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a b s t r a c t

This study uses the deconvolution of small earthquakes registered in the SMNH01 station of KiK-net,
one of the most important seismic networks which is located in Japan, to estimate effective shear wave
velocities b, shear modulus m, and quality factors Q, and to identify physical changes in the soil. This
station has a borehole which is equipped with triaxial accelerometers installed at the surface and at
100 m of depth. By deconvolving seismic events registered at surface and at 100 m of depth, we obtain
physical parameters. To interpret deconvolved waves, we use a one dimensional (1D) layered medium.
Based on changes observed in amplitudes and arrival times of deconvolved waves, we identify time-
lapse variations in shear wave velocities (maximum change in db=b¼3.8%) and shear modulus
(maximum change in dm=m¼7.8%). The variations in shear wave velocities detected at station SMNH01
are mainly due to the combined influence of precipitation and recurrent seismic events.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to use seismic interferometry based on
deconvolution to obtain effective shear wave velocities (b), shear
modulus (m), and quality factors (Q) from seismic events recorded
by KiK-net, one of the most important seismic networks which is
located in Japan, and to identify changes in the soil from the
estimated properties. The estimation of near-surface physical
properties must be carried out using extremely sensitive tools
in order to detect small variations in physical properties. Seismic
interferometry is a powerful new technique employed in mon-
itoring materials and structures. It allows for the characterization
of materials and structures through correlation and deconvolu-
tion of signals [1–10].

Deconvolution has been successfully utilized in a variety of
fields. In earthquake engineering, Trampert et al. [11] employed
deconvolution to estimate quality factors from borehole seismic
data. In addition they were able to obtain the attenuation
operator for layered media using an SH wave propagator matrix.
Mehta et al. [12] estimated the S and P wave velocities corre-
sponding to a soil composed of layers of sand, and deduced these

velocities by deconvolving seismic events registered in boreholes.
Deconvolution has also been used to study time-lapse changes in
seismic velocities caused by strong earthquakes in shallow ground.
For instance, Sawazaki et al. [13] found time-lapse changes of seismic
velocities generated by the 2000 Tottori earthquake. They observed
an almost complete shear modulus recovery over a period of one
year. Rubinstein and Beroza [14] identified changes in S-wave
velocities produced by strong earthquakes by measuring the S-wave
traveltimes of repeating earthquakes and detecting delays in travel-
times at the stations where the 1989 Loma-Prieta earthquake was
recorded. Rubinstein and Beroza [15] studied changes in S-wave
traveltimes after the 2004 Parkfield earthquake. Their study shows
that the major changes in S-wave velocity caused by strong earth-
quakes occur in shallow ground.

An extensive recent study applied the deconvolution method
to a strong motion data set recorded at the surface and in
boreholes in northeast Honshu, Japan, to characterize the non-
linear effects of the soil in that location during strong shaking, and
to show both the change in the subsurface velocity profile during
the movement and the recovery of near-surface physical proper-
ties [16].

In the present investigation, we utilize small earthquakes
recorded at the SMNH01 station of KiK-net to obtain soil physical
properties and to identify time-lapse changes in arrival times and
amplitudes of deconvolved waves. This station is located in an
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area composed of sand and gravel overlying basalt and has a
borehole equipped with two triaxial accelerometers which are
installed on the ground and at 100 m of depth. The sensor
deployed at 100 m is settled in solid rock, which in this case is
basalt. We deconvolve the east–west records using the horizontal
movement detected at surface. In order to interpret the decon-
volved data, we employ a model constituted of elastic layers
overlying an elastic half-space. We consider only the vertical
incidence of SH waves. This model makes it possible to theoreti-
cally derive the main characteristics of the deconvolved fields.
This derivation is similar to that of [11] in the sense that we use a
1D layered medium. However, instead of using a propagator
matrix for SH waves, we represent explicitly the displacement
fields, allowing us to directly obtain theoretical deconvolutions.
From the small seismic events, we identify changes in the arrival
times and amplitudes of deconvolved shear waves. In particular,
the variations observed in the amplitude and arrival time of the
main ascending and descending waves corresponding to the first
and final deconvolved arrivals detected by the deepest receiver
make it possible to infer changes in near-surface physical proper-
ties. We also observe strong amplitude decay in the deconvolved
traces. In contrast to the behavior of the sediments surrounding
the SMNH01 station, the sediments of the Valley of Mexico,
composed mainly of clays, may produce significant attenuation,
but continue to behave linearly, even in the presence of strong
shaking (e.g. deconvolved arrivals do not show any important
change in amplitude and arrival time), as Singh et al. [17]
concluded in their analysis of strong motion data in Mexico City
after the September 19th, 1985, Ms 8.1 Michoacan earthquake.
We utilize the effective shear wave velocities obtained from the
seismic events recorded at the SMNH01 station to illustrate
changes in near-surface properties.

This paper is organized in the following manner: in Section 2,
we describe the study site and seismic data; in Section 3, we show
and describe the deconvolved data; in Section 4, we introduce the
mathematical model; in Section 5, we introduce the theoretical
deconvolutions and interpret the deconvolved data; in Section 6,
we define the expressions that relate variations in near-surface
properties with amplitudes and arrival times of deconvolved
waves; in Section 7, we present the discussions; in Section 8,
we show the conclusions; and in the Appendix A, we derive the
attenuation operator for layered media using explicit expressions
for the displacement fields.

2. Seismic data recorded by KiK-net

KiK-net is composed of 700 stations distributed across Japan [18].
In this study, we used the east–west (EW) horizontal component of
seismic events recorded at the SMNH01 station, which forms part of
this network, to estimate physical properties. In Fig. 1, the SMNH01
station is marked with a triangle; the epicenters of the earthquakes
utilized in our study are identified with diamonds. The sediments at
this station have contributed to the large amplifications and long
durations observed in seismic events recorded at this location. In
addition, these sediments have experienced physical changes which
are mainly due to earthquakes [13].

