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Extracting the Green’s function from the correlation of coda waves:
A derivation based on stationary phase

Roel Snieder
Center for Wave Phenomena and Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401-1887, U

~Received 30 May 2003; revised manuscript received 2 December 2003; published 29 April 2004!

The Green’s function of waves that propagate between two receivers can be found by cross-correlating
multiply scattered waves recorded at these receivers. This technique obviates the need for a source at one of
these locations, and is therefore called ‘‘passive imaging.’’ This principle has been explained by assuming that
the normal modes of the system are uncorrelated and that all carry the same amount of energy~equipartition-
ing!. Here I present an alternative derivation of passive imaging of the ballistic wave that is not based on
normal modes. The derivation is valid for scalar waves in three dimensions, and for elastic surface waves.
Passive imaging of the ballistic wave is based on the destructive interference of waves radiated from scatterers
away from the receiver line, and the constructive interference of waves radiated from secondary sources near
the receiver line. The derivation presented here shows that the global requirement of the equipartitioning of
normal modes can be relaxed to the local requirement that the scattered waves propagate on average isotropi-
cally near the receivers.

DOI: 10.1103/PhysRevE.69.046610 PACS number~s!: 43.20.1g, 91.30.2f, 42.30.2d
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I. INTRODUCTION

Passive imaging is a technique wherein waves recorde
two receiver locations are correlated to give the Gree
function that describes the direct wave propagation betw
these receivers. The tail of multiply scattered waves is ca
the ‘‘coda,’’ after the Latin word for tail. Coda waves a
effective for monitoring temporal changes in media@1,2#.
Using coda waves to determine the Green’s function is us
because it provides information on wave propagation
tween two points in space without the need for a source
either of these two points. The Green’s function thus o
tained can be used to form an image of the medium. Pas
imaging has been used in seismic exploration@3,4#, heli-
oseismology@5#, and ultrasonics with either an active sour
@6–8# or thermal noise that excites the coda@9,10#. Numeri-
cal experiments have shown that passive imaging can
used both in closed and in open systems@11,12#.

Campillo and Paul@13# recently used passive imaging
crustal seismology by retrieving the surface wave Gree
function between seismological stations within Mexico us
coda waves generated by earthquakes along the west co
Mexico. The theoretical explanation offered in their work
based on the assumption of equipartitioning of the Ear
modes@6#. These modes can either be the normal mode
the Earth, or the surface wave modes that describe the gu
waves that propagate along the Earth’s surface.

Suppose one invokes the Earth’s normal modes. In
study of Campillo and Paul@13#, records of the ground mo
tion with a duration of about 600 s were used. It takes ab
1100 s for a P wave to propagate to the other side of
Earth @14#; for an S wave it takes even longer, so, in th
study, the time is too short for the Earth’s normal modes
equilibrate. Invoking the surface wave modes, however, a
poses a conceptual problem. These modes are guided w
and they are not discrete because they exist for every
quency.~For any given frequency there is a discrete set
1539-3755/2004/69~4!/046610~8!/$22.50 69 0466
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allowable wave numbers@15,16#.! Furthermore, because o
the shallow depth of most earthquakes, the fundame
Love and Rayleigh wave modes are usually most stron
excited and, in regional seismology, there is no equipartiti
ing of energy among surface wave modes because the
damental Love and Rayleigh wave modes usually carry m
energy than the sum of all higher modes@17,18#. This means
that both the Earth’s normal modes as well as the surf
wave modes cannot be used to explain the experiment
Campillo and Paul@13#. This does not mean that the deriv
tion of passive imaging based on normal modes@6# is incor-
rect, but it does imply that it is not always applicable.

To goal of this work is to present an alternative way
understand why the correlations hidden in the coda prov
the ballistic wave Green’s function between the receivers
Sec. II, I illustrate this with the simplest case of scalar wav
in a homogeneous medium having embedded scatterer
Sec. III, the results are interpreted and the role of the s
tering medium is elucidated. In Sec. IV, I extend the deriv
tion to elastic surface waves in three dimensions~3D!. The
derivation presented here is not based on normal mo
therefore, it is valid both for closed and open systems.

