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ABSTRACT

Standard model-based redatuming techniques allow
focusing of the direct waves at the new datum, but the focus
can be degraded because of surface multiples and internal
multiples in the overburden. We demonstrate that if the
medium above the redatuming level is known, these
multiples can be correctly handled. We compute the exact
focusing functions, free of multiples, using an inverse-filter
approach. These focusing functions create downward-radi-
ating and upward-radiating virtual sources at the new datum.
The surface responses to these virtual sources are then used
to compute the objective redatumed data set through multi-
dimensional deconvolution. The redatumed data set corre-
sponds to a virtual acquisition made at the new datum and
for which the imprint of the overburden is completely re-
moved. We test the technique on 2D acoustic synthetic
examples corresponding to a seismic context and an acoustic
nondestructive testing context.

INTRODUCTION

Redatuming seismic data corresponds to virtually moving the
sources and receivers from the original acquisition level to a new
depth level, also called the new datum. This process can be used
when the original acquisition grid is inadequate for imaging pur-
poses, such as in cases of rugged topography, irregular spatial sam-
pling, remoteness from the target, etc.
When buried sensors are available at the new datum (e.g., in

a deviated well), creating virtual sources can be achieved based
on the data only, without any prior knowledge of the medium.
Processing techniques have been developed for this purpose and
fall into the category of correlation-based redatuming (Bakulin

and Calvert, 2005; Schuster and Zhou, 2006). In particular, the
interferometry by multidimensional deconvolution procedure can
be applied to fully cancel the effect of the overburden, provided that
the upgoing and downgoing waves at the redatuming level are
known (Wapenaar et al., 2008; Wapenaar and van der Neut, 2010;
van der Neut et al., 2011a, 2011b).
When buried sensors are not available, model-based redatuming

relies on applying corrections to the original data set based on some
prior knowledge of the overburden, i.e., some knowledge of the
medium parameters between the original datum and the new datum.
The standard approach relies on modeling the propagation of the
direct waves between the surface and the positions of the virtual
sources/receivers and in applying extrapolation operators to the data
(Berryhill, 1979; Shtivelman and Canning, 1988). These extrapola-
tion operators apply appropriate time shifts and amplitude correc-
tions to each trace. This approach only requires a macrovelocity
model of the overburden as prior information. If no assumption
is made about the overburden, it is also possible to estimate time
shifts by crosscorrelating neighboring traces. Explicitly applying
those time shifts to the traces is known as static correction. Static
correction was the first redatuming-like technique to be developed
in seismic exploration (Hileman et al., 1968; Taner et al., 1974;
Rothman, 1986).
The standard model-based redatuming methods can successfully

focus the direct waves at the new datum, but they do not account for
surface multiples and internal multiples in the overburden. These
multiples can generate ghost arrivals in the redatumed data set
and thus ghost reflectors in the subsequent images. In the field of
acoustics, a similar problem of imperfect focusing has led to the
development of the spatiotemporal inverse-filter technique (Tanter
et al., 2001). With a single-sided source distribution, this technique
aims to focus acoustic wavefields beyond complicated layers for
medical imaging and nondestructive-testing purposes (Aubry et al.,
2001). It requires the acquisition of a baseline data set (a transmis-
sion matrix), for which the “overburden” is extracted from the rest
of the medium. With sources on one side and receivers on the other
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side of the overburden, the transmission matrix is acquired, and fo-
cusing functions are built through an inversion procedure.
In a seismic context, a physical acquisition of such a baseline is

not possible. However, if one has a good knowledge of the medium
parameters in the overburden, the transmission matrix can be esti-
mated with numerical simulations of wave propagation through the
overburden. This is the approach that we use here to compute the
focusing functions.
In contrast, the recently developed Marchenko imaging pro-

cedure aims to iteratively infer these same focusing functions, only
using reflected waves recorded at the surface and a macrovelocity
model as prior information (Rose, 2002; Wapenaar et al., 2013;
Broggini et al., 2014; da Costa Filho et al., 2014; van der Neut et al.,
2015). The approach that we propose here thus requires more prior
information than the Marchenko method, but it can provide in turn a
more direct way to compute these focusing functions.
The focusing functions are then used to compute the surface re-

sponses to upward-radiating and downward-radiating virtual
sources at the new datum. Finally, the imprint of the overburden
is fully removed through multidimensional deconvolution. Our
work is related to the “rigorous redatuming” method developed
by Mulder (2005), which requires similar assumptions and aims
at the same objective. However, we follow a different approach
based on the reciprocity theorems (Appendix A), and our formalism
involves one less inversion step in the redatuming procedure. The
differences between the approach of Mulder (2005) and our ap-
proach are detailed in the “Discussion” section. We also present
a heuristic connection with the previously developed inverse-filter
technique and Marchenko imaging method.
The formal derivation of the redatuming equations, based on

Rayleigh’s reciprocity theorem, is presented in Appendix B. In
the main text, we provide a heuristic graphics-based derivation that
relies on a matrix formalism. We then demonstrate the method on
two synthetic data sets: one corresponding to a seismic context and
the other corresponding to an acoustic nondestructive-testing con-
text (small-scale and reflective side boundaries). In both cases, we
retrieve the redatumed Green’s functions for which the imprint of
the overburden is removed.