The SMNH01 station is equipped with two accelerometers
which are deployed at surface and at 100 m of depth. The
sampling interval for all KiK-net stations is 0.01 s. The subsurface
materials reported for this area are sand with gravel for the first
13.5 m, and only basalt below 13.5 m. According to the well-
logging data shown in Fig. 2, the S-wave velocities at this station
range from 290–2800 m/s. Table 1 shows the main characteristics
of the earthquakes used to estimate the seismic response at the
SMNH01 station.

Fig. 3 shows three seismic events registered at the surface that
correspond to EW components of the following earthquakes (time
breaks are referred to GMT): a seismic event that occurred on
16/07/99 at 02:59 (Fig. 3a), an earthquake that happened on
21/01/10 at 08:50 (Fig. 3b), and a seismic event that occurred
on 07/02/11 at 00:36 (Fig. 3c). The rectangle in each accelerogram
indicates the S-wave arrival used for the deconvolutions.

Fig. 1. SMNH01 station (triangle) and epicenter coordinates (diamonds).

Fig. 2. Wave velocities, density profile, and lithology for the SMNH01 station. The
density r was obtained using the equation r¼310a(0.25) [13].
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3. Deconvolved data

In order to estimate the seismic response at the SMNH01
station from seismic events recorded by the vertical array of
sensors installed at this site, we select time windows, taking into
account the time interval corresponding to S-waves in the EW
horizontal components. To set the origin of each trace equal to
zero, we remove the DC component of the data by subtracting the
average of each seismogram [19]. We process the selected
windows in the frequency domain, and apply the fast Fourier
transform (FFT) to the selected intervals. Given that the accel-
erograms contain noise, we filter the time windows before
deconvolution by applying a band pass filter; the corner frequen-
cies of this filter are 1 and 13 Hz [19]. We select 13 Hz to eliminate
high frequency noise. We then deconvolve the filtered windows for
each seismic event using the corresponding movement detected at

the surface. Finally, we transform the deconvolved windows to the
time domain using the inverse fast Fourier transform (IFFT). The
following equation is used to perform deconvolution [20]:

RðoÞ ¼ AðoÞBnðoÞ
fðoÞ FðoÞ, ð1Þ

where B*(o) represents the conjugate of the Fourier transform of the
signal b(t), fðoÞ ¼maxðBðoÞBnðoÞ, e 9B92

maxÞ, e is a ‘‘water level’’
parameter which helps to manage the instabilities of the ratio (in all
the examples e¼0.0001, we select this value, because we find
empirically that this is the smallest regularization parameter to get
stable waveforms), FðtÞ ¼ zexpð%o2=ð4m2ÞÞ, z is a normalization
factor, and m is the width of the Gaussian filter (in all the examples,
m¼100 Hz). In the above equation, the product of A(o)B*(o) defines
in the frequency domain the correlation of the signals a(t) and b(t).

To calculate shear wave velocities, we first obtain arrival times
by selecting the times associated with the peaks of the main
ascending and descending deconvolved waves [12] (at this step,
we use quadratic interpolation to define the arrival times with
better accuracy, interpolation enhances time resolution [19]).
These arrival times are then averaged. Given that we know the
depths of the receivers, we compute the propagation velocities by
dividing receiver distance over the averaged arrival times. Table 2
displays the effective shear wave velocities and shear modulus
estimated from seismic events detected by the vertical array of
sensors deployed at the SMNH01 station. In this table, b indicates
the effective S-wave velocity that we obtained by deconvolving
the motion recorded at 100 m with the corresponding movement
registered at surface, m denotes the respective shear modulus.

Table 1
Data corresponding to the earthquakes used in this study.

Date Magnitude
(MW)

Latitude Longitude Depth
(km)

Epicentral
distance
(km)

16/07/99 4.4 34.417 133.200 20 97
21/08/99 5.4 34.050 135.467 70 245
21/01/10 3.4 34.982 132.816 8 53
21/02/10 4.5 33.822 132.310 13 185
07/02/11 3.6 34.889 133.028 9 50

Fig. 3. Seismic events recorded at the surface at the SMNH01 station.
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Table 2 also displays two quality factors Q, which were obtained
by fitting synthetic deconvolved data to real deconvolutions.

Fig. 4 shows deconvolved time waveforms corresponding to
the following events (time breaks are referred to GMT): a seismic
event that occurred on 16/07/99 at 02:59 (thick black line), an
earthquake that happened on 21/08/99 at 05:33 (thin black line),
an earthquake that occurred on 21/02/10 at 11:49 (thin gray line),
an event that happened on 21/01/10 at 08:50 (black dotted line),
and an earthquake that occurred on 07/02/2011 at 00:36 (black
dashed-and-dotted line). This figure also displays the S-wave
traveltimes obtained from well-logging data in thick dashed blue
lines. The variations in the slopes of the thick dashed blue lines
denote subtle changes in S-wave propagation velocity. In general,
logging data and travel times detected from seismic waves are not
completely identical since they are measuring slightly different
properties. The discrepancy came from a variety of factors, such
as the uncertainty of the logging velocities, the measuring
method, the wavelength, and time-lapse changes.

In Fig. 4, we indicate the ‘‘main’’ arrivals with thick arrows. These
arrivals correspond to ascending (thick blue upward-pointing arrow)

and descending waves (thick green downward-pointing arrow). There
is a good agreement between the traveltimes shown in thick dashed
blue lines and the traveltimes associated with the arrivals denoted by
the thick arrows. They are not equal as a result of the known
differences mentioned above.