II. PASSIVE IMAGING FOR SCALAR WAVES
IN A 3D MEDIUM

Consider two receivers that are separated by a distancR,
as shown in Fig. 1. I use a coordinate system with the ori
chosen at receiver 1 and with the positivex axis in the di-
rection of receiver 2. The receivers are placed in a med
with scattererss that radiate scalar waves. Apart from th
scatterers, the propagation velocity is assumed to be c
stant. The scatterers act as secondary sources of singly
multiply scattered waves; scatterer numbers emits a signal
Ss(t) that is due to all the waves that impinge upon th
scatterer. The wave field at the two receivers can be wri
as a superposition of the waves radiated by the scattere
©2004 The American Physical Society10-1
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p1,2~ t !5(
s

SsS t2
r 1,2

~2!

c D Y r 1,2
~s! , ~1!

wherec is the wave speed. Because of the directionality
the radiation pattern, the wave forms recorded at the
receivers from a given scatterer are not necessarily equa
shown later, however, the main contribution to this su
comes from scatterers near the receiver line. The wave t
eling from these scatterers to the two receivers propaga
the same direction. Therefore, the directionality of the ra
ated energy is irrelevant. The constant21/4p in the 3D
Green’s function is included in the definition ofSs(t). If the
response of the receivers depends on frequency, then the
pulse response of the receivers can be included in the w
forms Ss(t).

In passive imaging one correlates the waves recorde
two receivers@6# over a time window of lengthT:

C~t![E
0

T

p2~ t1t!p1~ t !dt. ~2!

Inserting Eq.~1! into this expression gives a double su
(s,s8 over all scatterers

C~t!5(
s,s8

E
0

T

Ss~ t !Ss8S t1
r 1

~s8!2r 2
~s8!

c
1t D dt/r 1

~s8!r 2
~s8! .

~3!

Let the autocorrelation of the signalSs(t) be denoted by

Cs~t![E
0

T

Ss~ t !Ss~ t1t!dt. ~4!

In general, this function is peaked aroundt50. The width of
this peak is denoted byD, in the jargon of stochastic pro
cesses this time is equal to the correlation time of the rand
processSs(t). This width may vary among the different sig
nals; if that is the case,D indicates the generic width. Whe
the Ss(t) are impulsive functions of time, thenD is of the
same order of magnitude as the width of theSs(t). When
these signals are of a long duration with a quasirand
phase,D can be much smaller that the duration of the signa
This property has been successfully employed in radar im
ing @19#, exploration seismology using vibrators that emi

FIG. 1. Definition of the geometric variables for the waves th
travel from scatterer numbers to two receivers.
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quasirandom signal@20#, seismic imaging with drill bit noise
@21#, and time reversed imaging@22#.

The double sum(s,s8 in expression~3! can be split into a
sum over diagonal terms(s5s8 and a sum(sÞs8 over cross
terms. I show in the Appendix that for a random medium,
ensemble average of the cross terms vanishes provided
dc component of theSs(t) is equal to zero. In a single rea
ization of the medium, however, the cross terms are nonz
I also show in the Appendix that for a single source ev
~e.g. an earthquake! the ratio of the cross terms to the dia
onal terms is smaller thanA2D/T. When an average ove
Nsrc source events is carried out, this ratio is bounded
A2D/NsrcT. This means that by averaging over time, a
possibly over different source events, the sum of the cr
terms can be made arbitrarily small by increasing the ti
interval T and the number of source eventsNsrc. In the fol-
lowing I refer to this type of averaging astime/event averag-
ing. Note that in several studies of passive imaging, tim
event averaging as described here is the only type
averaging that is applied@5–7,9,10,13#.

In the following I assume that sufficient time/event ave
aging is carried out so that the cross terms in the sum~3! can
be ignored. With the definition~4! this reduces expression~3!
to

C~t!5(
s

CsS t1
r 1

~s!2r 2
~s!

c D Y r 1
~s!r 2

~s! . ~5!