THEORY

We consider a 2D acoustic medium with variable density ρðrÞ
and compression modulus κðrÞ. The frequency-domain wave equa-
tion for the pressure pðr;ωÞ reads

ρðrÞ∇:
�

1

ρðrÞ∇pðr;ωÞ
�
þ ω2

c2ðrÞpðr;ωÞ ¼ fðr;ωÞ; (1)

where ω is the angular frequency, cðrÞ ¼ ffiffiffiffiffiffiffiffi
κ∕ρ

p
is the medium’s

velocity, and fðr;ωÞ is an arbitrary source term. We define the
Green’s function gðr; rs;ωÞ as the solution of this wave equation
for a monopole Dirac source term at rs; i.e.,

∇:
�

1

ρðrÞ∇gðr; rsÞ
�
þ ω2

κðrÞ gðr; rsÞ ¼ δðr − rsÞ; (2)

where the frequency dependency of the Green’s functions is made
implicit from now on. Note that the density has been included in the
source term, so that the Green’s function is the solution of the wave
equation (equation 1) with a source term fðr;ωÞ ¼ ρðrÞδðr − rsÞ.
This definition of the Green’s function ensures that the source-
receiver reciprocity property is satisfied (Rayleigh, 1878; Snieder
and van Wijk, 2015, expression 18.64); i.e,

gðr1; r2Þ ¼ gðr2; r1Þ: (3)

In the absence of horizontally propagating waves, the Green’s
function can be decomposed at the receiver level into an upgoing
part and a downgoing part as

gðr; rsÞ ¼ gþ;pðr; rsÞ þ g−;pðr; rsÞ; (4)

where gþ;pðr; rsÞ represents the downgoing pressure wavefield at r
(superscriptþ) for an impulsive pressure source at rs (superscript p)
and where g−;pðr; rsÞ represents the upgoing pressure wavefield at r
(superscript −) for an impulsive pressure source at rs (superscript
p). By analogy with the reciprocity relation (equation 3), we estab-
lish the conventions

gp;−ðr1; r2Þ ≡ gþ;pðr2; r1Þ;
gp;þðr1; r2Þ ≡ g−;pðr2; r1Þ; (5)

where gp;þðr1; r2Þ is seen as the full pressure wavefield at r1 (super-
script p) for a downward-radiating pressure source at r2 (superscript
þ) and where gp;−ðr1; r2Þ is seen as the full-pressure wavefield at r1
(superscript p) for an upward-radiating pressure source at r2 (super-
script −). This convention is used to help the heuristic understand-
ing of the redatuming procedure, and the two notations are always

interchangeable.
We consider N sources and N receivers at

coinciding locations just below the free surface,
whose positions are described by the coordinate
x0 (Figure 1a). We define the N × N reflection
matrix R of the full medium as fRgij ¼
gðx0i ; x0j ;ωÞ. It contains the responses from each
source position x0j to each receiver position x0i ,
and it corresponds to a reflection data set ac-
quired at the free surface.
Our objective is to transform the initial reflec-

tion data set R into a virtual reflection data
set RL

1 , corresponding to virtual sources and
receivers located at depth z1 and for which the
imprint of the overburden (medium above z1) is

Overburden 

Target area 

x0 

x1 

z 

0 

z1 

Target area 

x1 

z 

0 

z1 

Overburden 

x0 

x1 

z 

0 

z1 

a) b) c)

Figure 1. (a) Full medium with free surface, overburden, and target area. (b) Objective
medium with the target area below the new datum z ¼ z1 and homogeneous above.
(c) Priorly known upper medium with free surface, overburden, and homogeneous be-
low the new datum z ¼ z1. The (virtual) sources and receivers are denoted by the black
crosses.
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completely removed. This amounts to retrieving theM ×M reflec-
tion matrix RL

1 of the objective medium represented in Figure 1b,
which is homogeneous above the new datum z1. The superscript L
denotes quantities corresponding to this objective (or lower)
medium, and we define fRL

1 gij ¼ −ð4ðΔxÞ2∕ðρðx1i Þρðx1jÞÞÞ
∂zgLðx1i ; x1j ;ωÞ. The positions of the M virtual sources and receiv-
ers at depth z1 (the new datum) are described by the coordinates x1j
and x1i , respectively, and Δx is the spatial sampling distance of
these virtual sensors.
The formal derivation of the redatuming procedure is based on

Rayleigh’s reciprocity theorem, and it is presented in Appendices A
and B. The formulation of the redatuming equations into simple
matrix relations explains the peculiar definition of matrix RL

1
(see equation B-14). In the following, we propose a heuristic, graph-
ics-based illustration of these redatuming equations. The matrices R
and RL