Fig. 4 has several important features, described below:

– The amplitudes of the waves denoted by the thick green
downward-pointing arrow are smaller than those of the waves
indicated by the thick blue upward-pointing arrow.

– The amplitudes of the waves indicated with thin gray arrows
are not negligible.

– The amplitudes of the main ascending arrivals (denoted by the
thick blue upward-pointing arrow) are smaller than the
amplitudes of the corresponding band-limited Dirac delta
functions observed in the deconvolved traces associated with
the surface.

– There is a high variability in terms of deconvolved amplitudes.

We interpret these characteristics in the following sections.

4. A stratified medium under incidence of plane SH waves

In this section, we briefly review the equations used to
represent displacement fields. We utilize a model that contains
elastic homogeneous isotropic layers, as Fig. 5 illustrates. At z¼0,
there is a free-stress boundary condition. Between any pair of
layers, displacements and tractions are continuous. This is also
true for the contact defined by the last layer and the half-space.
We only consider the propagation of SH plane waves along the z
axis. In the particular case studied here, SH waves generate a
particle motion perpendicular to the plane xz. Various authors
have utilized the layered medium shown in Fig. 5 to study the
seismic response of alluvial valleys [21–27]. The general equa-
tions that govern displacements in the stratified medium illu-
strated in Fig. 5 are defined below:

U1 ¼ A1eioteik1zþA2eiote%ik1z ð2Þ

Table 2
Physical parameters estimated from deconvolved events. The shear modulus m
was obtained using m¼rb2. The density r was calculated from r¼310a(0.25) [11].
The P-wave velocity a was obtained by deconvolving vertical components
containing the movement induced by P-waves.

Date b (m/s) m (MPa) Q

Sediments Basalt

16/07/99 1242.2 3892.7 – –
21/08/99 1273.9 4093.9 12 200
21/01/10 1290.3 4200 – –
21/02/10 1265.8 4042 – –
07/02/11 1290.3 4200 – –

Fig. 4. Deconvolved traces corresponding to the seismic events listed in Table 1.

Fig. 5. Stratified medium containing n layers overlying a half-space; r1, r2, rn, and
rhs denote densities of the first, second, and n layer and half-space, respectively;
b1, b2, bn, and bhs denote shear wave velocities of the first, second, and n layer and
half-space, respectively; Sinc represents the incident wave.
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Un ¼ A2n%1eioteiknzþA2neiote%iknz, ð3Þ

Uhs ¼ A0eioteikhszþA2nþ1eiote%ikhsz, ð4Þ

where A0¼amplitude of the incident wave; t¼time; o¼angular
frequency; z¼depth; i¼

ffiffiffiffiffiffiffi
%1
p

; U1, Un, and Uhs are the SH displace-
ments corresponding to the first layer, n layer, and half-space;
A1, A2,y, A2n%1, A2n, and A2nþ1¼amplitudes of the ascending and
descending waves which travel through the model (the boundary
conditions used to obtain these coefficients are m1@U1=@z

""
z ¼ 0 ¼ 0,

free stress boundary condition, and Un¼Unþ1 and mn@Un=@z¼
mnþ1@Unþ1=@z, elastic boundary conditions, where m¼rb2, r is
the density and b is the shear wave velocity); and k1, kn, and
khs¼the wave numbers corresponding to the first layer, n layer,
and half-space.

5. Theoretical deconvolutions for a layered medium

In this section, we illustrate the behavior of deconvolved fields
using theoretical displacements measured in layered media. For the
sake of simplicity, we use the layered medium illustrated in Fig. 6. We
calculate the displacement fields at three different positions. In this
case, U1(a,o), U2(h1þb,o), and U3(h1þh2þc,o) represent the dis-
placements corresponding to depths a, h1þb, and h1þh2þc. U1(0,o)
denotes the displacement at surface level. By deconvolving the
movement recorded at any given depth within the first layer with
the motion detected at surface, we obtain

U1ða,oÞ
U1ð0,oÞ ¼

1
2

e%ik1aþ
1
2

eik1a: ð5Þ

We use the free stress boundary condition described in the
previous section to obtain the amplitudes of the two waves
defined in the previous equation, such amplitudes are identical
and equal to 1/2. Assuming for the moment that there is no
attenuation and applying the inverse Fourier transform to the
previous equation (considering here and hereafter that

R1
%1 dðt%tÞ

e%iotdt¼ e%iot) gives

u1ða,tÞ
u1ð0,tÞ

¼
1
2
d tþ

a
b1

# $zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{1

þ
1
2
d t%

a
b1

# $zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{2

ð6Þ

From the structure of the previous equation, we can establish that
when z¼a, two arrivals are observed, corresponding to waves 1 (up-
going) and 2 (down-going). The amplitude of both arrivals is 1/2.

We can infer from this equation that at z¼0, these waves interfere
constructively, producing only one arrival with unitary amplitude. Eq.
(5) is equivalent to Eq. (3) of Trampert et al. [11]. By deconvolving
U2(h1þb,o) with the surface displacement, we get