Since the Fourier transform of the cross correlation is eq
to the power spectrum~5! is given in the frequency domain
by

C~v!5(
s

uSs~v!u2
exp@ iv~r 2

~s!2r 1
~s!!/c#

r 1
~s!r 2

~s! . ~6!

The power spectrumuSs(v)u2 does not depend on the pha
fluctuations of the scattered waves, but is does depend
fluctuations in the amplitude. When the variations in t
power spectrum are uncorrelated with the phase exp@iv(r2

(s)

2r1
(s))/c#, then

C~v!5uS~v!u2(
s

exp@ iv~r 2
~s!2r 1

~s!!/c#

r 1
~s!r 2

~s! , ~7!

with

uS~v!u25
1

N (
s

uSs~v!u2, ~8!

whereN is the number of scatterers.
When there are many scatterers per wavelength, the s

mation over scatterers(s(¯) can be replaced by a volum
integration*(¯)ndV that is weighted by the scatterer de
sity n that is defined as the number of scatterers per u
volume. In this approximation Eq.~7! is given by

C~v!5uS~v!u2E exp@ iv~r 22r 1!/c#

r 1r 2
ndxdydz, ~9!

with the distancesr 1 and r 2 defined in Fig. 2.

t
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EXTRACTING THE GREEN’s FUNCTION FROM THE . . . PHYSICAL REVIEW E 69, 046610 ~2004!
The integration over the transverse coordinatesx and y can
be evaluated with the stationary phase approxima
@23,24#. This technique leaves only the contribution of t
points near the receiver liney5z50, for which the integrand
is not oscillatory. In this approximation

C~v!52puS~v!u2
c

2 iv E
2`

` eik~ uR2xu2uxu!

uuR2xu2uxuu
ndx. ~10!

For scatterers to the left of the receivers (x,0) the integrand
is given by exp(ikR)/R, for scatterers to the right of the re
ceivers (x.R) the integrand is equal to exp(2ikR)/R, and
for scatterers between the receivers (0,x,R) the integrand
is given by exp(ik(R22x))/uR22xu. Because the latter inte
grand is oscillatory, the region 0,x,R gives a sub-
dominant contribution to the integral of Eq.~10!. Ignoring
this contribution gives

C~v!58p2uS~v!u2S c

iv D
3S 2

eikR

4pR E
2`

0

ndx2
e2 ikR

4pR E
R

`

ndxD . ~11!

The term2exp(ikR)/4pR is the Green’s function that ac
counts for the waves that propagate between the receiv
this term comes from the integration overx,0. The second
term 2exp(2ikR)/4pR, which comes from the integratio
over x.R, is the advanced Green’s function. The retard
Green’s function comes from the waves that propagate f
receiver 1 to receiver 2 and correlate for a positive lag ti
t.0, as shown in the top panel of Fig. 3. The presence of
advanced Green’s function is due to the waves that propa
from receiver 2 to receiver 1; these waves correlate fo
negative lag timet,0, as shown in the bottom panel of Fi
3. The factor 1/iv, which corresponds to an integration
the time domain, comes from the stationary phase evalua
of thex andy integrals. In other studies is was also noted t
the correlation~2! gives the integral of the sum of the re
tarded and the advanced Green’s functions@6,7,12#. Malcolm
et al. @8# use this property experimentally as a diagnostic
the equipartitioning of energy.

Each scatterer near the receiver line gives, after tim
event averaging, the same contribution to the Green’s fu
tion. This leads to the integrals*2`

0 ndx and *R
`ndx that

FIG. 2. Definition of the geometric variables for the waves th
travel from a scatterer at locationr to two receivers. The region o
constructive interference is indicated by the shaded regions.
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multiply the retarded and the advanced Green’s functio
respectively. If the scatterer densityn decreases sufficiently
fast toward infinity, these integrals are finite, but in gene
the integrals are infinite. Furthermore, the scattering los
incurred during the propagation from the scatterers to
receivers have not yet been taken into account. In prac
this limits the volume integral to a region of a few mean fr
paths of the receivers. These unsatisfactory aspects are
dressed in the next section.