1 are schematized in Figure 2.
We define Gþ (respectively, G−) as Green’s function matrices in

the full medium (Figure 1a) for downward-radiating (respectively,
upward-radiating) sources located at depth z1, so that fGþgij¼
ð2Δx∕ρðx1jÞÞgp;þðx0i ;x1j ;ωÞ and fG−gij ¼ gp;−ðx0i ; x1j ;ωÞ (see equa-
tions B-7 and B-10). These matrices are also schematized in Fig-
ure 2. IfGþ andG− are known, then the reflection matrix RL

1 can be
obtained from the relation

Gþ ¼ G−RL
1 ; (6)

where the matrix product corresponds to a spatial integral along x1.
This relation is graphically illustrated in Figure 3a and formally de-
rived in equation B-13. Because the objective medium is homo-
geneous above depth z1 (Figure 1b), RL

1 represents the upgoing
wavefield response at z1 to a downward-radiating source wavefield
at z1. If these upgoing wavefields are convolved with the upward-
radiating source Green’s function matrix G−, the resulting wavefield
recorded at the free surface is equivalent to the downward-radiating
source Green’s function matrix Gþ.
Note that by virtue of source-receiver reciprocity, knowing Gþ

and G− is equivalent to measuring upgoing and downgoing wave-
fields at the new datum, as in a deviated well configuration. Solving
for RL

1 in equation 6 then amounts to a discretized form of inter-
ferometry by multidimensional deconvolution (Schuster and Zhou,
2006; Wapenaar and van der Neut, 2010).
Because we do not suppose the physical presence of receivers

at depth, we numerically compute Gþ and G− using the surface-
acquired data set R and our prior knowledge of the overburden (be-
tween z ¼ 0 and z ¼ z1). First, we perform numerical simulations
in the upper medium depicted in Figure 1c that has a free surface
at z ¼ 0 and that is homogeneous below z ¼ z1. This gives the re-
flection and transmission matrices RU (N × N), RU

1 (M ×M),
TU (M × N), and TU

1 (N ×M), where the superscript U indicates
quantities calculated in this upper medium. These matrices are
defined as fRUgij ¼ gUðx0i ; x0j ;ωÞ, fRU

1 gij ¼ ∂zgUðx1i ; x1j ;ωÞ,
fTUgij ¼ ∂zgUðx1i ; x0j ; ωÞ, and fTU

1 gij ¼ gUðx0i ; x1j ;ωÞ (see equa-
tions B-2, B-3, B-7, and B-10). They are graphically represented
in Figure 2.
To compute Gþ, we then have to build focusing source functions

that, when sent from the free surface, collapse into downgoing Dirac
impulses at the new datum. Assuming that these focusing functions
exist, they can be gathered in the matrix Fþ (N ×M) so that

TUFþ ¼ I; (7)

and because the focusing functions are reflected in the upper
medium, we define

F− ≡ RUFþ: (8)

The identity matrix I (M ×M) defines a set of objective Dirac
impulses at each position on the new datum. Causality and medium
homogeneity below z1 ensure that these are downgoing impulses.
The matrix element fFþgij thus corresponds to the source function
to be injected at free-surface position x0i to achieve a focus at new
datum position x1j . By definition, F

− (N ×M) represents the surface
response of the focusing functions in the upper medium. The idea of
computing the focusing functions Fþ by finding the inverse of the
transmission matrix TU is at the center of the spatiotemporal in-
verse-filter technique developed in acoustics (Aubry et al., 2001;
Tanter et al., 2001). When the transmission matrix of the overburden
is not known, it is possible to compute the focusing functions Fþ

and F− using an iterative scheme based on a variant of equation 8
and its time-reversed version. This forms the basis of the Marche-
nko imaging procedure (Rose, 2002; Wapenaar et al., 2013; Brog-
gini et al., 2014) that relies on the reflection response of the medium
measured from the surface and a macrovelocity model of the over-
burden as the only prior knowledge. In contrast, the work presented
here relies on a much stronger assumption, i.e., the knowledge of
the upper medium parameters, but it allows in turn a more direct
way to compute Fþ and F− based on the inversion of TU. Note that
the inversion of a transmission operator from a model with sharp
contrasts has also been proposed recently to obtain a more accurate
initial estimate of Fþ in the Marchenko iterative procedure (Vascon-
celos et al., 2015; Vasconcelos and van der Neut, 2016).
By injecting the focusing functions Fþ in the full medium

(Figure 1a), we obtain

RFþ ¼ F− þGþ; (9)

where Gþ is the Green’s function matrix in the full medium for
downward-radiating sources at depth z1. Equation 9 is graphically
illustrated in Figure 3b. In the left-side term (respectively, the first

G+ 

G- 

R1
L
 

R 
RU

 TU
 

T1
U

 
R1

U
 

Figure 2. Graphical representation of Green’s function matrices
used in the redatuming procedure.
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term of the right side) of this graphical representation, the emerging
(respectively, converging) wavefield at the redatuming level is a
consequence of the injection of Fþ in the full (respectively, upper)
medium. In the upper medium, we also are reminded that F− ≡ RUFþ

(equation 8). The Green’s functionsGþ emerge as the focusing wave-
fields create virtual downward-radiating sources at depth z1 in the full
medium. By replacing the expressions of the focusing functions Fþ

and F− (equations 7 and 8) into equation 9, we obtain

Gþ ¼ ½R − RU�½TU�−1: (10)