U2ðh1þb,oÞ
U1ð0,oÞ ¼

k2b2
2r2þk1b2

1r1

4k2b2
2r2

ðeið%k1h1%k2bÞ þeiðk1h1þk2bÞÞ

þ
k2b2

2r2%k1b2
1r1

4k2b2
2r2

ðeið%k1h1þk2bÞ þeiðk1h1%k2bÞÞ ð7Þ

This equation denotes contrasts in velocity, density and absorption.
In addition, if, for instance, in the first layer the quality factor Q1 is
frequency dependent, the amplitudes in the right hand side, as
expressed in (7), also depend on frequency. Assuming that for the
moment there is no attenuation and transforming Eq. (7) to the time
domain gives

u2ðh1þb,tÞ
u1ð0,tÞ

¼
1

2T1
d tþ

h1

b1
þ

b
b2

# $zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{3

þd t%
h1

b1
%

b
b2

# $zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{4
3

7775

2

6664

þ
R1

2T1
d tþ

h1

b1
%

b
b2

# $zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{5

þd t%
h1

b1
þ

b
b2

# $zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{6
3

7775

2

6664 ð8Þ

where R1 ¼ ðb2r2%b1r1Þ=ðb2r2þb1r1Þ and T1 ¼ ð2b2r2Þ=ðb2r2þ
b1r1Þ. The simplicity of this equation facilitates the analysis of the
deconvolved fields. The first term of the right hand side is made up of
two waves, one ascending and the other descending (waves 3 and 4,
respectively). These waves have the same amplitude, defined by the
factor 1=ð2T1Þ. The second term of Eq. (8) also contains two waves,
but with amplitudes equal to R1=2T1. Since ð1=2T1Þ4ðR1=2T1Þ, the
waves in the second term are weaker than those in the first term. It is
clear that waves 5 and 6, shown in Eq. (8), interact with the first
interface. Wave 6 represents a perturbation that travels through the
second layer, advancing towards the first interface.

The amplitudes of the four waves shown in the previous equation
depend on velocities and densities corresponding to the first two
layers. Their phase (arrival time) depends on velocities and thick-
nesses associated with the first two layers [11]. We deduce from
these equations that any change in the physical properties of one or
various layers can affect the amplitudes and arrival times of decon-
volved waves. This is discussed in detail in the following section.

The presence of up-going waves in Eqs. (7) and (8) denotes the
existence of a virtual source placed at surface [9,28]. Since there is
no real source, the boundary conditions associated with displace-
ments differ from those fulfilled by the deconvolved wave-
fields [9]. As a consequence, the ascending arrivals defined in
Eqs. (6) and (8) have negative arrival times. A comprehensive
study of the properties of deconvolved fields can be found in
Snieder et al. [9].

By deconvolving U3(h1þh2þc,o) with the displacement regis-
tered at the surface, we obtain

U3ðh1þh2þc,oÞ
U1 0,oð Þ

¼
ðk1b

2
1r1þk2b

2
2r2Þðk2b

2
2r2þk3b

2
3r3Þ

8k2k3b
2
2b

2
3r2r3

ðeið%k1h1%k2h2%k3cÞ þeiðk1h1þk2h2þk3cÞÞ

%
ðk2b

2
2r2%k1b

2
1r1Þðk2b

2
2r2%k3b

2
3r3Þ

8k2k3b
2
2b

2
3r2r3

ðeiðk1h1%k2h2 þk3cÞ þeið%k1h1þk2h2%k3cÞÞ

%
ðk1b

2
1r1þk2b

2
2r2Þðk2b

2
2r2%k3b

2
3r3Þ

8k2k3b
2
2b

2
3r2r3

ðeiðk1h1þk2h2%k3cÞ þeið%k1h1%k2h2þk3cÞÞ

Fig. 6. Coordinates of the array of receivers where the equations that govern the
displacement fields were evaluated; r1, r2, and r3 denote densities of the first,
second, and third layer, respectively; b1, b2, and b3 denote shear wave velocities of
the first, second, and third layer, respectively; Sinc represents the incident wave. h1

and h2 denote the thickness of the first and second layer, respectively. rhs and bhs

indicate the density and velocity of the half-space, respectively.
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þ
ðk2b

2
2r2%k1b

2
1r1Þðk2b

2
2r2þk3b

2
3r3Þ

8k2k3b
2
2b

2
3r2r3

ðeið%k1h1 þk2h2þk3cÞ þeiðk1h1%k2h2%k3cÞÞ

ð9Þ

Assuming for the moment that there is no attenuation and
applying the inverse Fourier transform to the previous equation
gives

u3ðh1þh2þc,tÞ
u1ð0,tÞ

¼
1

2T1T2
d tþ

h1

b1
þ

h2

b2
þ

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{7

þd t%
h1

b1
%

h2

b2
%

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{8
2

6664

3

7775

þ
R2

2T1T2
d tþ

h1

b1
þ

h2

b2
%

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{9

þd t%
h1

b1
%

h2

b2
þ

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{10
2

6664

3

7775

þ
R1R2

2T1T2
d tþ

h1

b1
%

h2

b2
þ

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{11

þd t%
h1

b1
þ

h2

b2
%

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{12
2

6664

3

7775

þ
R1

2T1T2
d tþ

h1

b1
%

h2

b2
%

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{13

þd t%
h1

b1
þ

h2

b2
þ

c
b3

# $zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{14
2

6664

3

7775, ð10Þ

where R2 ¼ ðb3r3%b2r2Þ=ðb3r3þb2r2Þ and T2 ¼ ð2b3r3Þ=ðb3r3þ
b2r2Þ. Eq. (10) allows us to identify the main features of the
deconvolved wavefields in layered media. Based on Eq. (10), we
can assert the following: the amplitudes of arrivals 9, 10, 11, 12,
13, and 14 are smaller than the amplitudes of waves 7 and 8. The
arguments of waves 7, 10, 11, and 14 denote motion towards the
second interface, whereas waves 8, 9, 12, and 13 move away from
this interface. As in Eq. (8), the amplitudes and traveltimes of the
deconvolved arrivals defined in the previous equation depend on
the physical properties of the layered medium. Given that
estimates of soil characteristic periods are relevant in seismic
engineering, expressions such as Eqs. (6), (8), and (10) can be used
to interpret deconvolved seismic records [11]. In conjunction with
seismic events recorded in boreholes, theoretical deconvolutions (like
Eqs. (6), (8), and (10)) can be used to identify interfaces (possibly
significant for micro-zonification purposes) situated at depths smaller
than the depth of the basement [11]. From Eqs. (6), (8), and (10), it is
possible to see that the number of arrivals N detected in the
deconvolved traces can be related to the number of the layer as
follows: N¼2l, where l denotes the number of the layer [11].
Deconvolving the displacement field detected in layer M (where
MZ2) with the corresponding motion detected at the surface
produces
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where w represents the distance between the receiver deployed in
layer M and the upper limit of this layer; A and D denote the main
ascending and descending waves, respectively (the expressions for A
and D include waves 3, 4, 7, and 8 as defined in Eqs. (8) and (10)); PR1