III. WHICH GREEN’S FUNCTION IS RETRIEVED?

The infinite integrals in Eq.~11! can be removed by con
sidering the physics of passive imaging in more detail. T
conclusion of the previous section is that the correlation
the waves recorded at the two receivers yields the Gre
function by a process of constructive interference of the s
tered waves that propagate along the receiver line. In a s
tering medium, the scatterers affect the waves in three w
~i! the direction of wave propagation is changed by the sc
terers,~ii ! the velocity of a transmitted wave is affected b
scatterers near the path of propagation, and~iii ! a transmitted
wave attenuates because of scattering losses.

In an ensemble average, the last two effects are descr
by an effective medium@25,26#. In a single realization of a
scattering medium, the scatterers also leave an imprint on
phase velocity and attenuation of a propagating wave. Th
illustrated in Fig. 4 which shows the waves that have pro
gated through a circular region with isotropic point scatter
@27#. The waves in the absence of scatterers are shown
the dashed lines, while the waves in the presence of sca
ers are shown by the thin solid lines. All the receivers are
the same distance from the source, yet there are apprec
variations in the amplitude and the phase of the ballis
wave due to the variations in the number of scatterers wit
the first Fresnel zone for each source-receiver pair. Fo
given realization and source-receiver pair, a ballistic wa
propagates with a phase velocityc, and attenuates over
distanced with a factor exp(2d/2L). The attenuation length
L is not necessarily equal to the mean free pathl of the
effective medium@25,26# becauseL is defined for a given
path in a single realization.

This principle can be taken into account in Eq.~10! by
interpretingc as the phase velocity of the ballistic wave, a

t
FIG. 3. The waves that propagate toward the right correlate

a positive lag timet.0 ~top panel!, while the waves that are left
moving correlate for a negative lag timet,0 ~bottom panel!.
0-3
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ROEL SNIEDER PHYSICAL REVIEW E69, 046610 ~2004!
by multiplying the integrand with a factor exp@2(uR2xu
1uxu)/2L# that accounts for the scattering losses of the wa
that travel to both receivers. For a constant scatterer den
n, thex integrals that correspond to those in Eq.~10! can be
carried out to give

C~v!58p2uS~v!u2S ncL

iv D S 2
eikRe2R/2L

4pR
2

e2 ikRe2R/2L

4pR D .

~12!

The x integrals contribute a factorL to the correlation. The
last two terms give the retarded and advanced Green’s f
tions for the ballistic wave that propagates between the
ceivers.

The issue of the medium of propagation is also of r
evance for the derivation of passive imaging based on n
mal modes@6#. That derivation has an open question: t
normal modes of which system should be used? The nor
modes of the true system, which includes the scatterers
by definition uncoupled; equipartitioning among these mo
therefore will not occur. The normal modes of a homog
neous system are coupled by the scatterers, which may r
in equipartitioning of energy among the modes of the hom
geneous model. However, this raises the question which
mogeneous system to use? It is not clear from the deriva
of Lobkis and Weaver@6# from which system one obtains th
Green’s function. If this would be the Green’s function of
medium that takes the scattering losses of the ballistic w
into account, then that medium is attenuating. In such a

FIG. 4. Waves recorded at twelve locations at the edge o
circular region that contains isotropic point scatterers@27#. The
clock indicates the receiver position. Shown is the wave field in
absence of scatterers~dashed line!, the complete wave field in the
presence of scatterers~thin solid line!, and the wave field compute
by averaging the scatterers within the first Fresnel zone for e
receiver~thick solid line!.
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dium the normal modes are not orthogonal and the theor
Lobkis and Weaver@6# must be generalized by using adjoi
modes@28#.

IV. SURFACE WAVES IN AN ELASTIC MEDIUM

Campillo and Paul@6# obtained the full surface wave
Green’s tensor by correlating the direct product of the th
components of the two receivers. In this section, I show t
the treatment of the previous sections can be generalize
surface waves propagating in a layered elastic 3D med
with embedded scatterers. The surface-wave Green’s te
of a layered medium whose properties depend on the depz
only can be written in the frequency domain as

Gi j ~r ,r0!5(
m

Gi j
m~r ,r0!. ~13!