This expression is formally derived in equation B-6.
The matrix G− that contains the responses to upward-radiating

sources at z1 can be expressed using Gþ as well as the matrices
RU

1 and TU
1 obtained in the upper medium according to

G− ¼ TU
1 þGþRU

1 : (11)

This relation is illustrated in Figure 3c and formally derived in equa-
tion B-9. Equation 11 is a decomposition of G− into the portion of
the wavefield that only travels in the upper medium TU

1 , and the
portion of the wavefield that enters the lower medium GþRU

1 . Note
that such a decomposition was not necessary in equation 6 because
the whole wavefield in Gþ enters the lower medium.
Finally, we replace these expressions of the Green’s function ma-

trices Gþ and G− into equation 6, to compute the objective virtual
data set RL

1 as

RL
1 ¼ ½G−�−1Gþ

¼ ½TU
1 þGþRU

1 �−1½R − RU�½TU�−1
¼ ½TU½R − RU�−1TU

1 þ RU
1 �−1: (12)

As intended, this expression of the objective reflection matrix RL
1

(or redatumed data set) is a function only of the initial surface data
set R and of the matrices RU, RU

1 , T
U, and TU

1 . Note that R
U, RU

1 ,
TU, and TU

1 depend only on the prior knowledge of the overburden.

NUMERICAL EXAMPLES

Seismic data set

To illustrate the method, we generate a synthetic seismic data
set with 2D acoustic numerical simulations. We use the software
developed by Thorbecke and Draganov (2011), based on a finite-
difference scheme. The velocity model of the full medium is pre-
sented in Figure 4a, and it is 2000 m wide × 2000 m deep. It consists
of three homogeneous layers separated by two nonhorizontal boun-
daries, of which velocities are 1600, 2200, and 2800 m∕s, and of
which densities are 1000, 2000, and 3000 kg∕m3. The new datum is

= x 
G+ G- 

R1
L
 

= + 
RF+ F- 

F+ F+ 
G+ 

= 
T1

U 

x 
R1

U 

G- 

G+ 

+ 

a)

b)

c)

Figure 3. Graphical representation of (a) equation 6, (b) equation 9,
and (c) equation 11. To follow the graphics from source to receiver,
the matrix products are to be read from right to left.
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Figure 4. (a) Full seismic medium including the free surface, the
overburden, and the two targets. A subpart of the sources and
receivers are denoted by the black crosses. (b) Common-source
gather for a source at x ¼ 992 m. The two black arrows indicate
the primary scattering events from the targets.
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located below the first two layers at depth z ¼ 1000 m. Two circular
inclusions with vanishing velocity and diameters 80 and 160 m are
placed in the homogeneous third layer, below the new datum, and
they represent the targets to be detected. We have free-surface boun-
dary conditions at the upper boundary and absorbing conditions at
the other boundaries.
The initial reflection data set R is generated using N ¼ 126

sources and receivers located a quarter wavelength below the free
surface, corresponding to a sensor spacing of 16 m. The monopole
(explosive) sources are modeled with a Ricker wavelet with a center
frequency of 25 Hz. The spatial step of the grid is 4 m, and the
temporal step is 0.8 ms. An example of a common-source gather
shows primary and multiple scattering events from the overburden
and the two targets (Figure 4b). The primary scattering events from
the targets, partially screened by overburden multiples, arrive at 1.6
and 1.9 s at x ¼ 0 m (see the black arrows in Figure 4b).
The redatuming procedure starts with simulations in the upper

medium that corresponds to our prior knowledge of the overburden
(Figure 5a). We place N ¼ 126 sources and receivers a quarter
wavelength below the free surface and another M ¼ 126 sources
and receivers at the new datum. This allows us to calculate the re-
flection and transmission matrices RU, RU

1 , T
U, and TU

1 . We com-
pute the focusing functions Fþ ¼ ½TU�−1 (see equation 7) using a
truncated singular-value decomposition (SVD) for the inversion
of TU. We then construct the downward-radiating and upward-
radiating Green’s function matrices Gþ and G− following equa-
tions 10 and 11. Finally, we compute the objective redatumed data
set RL

1 following the first line of equation 12. The inverse of G− is
obtained using another truncated SVD.
An example of a common-source gather from the redatumed data

set is shown in Figure 6a (the source at x ¼ 992 m). The two dom-
inant events correspond to primary scattering on the two targets (see
the black arrows), and the two following events correspond to target
multiples (white arrows). As intended, the redatumed data set cor-
responds to a virtual acquisition made at depth z ¼ 1000 m, for
which the imprint of the overburden is completely removed. For
comparison, a synthetic version of the objective
data set is shown in Figure 6b. This synthetic data
set is obtained from a numerical simulation per-
formed in the objective medium shown in Fig-
ure 5b. We also present a comparison of three
individual traces from the redatumed and syn-
thetic data sets corresponding to three different
receiver positions: x ¼ 656 m, x ¼ 992 m, and
x ¼ 1328 m (Figure 7).
The two primaries and first two multiples are