and PR2 define pseudo reflections (the expressions for these pseudo
reflections include waves 5, 6, 9, and 10 as defined in Eqs. (8) and
(10)). Eq. (11) does not include the rest of the pseudo reflections; if it
did, this expression would be excessively complex, as the total
number of arrivals corresponding to layer M is 2M. To obtain Eqs.
(6), (8), and (10), we assume no attenuation and then apply the
inverse Fourier transform to Eqs. (5), (7), and (9). The expressions we
obtain in the time domain when we consider attenuation are slightly
more complicated than Eqs. (6), (8), and (10). The deconvolutions
expressed in the time domain that include attenuation contain
convolutions which are defined in terms of delta and exponential
functions. The delta functions that appear in these expressions are
exactly the same delta functions that are shown in Eqs. (6), (8), and
(10), which implies that the traveltimes are not affected by attenua-
tion [11]. It turns out that traveltimes are affected by attenuation, but,
in most of the cases, it is assumed that the influence of attenuation on
traveltimes is negligible. A more detailed discussion about the
exponential functions that appear in the time domain convolutions
(which include attenuation) is presented in the Appendix A.

We can interpret the waves denoted by the thin gray arrows
shown in Fig. 4 in a qualitatively fashion using arrivals 5, 6, 9–14,
PR1, and PR2 (at the end of this section, we interpret these waves
considering attenuation). For shear waves, one of the most
important velocity contrasts shown in Fig. 2 is the one associated
with the interface located at 55 m of depth. At this depth, there is
an important jump in terms of physical properties. As can be seen
in the shear wave velocity profile, it is not clear below 13.5 m (at
this depth there is another important velocity contrast) whether
there is only one layer of basalt with some degree of erosion, or
several layers of basalt that correspond to different episodes of
volcanism. The shear wave velocity increases with depth (from
13.5 m–55 m). After 55 m, the shear wave velocity remains
constant at 2800 m/s. Therefore, we can conclude that the pseudo
reflections, denoted by thin gray arrows in Fig. 4, are produced by
the transition zone that separates the sand sediments from solid
basalt (with velocity of 2800 m/s).

For the station SMNH01, we can also detect interfaces located
between the surface and 100 m of depth by measuring the
amplitudes of deconvolved waves. In Fig. 4, the amplitudes of
the main ascending waves denoted by the thick blue upward-
pointing arrow are smaller than the amplitudes of the respective
band-limited Dirac delta functions observed in the deconvolved
traces associated with the receiver situated at the surface.
We obtain each band-limited Dirac delta function by deconvolv-
ing the corresponding motion recorded at surface with itself.
The amplitudes of these functions are close to one, as we include
a ‘‘water-level’’ parameter in the deconvolution process (see
Eq. (1)). To set the maximum amplitude of the deconvolved traces
equal to one for each seismic event, we normalize all of the
amplitudes of the deconvolved waves with respect to the max-
imum amplitude observed in the deconvolved trace correspond-
ing to the surface. Note that in Fig. 4 the amplitudes of the main
ascending waves (denoted by the thick blue upward-pointing
arrow) are approximately seven times smaller than the ampli-
tudes of the respective band-limited Dirac delta functions.
In order to understand the influence of scattering in this ampli-
tude behavior, we substitute both the shear wave velocities and
the densities, shown in Fig. 2, in the amplitude of wave A defined
in Eq. (11). From this calculation, we obtain an amplitude equal to
0.18, which approximately corresponds to the amplitudes asso-
ciated with the main ascending waves (denoted by the thick blue
upward-pointing arrow) registered in 1999 (see Fig. 4). It is
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necessary to emphasize that this amplitude value does not
account for attenuation, however from this value, it is possible
to infer that there are at least four interfaces (detectable using
seismic data) situated between the surface and the sensor
deployed at 100 m (Fig. 2 shows the location of these interfaces).

In Fig. 4, the arrival time t of the main ascending and
descending waves is given by 9t9¼0.85 s (measured from zero
time to the time defined by the peak of each of one of these
waves), whereas the arrival time that we obtain by substituting
both the shear wave velocities and thicknesses, as shown in Fig. 2,
in Eq. (11) gives 0.1 s, differing from the deconvolved arrival time.
The absolute value of the arrival time corresponding to the pseudo
reflections denoted by the thin gray arrows in Fig. 4 is equal to
0.3 s. In this figure, we can see that the amplitudes of these pseudo
reflections are, in most of the cases, not negligible. In fact, in some
cases, these amplitudes are comparable with the amplitudes of
the main ascending waves (indicated in Fig. 4 by the thick blue
upward-pointing arrow).

