulsive
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Figure 10. The motion of the building in Figure 1 after decon-
volution with the motion recorded in the basement.
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excitation. This response is dominated by the fundamental
mode of the building with a period of about 0.6 s.

We first band-pass filter the waveforms of Figure 10 be-
tween 0.2-3.0 Hz, using the low-frequency range indicated
by the left horizontal bar in Figure 4. A linear curve is fit to
the natural logarithm of the envelopes of the deconvolved
waveforms similar to our time-reversal method. Figure 11
shows the natural logarithm of the envelope of the signals
in Figure 10 in solid lines and the least-squares fits in dashed
lines. The slope of the least-squares fit is proportional to the
attenuation coefficient. Table 1 shows the average damping
estimate corresponding to the normal mode measurement in-
dicated by NM for this method. An attempt to measure the
damping with this method at the higher frequency band
yielded poor results. This is due to low amplitude in the
power spectrum of the frequency band of 5.0-7.8 Hz.

The next deconvolution interferometry technique devel-
oped by Snieder and Safak (2006) uses higher frequency
traveling waves. Snieder and Safak (2006) make their
attenuation measurements using the top floor signal as the
reference signal for the deconvolution. Note that there is no
decomposition of the wave fields at the reference floor for
this traveling wave procedure. The deconvolved waveforms
in Figure 12 use the full spectra of each signal. In Figure 12 a
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Figure 11. Natural log of envelopes from signals in Figure 10

and linear fit.
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Figure 12.  The motion of the building in Figure 1 after decon-
volution with the motion at the top floor.

C. Newton and R. Snieder

traveling wave moves up and then down the building.
Knowing the shear velocity of the building, the ratio of the
amplitudes of the upgoing and downgoing waves, the
distance traveled from each receiver to the top of the building
and back down to the receiver, and the travel times, one can
estimate the attenuation. Table 1 displays the results of these
measurements marked TW for the traveling wave technique.
Because this estimate depends only on the amplitude ratio of
the upgoing and downgoing waves at each floor, this esti-
mate is not affected by variations in receiver coupling. The
observation that the signals are quiescent after the traveling
wave has moved up and down through the building in
Figure 12 also suggests there is little scattering caused by
the individual floors.

Discussion

Table 1 shows that our method of using deconvolution
interferometry with time reversal gives estimates of attenua-
tion that compare well with values found previously using
seismic interferometry and classical methods. The new meth-
od we propose has several benefits compared with the past
methods. Our method recovers attenuation estimates in the
normal mode and the first overtone. This makes the new pro-
posed method more robust than the past interferometric
methods because of the proposed method’s ability to perform
at higher frequencies. Classical methods, such as the half-
power method, lose their robustness in higher overtones
because of uncertainty in the half-power amplitude picks
on either side of the peak frequency for a given overtone.

Our proposed method removes the radiation damping
from the global attenuation estimate, leaving only internal
mechanisms for energy loss such as scattering attenuation,
constant Coulomb internal friction, and intrinsic material
attenuation. Our method shares the ability to separate the ra-
diation damping with past seismic interferometric methods.
Table 1 gives estimates that employ classical modal analysis
that are available in the literature (Kuroiwa, 1967; Bradford
et al., 2004; Clinton et al., 2006). These methods recover
global damping values of the soil-structure system. These
values include radiation damping that occurs at the soil-
structure interface. Our method using deconvolution inter-
ferometry with time reversal removes the radiation damping
by allowing the energy to leave the system. For instance, the
upgoing deconvolution used in our proposed method simu-
lates one upgoing wave injected into the building in the base-
ment at time ¢ = (0. The wave moves up and then down
through the building and continues down. In essence, there
is a reflection coefficient of O in the basement. This leaves
only internal mechanisms of attenuation in our deconvolved
signals from which we measure. Figure 12, of the traveling
wave experiment, indicates that there may be little contribu-
tion from scattering attenuation. Combining classical meth-
ods with our proposed method could refine our knowledge of
civil structure behavior and improve earthquake modeling.
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The classical modal analysis done by Kuroiwa (1967)
includes techniques such as half-power, mode shape, and
Hudson’s method. The half-power method attenuation esti-
mate is approximately the width between the peak amplitude
where the amplitude value is +/2/2 times the peak amplitude.
Kuroiwa (1967) uses normalized deflections, force applied,
and accelerations at individual floors to derive an estimate of
attenuation within the normal mode frequency. Kuroiwa
(1967) also uses the Hudson method to measure attenuation
using the peak amplitude and amplitude where the response
curve is horizontal in each signal. For more details on these
methods of classical modal analysis, see Kuroiwa (1967).

Our method is built upon a linear mathematical frame-
work that may lead to limitations in this method and require
an attenuation model representation beyond the constant Q
description. Our method is described by a linear elastic
behavior of the medium, and strong shaking may invalidate
the assumption of linearity. Structures proximal to epicenters
of large earthquakes will have strong ground motion excita-
tion that can generate nonlinear effects because the mechan-
ical properties of the building may depend on excitation
levels (Clinton et al., 2006). In this dataset for the Millikan
Library we did not observe many internal reflections and
consequently little scattering attenuation. Datasets with
stronger scattering attenuation may introduce complications
to this method’s ability to accurately measure intrinsic
attenuation.

In the future, this method should be tested on more data
to further understand the limitations of this method. Ele-
ments of nonlinearity and other sources of attenuation could
pose problems for this method. Other civil structures with
different geometries such as other building designs, bridges,
and down-hole arrays could also benefit from this method of
attenuation investigation. An extension to include higher
degrees of freedom would benefit this method to perform in
more complex structures. This new method of deconvolution
interferometry with time reversal has proved to be a viable
method for this dataset and should continue to be explored
for further advanced applications.

Conclusion

We have shown, using data recorded in the Millikan
Library, that deconvolution interferometry with time reversal
is an effective method to measure attenuation in civil struc-
tures. This method extracts estimates of intrinsic attenuation
from the breaking of time-reversal symmetry. By time-
reversing the acausal waveforms, we estimate intrinsic
attenuation using a fitting procedure that is similar to past
methods using normal mode oscillations. By comparing
the estimates of our time-reversal method with that of past
seismic interferometry methods, we have shown that our
results compare well with the past methods of Snieder and
Safak (2006). Additionally, the time-reversal method has
higher precision than the traveling wave method and not
constrained to measuring only the fundamental mode.
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Data and Resources

The data are recorded and made available through the
National Strong Motion Project Data Sets of the U.S. Geolo-
gical Survey. The data for the Yorba Linda earthquake
can be accessed through http://nsmp.wr.usgs.gov/data_sets/
20020903_1.html#Downloads (last accessed March 2012).
Bradford et al’s (2004) results of Millikan Library forced
vibration testing can be found at http://resolver.caltech.edu/
CaltechEERL:EERL-2004-03 (last accessed March 2012).
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