observed in the redatumed and the synthetic data
sets. The difference in shape and amplitude of the
events with increasing offset is caused by the
limited aperture of the free-surface array. For in-
stance, an amplitude reduction is observed for
the primary scattering event arriving at approxi-
mately t ¼ 0.9 s at x ¼ 656 m in Figure 7 (the
black arrow). Some weak acausal events are
present in the redatumed data set (in the shaded
areas). These events are again related to the finite
aperture of the free-surface array, and they are
caused by the diffraction of the focusing function
emitted at the edges of the array. This effect
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)
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Figure 5. (a) Upper medium with free surface, overburden, and
homogeneous conditions below the new datum z ¼ 1000 m. (b) Ob-
jective medium with two targets below the new datum z ¼ 1000 m
and homogeneous conditions above. A subpart of the (virtual)
sources and receivers are denoted by the black crosses.
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Figure 6. Common-source gather from: (a) the redatumed seismic data set RL
1 and (b) a

synthetic numerical simulation in the objective medium. The (virtual) source is located
at position x ¼ 992 m along the new datum. The two black arrows indicate the primary
scattering events from the targets. The two white arrows indicate the first two multiple-
scattering events from the targets.
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could possibly be attenuated using spatial tapering techniques dur-
ing the inversion of the focusing function. The attenuation of these
artifacts, also expected to occur in standard redatuming techniques,
is beyond the scope of this study.
In this example, we assumed a perfect prior knowledge of the

overburden to estimate its reflection and transmission matrices
RU, RU

1 , T
U, and TU

1 . In seismic studies, having detailed knowledge
of the overburden is rare; often, only a smoothed velocity model of
the overburden might be available as prior information. To test the
redatuming procedure in such a case, we repeat the previous exam-
ple, this time using a smoothed version of the upper medium. We
apply a running average of 80 m along the depth dimension of
the slowness model of the overburden. The smoothing length
corresponds to one central wavelength in the first layer of the over-
burden. The obtained smoothed upper medium is presented in Fig-
ure 8a. We run numerical simulations in this smooth upper medium
to obtain the reflection and transmission matrices RU, RU

1 , T
U, and

TU
1 . The rest of the procedure remains the same, and a common-

source gather from the redatumed data set is shown in Figure 8b
(with the source at x ¼ 992 m).
Although the two primary scattering events on the targets are still

visible (see the black arrows), these redatumed data are dominated
by acausal and unphysical events. The use of a smooth upper
medium does not allow us to model internal multiples in the over-
burden. These multiples are thus not correctly handled in the
focusing functions, and they create unphysical events in the vir-
tual-source Green’s functions Gþ and G−. These unphysical events
then interfere with the multidimensional deconvolution procedure
and appear in the redatumed data set.

Acoustic data set

We generate another synthetic data set with 2D acoustic numeri-
cal simulations. This time, we use reflective side boundaries to sim-
ulate a typical configuration encountered in acoustic nondestructive
testing of finite-size material samples. We use a custom-made
acoustic finite-difference scheme with constant density. We use
the same velocity model, downsized to 1 m wide × 1 m deep (Fig-
ure 9a). The new datum is now located at depth z ¼ 50 cm, and the
two circular targets are of diameter 4 and 8 cm. We apply free-sur-
face boundary conditions at the top (z ¼ 0), left (x ¼ 0), and right
(x ¼ 100 cm) boundaries and an absorbing boundary condition at
the bottom boundary (z ¼ 100 cm).
The initial reflection data set R is generated using N ¼ 125

sources and receivers located one grid point (0.5 mm) below the
free surface, corresponding to sensor spacing of 0.8 cm. The mo-
nopole (explosive) sources are modeled with a Ricker wavelet with
a center frequency of 50 kHz. The spatial step of the grid is 0.5 mm,
and the temporal step is 0.11 μs. An example of a common-source
gather shows primary and multiple scattering events from the over-
burden, the two targets, and the side boundaries (Figure 9b). The
primary scattering events from the targets, partially screened by
overburden multiples and side reflections, arrive at 1 and 1.2 ms
at x ¼ 0 cm (see the black arrows in Figure 9b).
We follow the first procedure detailed in the previous section (no

smoothing applied) to compute the objective redatumed data setRL
1 .

An example of a common-source gather from the redatumed data
set is shown in Figure 10a (source at x ¼ 50 cm). The two dominant
events correspond to primary scattering on the two targets (black
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Figure 7. Comparison of redatumed and synthetic seismic traces at three different receiver positions: x ¼ 656 m, x ¼ 992 m, and
x ¼ 1328 m. The (virtual) source is located at position x ¼ 992 m along the new datum. The shaded area represents the acausal time period
before the first scattering event.
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arrows), and the next two events correspond to the first two multi-
ple-scattering interactions of the targets (white arrows). The follow-
ing events correspond to a combination of target and side-boundary
multiples. As intended, the redatumed data set corresponds to a
virtual acquisition made at depth z ¼ 50 cm, and for which the im-
print of the overburden is completely removed. For comparison, a
synthetic version of the objective data set is shown in Figure 10b.
We also present a comparison of three individual traces from
the redatumed and synthetic data sets corresponding to three differ-
ent receiver positions: x ¼ 33 cm, x ¼ 50 cm, and x ¼ 66 cm