In order to study the behavior of the deconvolved fields in the
presence of attenuation, we generate synthetic data using a
model constituted by three layers overlying a half-space. We
utilize the physical parameters shown in Fig. 2 as a reference. In
our model, we add the layer number four, illustrated in Fig. 2, to
the half-space, and set the shear wave velocity of the half-space
equal to 2800 m/s. We modify some of the parameters shown in
Fig. 2 to fit the deconvolved traces corresponding to the seismic
event detected on 21/08/1999, see Fig. 7. In particular, we modify
the physical parameters of the first layer. In order to include
attenuation in the equations that govern the displacement fields,
we employ a simplified hysteretic Kelvin’s model. In this model,
the wavenumber k is related to the quality factor Q through the
following expression: k¼ ðo=bÞð1%i=ð2Q ÞÞ [25]. To generate syn-
thetic seismograms, we convolve the equations that govern
displacement fields with the Fourier transform of a Ricker pulse

with a dominant frequency of 5.9 Hz, using the FFT. Subsequently,
we apply an IFFT to the convolved traces to transform these traces
to the time domain. The synthetic deconvolved traces are shown
in Fig. 7. Based on the synthetic data shown in Fig. 7 and other
examples that we generated (which are not presented in this
work), we can establish the following: (a) for values of Q1o15
(quality factor of the first layer), the latest descending arrival
(indicated with the thick green downward-pointing arrow)
always develops a low amplitude, these modeling results explain
the significant amplitude decay observed in the deconvolved
arrivals denoted by the thick green downward-pointing arrow
shown in Fig. 4; (b) the amplitudes of the pseudo reflections are
governed by the individual values of r1, b1, and Q1; (c) the
amplitudes of the main ascending arrivals are smaller than those
of the corresponding band limited Dirac delta functions, revealing
the presence of the interfaces that separate the first layer from the
half-space; (d) the amplitudes of the main ascending and des-
cending waves are controlled by the individual values of r1, b1,
and Q1. From the synthetic experiments, we can also establish
that the variability in terms of amplitudes observed in Fig. 4
indicates changes in physical properties. There is also variability
in terms of amplitudes and traveltimes of the band-limited Dirac
delta functions observed in the deconvolved traces that corre-
spond to the surface (see Figs. 4 and 7), which also denote
changes in the subsurface [29]. In the next section, we explain
in greater detail the propagation of small velocity and density
changes through amplitudes and arrival times of deconvolved
waves.

6. Propagation of small velocity and density changes
(time-lapse variations) through amplitudes and arrival
times of deconvolved waves

In this section, we introduce and describe the expressions that
relate changes in near-surface physical properties (velocity and
density) to variations in the amplitudes and arrival times of
deconvolved waves in order to illustrate that it is possible to
detect small time-lapse changes in near-surface properties using
deconvolution. For the examples presented in this section, we do
not consider attenuation and assume the signal-to-noise ratio to
be optimal. Here, we consider the purely elastic case because this
can be used as a case of reference.

6.1. Amplitude changes

We can identify the impedance ratio I¼ ðr1b1Þ=ðr2b2Þ from the
amplitude of the main ascending wave 3 shown in Eq. (8), defined
below:

1
4

1þ
r1b1

r2b2

# $
: ð12Þ

Assuming that the second layer consists of soft material and
that this contains fluids (this case may be useful for microseismic
purposes), then it may be possible that this layer may experience
compaction when subjected to earthquakes. If this is the case, the
velocity of this layer should increase, and the density of the layer
should decrease (due to the possible decrement in the amount of
fluids). Thus, we can express the change in I¼ ðr1b1Þ=ðr2b2Þ due
to changes in velocity b2 and density r2 as

dI¼
@I
@b2

db2þ
@I
@r2

dr2 ð13Þ

where d stands for small changes. Performing the derivatives and
Fig. 7. Synthetic deconvolutions and deconvolved traces corresponding to the
seismic event detected on 21/08/99 (see Table 1).
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simplifying yields

dI
I
¼%

db2

b2
%
dr2

r2
ð14Þ

This equation establishes that if, for instance, db2=b240,
dr2=r2o0, and db2=b2

"" ""4 dr2=r2

"" "", dI=Io0. Thus, after compac-
tion and considering that the product r2b2 increases, we should
expect to see ascending waves with smaller amplitudes in the
deconvolved traces corresponding to receivers placed in the
second layer. On the other hand, after compaction of the second
layer, the amplitude of the main ascending arrival (wave 8 shown
in Eq. (10)) observed in traces corresponding to detectors placed
in the half-space should be either smaller or greater than the
original amplitude. Evidently, it depends on the impedance ratios.
If in the second layer r2 increases (which can be due to an
increment in fluids) and b2 remains constant, the amplitudes of
ascending waves observed in the deconvolved traces correspond-
ing to receivers situated in the second layer should be smaller
than the original amplitudes (as in the case described above). For
receivers deployed in the half-space, the amplitude of the main
ascending arrival should be either smaller or greater than the
unperturbed one. Again, it depends on the impedance contrasts.
The cumulative nature of the changes in velocity and density
denoted by Eq. (14) may increase the possibility of recognizing
small time-lapse changes in near-surface properties by measuring
variations in the amplitudes of deconvolved events. Although, it is
also possible that the sum of the changes as expressed in Eq. (14)
may be equal to zero.

For a layered medium, such as that illustrated in Fig. 5, the
amplitude of the main ascending wave detected in layer M (where
MZ2) is given by (see Eq. (11))

1
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bnþ1rnþ1
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# $
ð15Þ

If, in the layered medium illustrated in Fig. 5, the product r1b1

increases, the amplitude of the main ascending wave observed in
deconvolved traces corresponding to receivers placed in any layer
(with the exception of the first layer) and in the half-space should
be greater than the original amplitude (before the change). If two
or more layers experience changes, the behavior of the decon-
volved amplitudes detected in layer M becomes more compli-
cated due to the combined effects of multiple impedance ratios.
The structure of Eq. (15) implies that small time-lapse changes in
densities and velocities can be detected by measuring the decon-
volved amplitude associated with the first deconvolved arrival,
the main ascending arrival, recorded by the deepest receiver.