The total surface wave Green’s tensor is expressed as a
over surface-wave modesm that include both Rayleigh
waves and Love waves. The surface wave Green’s tenso
modem in the far field is given by@29,30#

Gi j
m~r ,r0!5pi

m~z,w!pj
m* ~z0 ,w!

ei ~kmR1p/4!

Ap

2
kmR

, ~14!

whereR5A(x2x0)21(y2y0)2 is the distance between th
points measured in the horizontal plane, andkm is the hori-
zontal wave number of modem. The polarization vectors
pm(z,w) depend on the depthz and the azimuthw of the path
between pointsr0 and r . The orientation of the polarization
vectors can be expressed into the unit vectorsD̂ and ŵ that
point in the radial and transverse direction, respectively,
defined in Fig. 5. For Love waves the polarization vector
related to the Love wave eigenfunctionl 1

m(z) @29,31# by

pm~z,w!5 l 1
m~z!ŵ, ~15!

while for Rayleigh waves

pm~z,w!5r 1
m~z!D̂1 ir 2

m~z!ẑ, ~16!

with r 1
m(z) and r 2

m(z) the radial- and vertical-componen
modal functions of the Rayleigh waves@29,31#. Following
Ref. @29#, the surface-wave modes are assumed to be norm
ized according to the following convention:

a

e

ch

FIG. 5. Definition of the unit vectorsD̂ and ŵ that define the
radial and transverse polarizations, respectively.
0-4
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4cmUmE
0

`

r~ l 1
m!2dz54cmUmE

0

`

r@~r 1
m!21~r 2

m!2#dz51,

~17!

with cm andUm are the phase velocity and group velocity
modem, respectively, andr(z) the mass density.

When the two receivers record the three component
the ground motion, one can form the correlation tensor of
combinations of components

Ci j ~t!5E u2i~ t1t!u1 j~ t !dt, ~18!

whereu2i , for example, is thei component of the displace
ment recorded at receiver 2. The recorded displacement
be written as a sum over the surface waves radiated by
different scattererss. By analogy with Eq.~1! the displace-
ment of the two receivers in the frequency domain is giv
by a double sum over scattererss and surface wave modesm

u1,25(
s

(
m

pm~z1,2,w1,2
~s!!

ei ~kmX1,2
~s!

1p/4!

AkmX1,2
~s!

S~s,m!~v!.

~19!

In this expressionX1,2
(s) is the horizontal distance betwee

scatterers and receiver 1 and 2, respectively,w1,2
(s) is the

azimuth of the corresponding scattering path, andS(s,m)(v)
is the frequency spectrum of the radiation of modem from
scatterers. Inserting this expression in the correlation~18!
gives a double sum(s,s8 over scatterers. The cross termss
Þs8 interfere after sufficient time/event averaging destr
tively and can be ignored. The resulting sum(s(¯) can be
approximated with the surface integral*(¯)ndxdy, where
n is the scatterer density per unit surface area. Taking th
steps gives

Ci j ~v!5 (
m,m8

E dxdynpi
m~z2 ,w2!pj

m8* ~z1 ,w1!

3
ei ~kmX22km8X1!

Akmkm8X2X1

Sm~v!Sm8* ~v!, ~20!

where it is understood that all quantities in Eq.~19! that
depend on the scatterers now depend on the location~x,y! of
the integration point.

The integral over the transverse coordinatey can be
evaluated in the stationary phase approximation, this giv
contribution from scatterers near the receiver line that
given by

Ci j ~v!5A2p (
m,m8

E dx n pi
m~z2 ,6 !pj

m8* ~z1 ,6 !

3
ei ~kmux2Ru2km8uxu!eihp/4

Akmkm8Aukmuxu2km8ux2Ruu
Sm~v!Sm8* ~v!,

~21!

with
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ux2Ru
2

km8
uxu

.0,

21 if
km

ux2Ru
2

km8
uxu

,0.

~22!