(Figure 11).
A good agreement is observed between the redatumed and the

synthetic data set until approximately t ¼ 0.7 ms. In contrast
with the absorbing-side-boundaries case (Figure 6a), the differences
in shape and amplitude of the early events with increasing offset
are much less pronounced (Figure 10a). The acausal events due
to diffraction of the focusing function at the edges of the free-
surface array are also less noticeable (shaded areas in Figure 11).
The presence of the reflective side boundaries increases the effec-
tive aperture of the free-surface array and thus improves the

reconstruction of the redatumed data set. This effective aperture still
remains limited, as indicated by the substantial differences between
traces at late times (after t ¼ 0.7 s in Figure 11). To obtain a perfect
match between the redatumed traces and the synthetic data, a per-
fect angular coverage of illumination would be required at the re-
datuming level. This could only be achieved by embedding sources
along the side boundaries of the sample.

DISCUSSION

The redatuming procedure that we propose requires a detailed
knowledge of the overburden, with sharp interfaces and accurate
reflection and transmission coefficients. This is the most significant
challenge toward possible seismic applications of this method. The
use of smooth overburden models does not allow to account for
multiples in the focusing functions, and it leads to strong artifacts
in the redatuming result (Figure 8b). We foresee that only simple
overburden cases could be known with enough precision for correct
handling of multiples in the focusing functions. Such precise over-
burden models could be obtained through a preliminary application
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Figure 8. (a) Upper medium with free surface, smoothed overbur-
den, and homogeneous conditions below the new datum
z ¼ 1000 m. (b) Common-source gather from the redatumed seis-
mic data set obtained with the smoothed upper medium. The virtual
source is located at position x ¼ 992 m along the new datum. The
two black arrows indicate the primary scattering events from the
targets.
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Figure 9. (a) Full acoustic medium including the free surface at the
top and side boundaries, the overburden, and the two targets. A sub-
part of the sources and receivers is denoted by the black crosses.
(b) Common-source gather with source at position x ¼ 50 cm.
The two black arrows indicate the primary scattering events from
the targets.
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of reverse time migration or full-waveform-inversion techniques.
A first step toward applications to real data would be to try to re-
datum marine data below an ocean bottom with irregular topogra-
phy. In that case, only the water column and a single solid layer
would have to be modeled.
For acoustic nondestructive-testing application purposes, this con-

straint can be less significant. In some instances, the transmission and

reflection matrices of the overburden can be physically measured
(Aubry et al., 2001). This is the case when the medium to image
is covered by insulating layers and when those insulating layers
can be submitted to acoustic measurements before installation.
A redatuming procedure similar to the one that we propose was

already introduced by Mulder (2005) and called rigorous redatum-
ing. It also requires detailed knowledge of the overburden and aims

to fully remove its imprint in the redatumed data
set. To derive his method, Mulder (2005) uses
equivalent source terms in the wave equation
to impose specific wavefields at the redatuming
level. The practical implementation of his
method involves solving a sequence of three in-
verse problems. In contrast, our approach is for-
mally derived using a combination of one-way
and two-way reciprocity theorems. We also intro-
duced a heuristic graphics-based derivation to il-
lustrate the connections with the inverse filter
method (Tanter et al., 2001) and the Marchenko
imaging method (Wapenaar et al., 2013). The
practical implementation of our method involves
solving two inverse problems: one to obtain
the focusing function Fþ and one to implement
the multidimensional deconvolution procedure.
Note that our final redatumed data set corre-
sponds to the vertical derivative of the pressure
and not to the pressure itself (equation B-14).
We chose this convention because it required
the least amount of processing steps. Had we de-
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Figure 10. Common-source gather from (a) the redatumed acoustic data setRL
1 and (b) a

synthetic numerical simulation in the objective medium. The (virtual) source is located
at position x ¼ 50 cm along the new datum. The two black arrows indicate the primary
scattering events from the targets. The two white arrows indicate the first two multiple-
scattering events from the targets.

−0.5

0

0.5

A
m

pl
itu

de
 (

ar
b.

 u
ni

t)

 

 

x = 33 cm

−0.5

0

0.5

A
m

pl
itu

de
 (

ar
b.

 u
ni

t)

x = 50 cm

Synthetic objective
Redatuming result

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−0.5

0

0.5

t (ms)

A
m

pl
itu

de
 (

ar
b.

 u
ni

t)

 

 

x = 66 cm
Synthetic objective
Redatuming result

Figure 11. Comparison of redatumed and synthetic acoustic traces at three different receiver positions: x ¼ 33 cm, x ¼ 50 cm and x ¼ 66 cm.
The (virtual) source is located at position x ¼ 50 cm along the new datum. The shaded area represents the acausal time period before the first
scattering event.
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cided to retrieve the pressure wavefield (as is done by Mulder,
2005), a third inversion step would have been required.
Our method and the Marchenko imaging procedure involve creat-

ing upward-radiating and downward-radiating virtual sources at the
new datum. Once the surface responses to these virtual sources are
retrieved, the very same step of multidimensional deconvolution is
required to estimate the reflection matrix of the objective medium
(RL