Above, we described cases where changes in physical proper-
ties of layers occur in the context of ‘‘linear behavior’’. The term
‘‘linear behavior’’ stands for the behavior of the materials sub-
jected to compaction or expansion, which follow the rules of logic
and common sense. However, it is perfectly valid that, even when
the density of the first layer r1 remains constant (or it may have
increased due to the presence of water originated by precipita-
tion, for instance), the velocity b1 may still experience reduction
during or immediately after the movement caused by small
earthquakes. This type of behavior may arise in the presence of
a nonlinear process called incipient liquefaction [30,31]. Thus, in
the presence of incipient liquefaction, the amplitudes of the main
ascending wave measured in traces corresponding to receivers
deployed below the first layer may be smaller than the original
amplitudes (before liquefaction).

6.2. Traveltime changes

We can perform a similar analysis using arrival times. In the
case of the interval traveltime T2 ¼ h2=b2 that corresponds to

wave 8 which is defined in Eq. (10), the expression that relates
variations in this interval traveltime to changes in velocity and
thickness is

dT2

T2
¼

db2

b2
%
dh2

h2
ð16Þ

We can infer from the previous equation that if, for example,
db2=b240 and dh2=h2 ¼ 0 (when a small earthquake happens, the
thickness may experience very small changes, though pore
pressure may increase substantially [30]), dT2=T240. Note that
all the interval traveltimes of wave 8 have the same sign. There-
fore, if all the physical parameters in the layered medium increase
(or decrease) at the same time, the arrival time corresponding to
wave 8 would be profoundly modified. In other words, the arrival
time of wave 8 may facilitate the identification of changes in
velocities. On the other hand, the signs of the interval traveltimes
of waves 9–14 (defined in Eq. (10)) are not equal. This reduces the
possibility of identifying changes in physical properties through
these waves. Nevertheless, such waves may still be useful,
especially for micro-zonification purposes [11] (as explained
above, the arrivals denoted in Fig. 4 by thin gray arrows corre-
spond to pseudo reflections produced by interfaces whose identi-
fication may be important for studies of earthquake engineering).

In the presence of nonlinear phenomena such as incipient
liquefaction [30,31], the reduction of the shear wave velocity (and
of the shear modulus) may give rise to an increment in the arrival
time corresponding to the main ascending and descending waves
[19,31].

7. Discussion

We have described exact expressions for deconvolutions
corresponding to a 1D layered medium composed of homoge-
neous and purely isotropic layers under the incidence of shear
waves. Unlike other methods, we derived the theoretical decon-
volutions by using the explicit expression for the displacement
field evaluated at the surface to deconvolve explicit expressions
for displacement fields evaluated at different depths. It follows
from the theoretical deconvolutions that the amplitudes and
arrival times of deconvolved waves depend on the physical
properties of the layered medium [11]. In fact, in the exact
expressions, we can identify main ascending and descending
waves [11,12] and pseudo reflections [11]. From the theoretical
deconvolutions, it can be established that any change in at least
one physical property of the layered medium may produce
variations in the amplitudes and arrival times of deconvolved
waves. In fact, even a small variation (e.g. 5%) in one of the shear
velocities can produce visible changes, especially in the ampli-
tudes of the main ascending and descending waves and in the
pseudo reflections, clearly observable in the deconvolved trace
corresponding to the deepest receiver. In addition, in the theore-
tical deconvolutions, we can include attenuation. The theoretical
deconvolutions can be used to invert for the quality factor,
considering frequency dependence [11]. A caveat for the applica-
tion of this inversion is that a priori knowledge of the physical
properties of the first layer is required.

We used theoretical deconvolutions to interpret deconvolved
seismic events registered at the SMNH01 station of KiK-net. The
lithology at this station consists of soil above 13.5 m; below this
depth, there is only basalt. This station has two triaxial sensors,
deployed at the surface and at 100 m of depth. The deconvolution
of the motion registered at 100 m with respect to the movement
recorded at surface produced, in all cases, four clearly visible
wavelets, two with negative time and two more with positive
time. From the theoretical deconvolutions, it was possible to
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identify the main ascending (negative time) and descending
(positive time) waves, which always corresponded to the decon-
volved wavelets with the smallest and greatest arrival times,
respectively. The other two wavelets were associated with pseudo
reflections, although these two wavelets did not correspond
exactly to two pseudo reflections. It is clear from the amplitude
of the main ascending wave detected at 100 m that these wave-
lets represent the superposition of 30 pseudo reflections. In other
words, these arrivals are interfering constructively. It may be
possible to visualize all the pseudo reflections using another type
of deconvolution [11] (although this also depends on the physical
and geometrical properties of the subsurface). From the modeling
results, we can establish that the changes in the amplitudes of the
pseudo reflections identified in Fig. 4 are mainly governed by
density, shear wave velocity, and quality factor of the first layer
(r1, b1, and, Q1, respectively). The first layer beneath the surface
at station SMNH01 is composed of sand and gravel (see Fig. 2),
which implies that changes in r1 and b1 can be related to the
following factors: precipitation and recurrent seismic events
[19,31], as well as incipient liquefaction [30,31]. From the
numerical experiments and the interpretation of the deconvolved
data, we can establish that the amplitudes and traveltimes of
deconvolved waves shown in Fig. 4 denote changes due to
precipitation and recurrent seismic events, we can also observe
in this figure healing. The influence of precipitation and healing
mechanisms on time-lapse changes is inferred from the incre-
ment in the amplitudes of the main ascending arrival (and of the
pseudo reflections). This can be seen, for instance, when we
compare the deconvolved amplitudes that correspond to the
earthquake registered on 21/01/2010 with those of the quake
recorded on 07/02/2011. On the other hand, the influence of
incipient liquefaction can be inferred from the reduction in the
shear wave velocity [19,31] (see Table 2), which also produces a
decrement in deconvolved amplitudes (see Fig. 4).