The azimuth associated with the polarization vectors in
~21! is given byw50 for x,0 and byw5p for x.R; these
cases are denoted by the plus and minus sign, respectiv

The integrand of Eq.~21! is oscillatory, except whenkm
5km8 . This means that the dominant contribution com
from the termsm5m8, for this reason the mode couplin
termsmÞm8 can be ignored. Furthermore, the integrand
oscillatory over the range 0,x,R, and the dominant con
tribution comes from the regionsx,0 andx.R. These ap-
proximations give

Ci j ~v!5p(
m H 1

ikm
E

2`

0

dx n pi
m~z2 ,1 !pj

m8* ~z1 ,1 !

3
ei ~kmR1p/4!

Ap

2
kmR

2
1

ikm
E

R

`

dx n pi
m~z2 ,2 !

3pj
m8* ~z1 ,2 !

e2 i ~kmR1p/4!

Ap

2
kmR J uSm~v!u2, ~23!

with uSm(v)u2 the average power spectrum of the radiat
modem. The first term is due to right-going waves that a
generated in the regionx,0, the polarization vectors corre
spond to the azimuthw50, which is indicated by the plus
signs. The second term is due to waves scattered from
areax.R that move toward the left, their polarization ve
tors correspond to the azimuthw5p, which is indicated by
the minus signs.

Note that the stationary phase integration over the tra
verse coordinate leads to the correct geometrical sprea
1/AkmR. When the~secondary! sources of the waves ar
confined to the vertical plane through the source and
ceiver, the integral over the transverse coordinate is abs
This is the reason why the geometrical spreading is not c
rectly retrieved in the derivation of Roux and Fink@11#.

A comparison with Eq.~14! shows that the first term is
equal to (cm / iv)Gi j

m(r2 ,r1), while the second one equa
@(cm / iv)Gji

m(r1 ,r2)#* . The correlation tensor is therefor
given by

Ci j ~v!5p(
m

cmH Gi j
m~r2 ,r1!

iv E
2`

0

dx n

1S Gi j
m~r1 ,r2!

iv D †E
R

`

dx nJ uSm~v!u2, ~24!
0-5
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where the dagger denotes the Hermitian conjugate. This
pression contains infinite integrals. Incorporating the atte
ative properties of the ballistic surface wave, as shown
Sec. III, gives

Ci j ~v!5p(
m

uSm~v!u2ncmLm

3H Gi j
m~r2 ,r1!

iv
1S Gi j

m~r1 ,r2!

iv D †J , ~25!

whereLm is attenuation length of surface wave modem, and
where the Green’s function of each mode is understood
contain an attenuation term exp(2R/2Lm).

This expression is similar to the corresponding result~12!
for scalar waves in three dimensions. The correlation gi
the superposition of the Green’s function of the ballis
wave that propagates from receiver 1 to receiver 2~the first
term!, and the ballistic wave Green’s function that prop
gates in the opposite direction~the last term!. Passive imag-
ing with surface waves thus provides the superposition of
retarded and advanced surface wave Green’s functions o
ballistic wave.

V. CONCLUSION

As shown in Eqs.~11! and~25!, the ballistic wave Green’s
function can be obtained by a cross correlation of the w
forms at two receivers. Two steps must be taken to ext
this Green’s function from the correlation. First, the corre
tion in the frequency domain must be multiplied b
iv/uS(v)u2. The multiplication withiv corresponds in the
time domain to a differentiation that undoes the integrat
used in the cross correlation. The division by the power sp
trum uS(v)u2 corrects for frequency-dependent factors in t
scattering coefficients, the source spectrum, and the rece
response. For the case of Eq.~11! for scalar waves in 3D, the
power spectrum can be obtained from the waves recorde
the receivers. For the corresponding expression~25! for sur-
face waves in an elastic medium, each mode must be
rected for the power spectrum of that mode. The scatte
coefficients for surface wave modes strongly depend on
depth of the scatterers@29#, and on topography@32#. For this
reason the average power spectrumuSm(v)u2 of the scattered
surface wave mode may depend strongly on the mode n
berm. It is not clear howuSm(v)u2 can be extracted from th
recorded waves. In applications in crustal seismology,
fundamental mode Love and Rayleigh waves usually do
nate. The average power in the fundamental Rayleigh w
can be estimated from the vertical component. The powe
the horizontal components can then be used to infer
power in the fundamental Love wave. Without correcting
the power spectrum, the cross correlation may not give
correct frequency dependence of the Green’s function.