1 ) for the two methods. To create the virtual sources at the new
datum, the Marchenko procedure aims to build focusing functions
through an iterative process. The strength of the method is that it only
requires a smooth velocity model of the overburden as prior knowl-
edge. This makes the method well-suited for most seismic applica-
tions. However, the original Marchenko method also presents
restrictions because it cannot handle attenuative media or irregular
free-surface topography. The iterative construction of the focusing
functions is based on the correlation-type one-way reciprocity theo-
rem that is only valid for lossless media (Wapenaar and Grimbergen,
1996). Handling dissipative media within the Marchenko framework
is part of ongoing research (Zhang et al., 2016). A flat free surface
can be incorporated in the originalMarchenko procedure (Singh et al.,
2015) but not a free surface with irregular topography. Note that
a new formulation of the Marchenko scheme was recently proposed
to handle a free surfacewith irregular topography (Ravasi, 2017; Slob
and Wapenaar, 2017), provided that an up/down decomposition of
the wavefield can be performed at the receiver level.
In comparison, the redatuming method that we propose requires a

much more detailed prior knowledge of the overburden. In turn, a
single inversion step allows us to compute the focusing functions
and to account for factors such as attenuation, dispersion, irregular
surface topography, and irregular spatial sampling. Attenuation is
correctly handled because we only rely on convolution-type reci-
procity theorems (Wapenaar and Grimbergen, 1996). Irregular sur-
face topography and irregular spatial sampling are made possible by
the use of a combined two-way/one-way reciprocity theorem (equa-
tion A-5). Note that the irregular spatial sampling has to be consid-
ered within some limits to ensure adequate illumination of the
medium. Minato et al. (2013) discuss how to find optimum illumi-
nation parameters based on an SVD approach to solve the inverse
problem of multidimensional deconvolution. The aperture of the
free surface array also influences the radiation pattern of the virtual
sources at the redatuming level. In practice, the depth of the new
datum should be kept much smaller than the aperture of the free
surface array to ensure adequate illumination of the target area.
The derivation of the one-way reciprocity theorems requires that

no reflector should cross the redatatuming level (Wapenaar and Berk-
hout, 1989, Appendix B). In practice, we do not expect this situation
to generate significant artifacts. Indeed, the same assumption applies
to theMarchenko procedure, and several studies have shown success-
ful reconstruction of virtual sources along redatuming levels crossed
by reflectors (Broggini et al., 2014; Singh and Snieder, 2017). Similar
to the original Marchenko procedure, our redatuming method re-
quires the knowledge of the source wavelet. In all acquired and si-
mulated data, a preliminary deconvolution of the source wavelet is
implicitly assumed in our derivation that only uses Green’s functions.
The extension of the method to 3D acoustic data should be

straightforward; however, the application to elastic data should
be carefully tested. Based on recent progresses in elastic Marchenko
imaging (da Costa Filho et al., 2014; Wapenaar, 2014), we believe
that elastic redatuming could also be achieved. The limitation in the

elastic case would probably come from the ability to have a detailed
knowledge of many more model parameters.

CONCLUSION

We introduced a model-based redatuming technique that cor-
rectly handles surface multiples and internal multiples in the over-
burden. The technique relies on the assumption that a detailed
knowledge of the model parameters is available above the new
datum.
We provided a formal derivation of the redatuming equations

based on convolution-type reciprocity theorems. We also presented
an intuitive graphics-based derivation supported by a matrix formal-
ism. This heuristic derivation allowed us to connect our redatuming
method with the previously developed inverse-filter technique and
Marchenko imaging procedure. The practical implementation of the
redatuming procedure can be summarized as follows:

1) Use numerical simulations to estimate reflection and transmis-
sion matrices of the overburden.

2) Through an inversion step, retrieve the focusing functions that
give rise to downward-radiating virtual sources at the
new datum.

3) Use the initial data set collected at the free-surface and the si-
mulated overburden matrices to compute the surface responses
to downward-radiating and upward-radiating virtual sources at
the new datum.

4) Use the responses to these virtual sources to evaluate the reda-
tumed data set through multidimensional deconvolution.

The redatumed data set corresponds to a virtual reflection response
acquired at the new datum and for which the imprint of the over-
burden is completely removed.
We demonstrated the procedure on two synthetic data sets gen-

erated in 2D acoustic media. The first medium had absorbing side
boundaries to simulate a seismic data set, whereas the other medium
had free-surface side boundaries to simulate an acoustic nondestruc-
tive-testing data set. In both cases, the redatuming procedure al-
lowed us to retrieve primary and multiple scattering events from
targets located below the overburden. The absence of surface multi-
ples and internal multiples showed that the imprint of the overbur-
den was fully removed. The redatumed seismic data set suffered
from finite-aperture effects of the free-surface array, as can be ex-
pected from any other standard redatuming procedure. The reda-
tumed acoustic data set suffered from these limitations much
less because the reflective side boundaries artificially increased
the effective aperture of the free-surface array. We also tested the
technique in the case for which only a smooth velocity model of
the overburden is known as prior information. The method did
not function in that instance because such a smooth prior model
did not allow us to model internal multiples for the construction
of the focusing functions.
This technique requires a more detailed prior knowledge than the