8. Conclusions

None of the theories discussed in our work are new, the
theoretical deconvolutions (shown in the main text) and the
expression for the attenuation operator (shown in Appendix A)
were previously derived by Trampert et al. [11], in their deriva-
tion, they used an SH wave propagator matrix. Based on our
results, the following can be asserted:

– We observed pseudo reflections on the deconvolved traces
obtained from the seismic data recorded at station SMNH01.
These pseudo reflections revealed the presence of interf-
aces located between sand (b¼290 m/s) and solid basalt
(b¼2800 m/s).

– The presence of four impedance contrasts situated between
the surface and the sensor deployed at 100 m of depth was
detected by measuring the amplitudes of the main ascending
arrivals (denoted by the thick blue upward-pointing arrow in
Fig. 4), such amplitudes were always smaller than the ampli-
tudes of the corresponding band-limited Dirac delta functions
observed in the deconvolved traces corresponding to the
surface.

– The strong amplitude decay detected in some of the main
descending waves (denoted by the thick green downward-
pointing arrow in Fig. 4) was mainly due to intrinsic attenua-
tion (see Fig. 7).

– The maximum change (always relative to the smallest value)
measured in the effective shear wave velocity b (obtained
through deconvolution) and the respective shear modulus m
corresponded to 3.8% and 7.8%, respectively. The variations in

shear wave velocities detected at station SMNH01 are mainly
due to the combined influence of precipitation and recurrent
seismic events, which, in some cases, give rise to incipient
liquefaction.

– We got quality factors Q for shear waves by fitting synthetic
data to real deconvolutions (obtained from the earthquake
registered on 21/08/99), such values were equal to 12 (for the
layer of sand and gravel) and 200 (for the basalt).

– The good performance of the 1D layered-model is explained by
Goto et al. [32], who demonstrated that, for the type of
lithology displayed in Fig. 2, the oblique incidence case is
identical to vertical incidence. This happens when the velocity
increases with depth. To include the incident angle, the 1D
case can be extended to the 3D case following the approach
described in Trampert et al. [11].
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Appendix A. Attenuation operator for layered media

In this appendix, we derive the attenuation operator for
layered media using explicit expressions for the displacement
fields. It can be clearly seen in Fig. 4 that the amplitudes of the
main down-going wave (indicated by the thick green downward-
pointing arrow) are consistently smaller than the amplitudes of
the main up-going wave (indicated by the thick blue upward-
pointing arrow). Since this asymmetry is mainly due to attenua-
tion, we can estimate the quality factor by deconvolving
these waves.

Deconvolving the Fourier transform of the main descending
wave with that of the main ascending wave, and considering a
layered medium such as that shown in Fig. 5, produces
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where p¼1, 2, y, n; D1 results from the deconvolution of the main
down-going and up-going waves recorded in the first layer; and
Dpþ1 represents the deconvolution of the main descending and
ascending waves detected in the pþ1 layer. In these equations, a
denotes the vertical distance between the position of a receiver
installed in the first layer and the surface (z¼0); s represents the
vertical distance between the position of a receiver located in the
pþ1 layer and the upper limit of this layer; and g(Q) denotes the
attenuation coefficient expressed as a function of the quality factor
Q. Eqs. (A.1) and (A.2) both have two components, shown in
brackets. The first component in both equations clearly represents
a plane wave. These waves are defined in the time domain by
dðtþ2a=b1Þ and dðtþ

Pp
q ¼ 1ð2hqÞ=ðbqÞþð2sÞ= ðbpþ1ÞÞ, respectively.
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Thus, Eqs. (A.1) and (A.2) define convolutions of plane waves with
functional forms that can be interpreted as attenuation operators.
It is clear, then, that the attenuation operators corresponding to the
first and pþ1 layers are

L1 ¼ e
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gðQ1Þ

& '" #

ðA:3Þ
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& '
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e
%2hqo
bq

gðQqÞ

& '" #
, ðA:4Þ

respectively.
The values of Q obtained through deconvolution, in principle,

are mainly due to the combined influence of intrinsic attenuation
and scattering. These two types of attenuation are difficult to
separate. One possible way to split them is by developing an
algorithm based on the structure exhibited by Eqs. (5), (7) and (9).
From these equations, we can infer the contributions of scattering
and intrinsic attenuation using the energy associated with the
pseudo reflections and the ratio of amplitudes of the main
ascending and descending waves, respectively [11].

It is worth emphasizing that Q values obtained using a constant Q
model cannot fully explain the site effects. For example, if an
earthquake shakes layers of softer, saturated material embedded
within harder material, local fluid-pressure gradients may develop,
giving rise to a wave-induced flow. To model this behavior, a better
understanding of the Q variation as a function of frequency is needed.
By using better models, it may be possible to display Q variations in
space and frequency, which could then be utilized to study wave-
induced flow [33] and viscosity [30]. Since the quality factors can be
obtained from amplitude ratios of deconvolved waves, the amplitudes
of these waves need to be clearly characterized [34,35].
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[5] Sánchez-Sesma FJ, Pérez-Ruiz JA, Campillo M, Luzón F. Elastodynamic 2D
Green function retrieval from cross-correlation: canonical inclusion problem.
Geophysical Research Letters 2006;33:L13305.
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