The second step that must be taken is due to the fact
the cross correlation of the waves recorded at two recei
gives the superposition of the retarded and the advanced
listic wave Green’s functions. These two contributions c
be unraveled in the time domain by restricting the signa
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positive and negative time windows, respectively@6#.
Physically, the derivation shown here implies that in ge

eral the scattered waves recorded at the two receivers
uncorrelated, except for the waves radiated from scatte
that are located near the receiver line. Passive imaging of
ballistic wave thus is based on constructive interferen
solely of those scattered waves that propagate along the
ceiver line.

Ultrasound experiments with a finite aluminum samp
show that the ballistic wave as well as waves that are
flected from boundaries are reconstructed from passive
aging @6,9,10#. The theory presented here does not acco
for these reflected waves. When a wave reflects off a pl
boundary, as shown in Fig. 6, the scattering paths from s
terers located in the dark gray areas interfere constructiv
The theory presented here can be applied to this problem
invoking an image receiver and image scatterers as indic
by the open circle and light-gray area in Fig. 6. For a no
planar boundary or an inhomogeneous reference medium
needs to determine other stationary phase contribution
the integral over the scatterers. These contributions dep
on the geometry of scattering path, and are not accounted
by the theory presented here.

The equilibration of normal modes@6# provides a suffi-
cient condition for constructing the Green’s function fro
the cross correlation of the waves recorded at two receiv
The derivation presented here shows, however, that
equilibration of normal modes is not a necessary conditi
In fact, the derivation presented here is equally valid
open systems that do not possess normal modes. The de
tion also holds for closed systems that do possess no
modes at early times when the modes have not yet eq
brated.

The derivation presented here is based on the assump
that the scattered waves propagate isotropically in all dir
tions.~This does not imply that the scattering coefficients a
isotropic; it means that the net energy flux of the scatte
waves is small.! Mathematically this is expressed by the co
dition that the scatterer densityn is constant in space. Thi
implies a local condition on the isotropic propagation of sc

FIG. 6. The wave path of a reflected wave. The receivers
shown by solid circles. The dark gray areas indicate the locatio
scatterers that give a stationary contribution to the integration o
scatterers for the reflected wave. The open circle denotes the im
of receiver 1 upon reflection in the free surface, and the light g
area is the image of the scatterers that contribute to the statio
phase solution for the reflected wave.
0-6
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EXTRACTING THE GREEN’s FUNCTION FROM THE . . . PHYSICAL REVIEW E 69, 046610 ~2004!
tered waves near the receivers, rather than the global req
ment of the equilibration of normal modes. By using t
correlations that are hidden in the coda waves, the dest
tive interference of waves radiated from scatterers away f
the receiver line, and the constructive interference of s
tered waves that propagate along the receiver line ma
passive imaging an effective technique for extracting the b
listic wave Green’s function between two points without u
ing a source at either of these points.
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APPENDIX: ESTIMATION OF THE CROSS TERMS
IN A SINGLE REALIZATION

Since the scattered waves in a complex medium hav
random character, I estimate the cross terms(sÞs8 in the
sum~3! for a random medium. In this model, the scatters
randomly located in the medium and the location of differe
scatterers is uncorrelated. In the following, I assume that
dc component of the signals vanishes. If this is the case,

^Ss~ t !&50. ~A1!

In this appendix the angled brackets^¯& indicate an en-
semble average. It is essential that the dc component o
scattered waves vanish; when the dc component is non
there is no destructive interference, and averaging over
scatterer positions does not give a vanishing mean signa

The waves emitted by scatterss and s8 are in the en-
semble average uncorrelated because the position of t
scatterers are uncorrelated. This means that

^Ss~ t !Ss8~ t8!&5^Ss~ t !&^Ss8~ t8!&50 for sÞs8,
~A2!

where expression~A1! is used in the last identity. Following
the notation of expression~4! we have for the diagonal term

^Ss~ t !Ss~ t8!&5Cs~ t2t8!. ~A3!

Strictly speaking this covariance may depend on the timet as
well, because the time seriesSs(t) in not necessarily station
ary. This can be incorporated by replacing expression~A3!
by ^Ss(t)Ss(t8)&5W(t)Cs(t2t8), whereW(t) varies slowly
with time compared toCs(t2t8) and compared to the width
of the employed time window. This complication can be
corporated by replacingCs(t2t8) by W(t)Cs(t2t8). Since
this does not change the essence of the argument, this i
included in the following.

Let us consider the sum~3! and ignore for the moment th
geometrical spreading termsr 1

(s)r 2
(s) . These terms can be in
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serted at the end, but they do not change the essence o
argument. Absorbing the term (r 1

(s)2r 2
(s))/c into t, expres-

sion ~3! becomes

~A4!

where the first term denotes the diagonal termCD(t) and the
second term gives the cross termCC(t). Because of Eq.
~A2! the expectation value of the cross term vanishes:

^CC~t!&5 (
sÞs8

E
0

T

^Ss~ t !Ss8~ t1t!&dt50. ~A5!

In a single realization, however, the cross termCC(t) is in
general nonzero. I estimate its value by analyzing the v
ance^CC

2 (t)&. Using expression~A4! this variance is given
by

^CC
2 ~t!&5 (

sÞs8,uÞu8
E

0

TE
0

T

^Ss~ t !Su~ t8!Ss8~ t1t!

3Su8~ t81t!&dtdt8. ~A6!

Since the differentSs(t) are uncorrelated@expression~A2!#,
the only terms that give a nonzero contribution to Eq.~A6!
are the termss5u and s85u8 or the termss5u8 and s8
5u. This gives

^CC
2 ~t!&5 (

sÞs8
E

0

TE
0

T

$^Ss~ t !Ss~ t8!&^Ss8~ t1t!Ss8~ t81t!&

1^Ss~ t !Ss~ t81t!&^Ss8~ t8!Ss8~ t1t!&%dtdt8.

~A7!

With the definition~A3! this can be written as

^CC
2 ~t!&5 (

sÞs8
E

0

TE
0

T

$Cs~ t2t8!Cs8~ t2t8!

1Cs~ t2t82t!Cs8~ t2t81t!%dtdt8. ~A8!

Now let us estimate the order of magnitude of this su
When there areN scatterers contributing to this sum, the
there areN(N21),N2 terms in the double sum. Let th
maximum ofCs(t) be given byCmax. This maximum may
be different for the differentCs(t), if that is the case then
Cmax is the largest of all these maxima. The width of th
autocorrelationCs(t) is indicated byD. Each of thet8 inte-
grals in Eq.~A8! then gives a contribution that is smalle
thanCmax

2 D. The remainingt integral gives a contributionT.
This implies that

^CC
2 ~t!&<2N2Cmax

2 TD. ~A9!
0-7
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In order to assess the importance of the cross term
compare this with the mean of the diagonal term. This m
is given by

^CD~0!&5(
s
E

0

T

^Ss
2~ t !&dt5(

s
E

0

T

^Cs~0!&dt.

~A10!

Using the same estimates that led to Eq.~A9! then gives

^CD~0!&5(
s

Cs~0!T'NCmaxT, ~A11!

because the autocorrelation attains its maximum for a z
time lag. With the estimate~A9! this gives the following
ratio of the standard deviation of the cross terms to the d
onal terms:
ys

m

s.

M

,

d
s

y

e

04661
, I
n

ro

g-

^CC
2 ~t!&1/2

^CD~0!&
<A2D

T
. ~A12!

Note that this ratio does not depend on the number of s
terers. When in addition to an averaging over time,Nsrc

source events are used, and when the signals emitted b
scatterers for different source events are uncorrelated,
standard deviation of the cross terms increases with a fa
ANsrc while the diagonal terms are proportional toNsrc, so
that

^CC
2 ~t!&1/2

^CD~0!&
<A 2D

NsrcT
. ~A13!
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