Marchenko imaging procedure to compute the focusing functions.
However, it can provide a more direct way to perform the redatum-
ing in cases for which such detailed knowledge of the overburden is
available. Indeed, the interest of the technique lies in the fact that the
inversion of the transmission matrix automatically generates a focus
free of multiples and compensates for effects such as attenuation,
irregular topography, and irregular spatial sampling.
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APPENDIX A

RECIPROCITY THEOREMS

Consider two independent wave states A and B, defined by
medium parameters ðρA; κAÞ and ðρB; κBÞ and source terms fA
and fB. If inside a volume V enclosed by a surface S, the medium
parameters are the same for state A and state B, a special case of
Rayleigh’s reciprocity theorem (Wapenaar and Berkhout, 1989,
chapter 5.2) gives

I
S

1

ρ
½pA∇pB − pB∇pA�:dS ¼

Z
V

1

ρ
½pAfB − pBfA�dV:

(A-1)

This relation is valid for arbitrary and independent source terms fA
and fB. The medium parameters outside the integration volume V
can also be different for states A and B. By choosing
fB ¼ ρðrÞδðr − r0Þ, with r0 inside V and fA ¼ 0, we obtain the
special case known as the representation theorem:

pðr0Þ ¼
I
S

1

ρ
½pðrÞ∇gðr; r0Þ − gðr; r0Þ∇pðrÞ� · dS: (A-2)

Case with a free surface

Consider a volume V enclosed by a surface S composed of a free
surface and a virtual horizontal boundary S1 at an arbitrary depth, as
represented in Figure A-1a. The coordinate x1 denotes the horizon-
tal position along the boundary S1 and z is the depth coordinate.

Because the pressure vanishes at the free surface and because
the boundary S1 is orthogonal to the z-axis, the reciprocity theorem
(equation A-1) simplifies toZ

S1

1

ρðx1Þ ½pAðx1Þ∂zpBðx1Þ − pBðx1Þ∂zpAðx1Þ�dx1

¼
Z
V

1

ρ
½pAfB − pBfA�dV: (A-3)

This also supposes that the depth of S1 is much smaller than the
medium width, so that the side contributions to the surface integral
can be neglected. By decomposing pA and pB as upgoing and
downgoing wavefields at S1, the left side of equation A-3 can
be expanded into the four following terms:

Z
S1

1

ρðx1Þ ½p
þ
A ∂zp−

B þ p−
A∂zp

þ
B �dx1

þ
�
−
Z
S1

1

ρðx1Þ ½p
þ
B∂zp−

A þ p−
B∂zp

þ
A �dx1

�

þ
Z
S1

1

ρðx1Þ ½p
þ
A ∂zp

þ
B þ p−

A∂zp−
B�dx1

þ
�
−
Z
S1

1

ρðx1Þ ½p
þ
B∂zp

þ
A þ p−

B∂zp−
A�dx1

�
: (A-4)

Assuming that there are no reflectors crossing the boundary S1,
i.e., ∂zρðx1Þ ¼ 0 and ∂zκðx1Þ ¼ 0, the upgoing and downgoing
wavefields are locally decoupled. Using the pressure-normalized
one-way wave equation at S1, it can be shown that the first and
second terms of expression A-4 are equal to each other, and that
the third and fourth terms cancel each other out (Wapenaar and
Berkhout, 1989, Appendix B). The reciprocity theorem can thus
be written as

Z
S1

2

ρðx1Þ ½p
þ
A ðx1Þ∂zp−

Bðx1Þ þ p−
Aðx1Þ∂zpþ

B ðx1Þ�dx1

¼
Z
V

1

ρ
½pAfB − pBfA�dV: (A-5)

This special form of the reciprocity theorem is used in the next sec-
tion to derive equations B-6 and B-9 of the redatuming technique.
The boundary S1 corresponds to the redatuming level, which should
not be crossed by a reflector for the method to be strictly valid.
We also use equation A-5 to derive an identity that is used in the

following. For wave state A, let us consider the case of an impulsive
source fA ¼ ρδðx1 − x1i Þ at a distance ε → 0 above x1i . For wave
state B, an impulsive source fB ¼ ρδðx1 − x1jÞ is located at a dis-
tance ε → 0 below x1j. Assuming that the medium is homogeneous
outside the volume V, equation A-5 simplifies to

Z
S1

2

ρðx1ÞpAðx1Þ∂zp−
Bðx1Þdx1 ¼ −pBðx1i Þ; (A-6)

where we note that p−
Aðx1Þ ¼ 0 and thus pAðx1Þ ¼ pþ

A ðx1Þ. We also
used the fact that fB ¼ 0 in the integration volume V. As epsilon
goes to zero, the wave states A and B become symmetrically equiv-
alent and we have pAðx1j Þ ¼ pBðx1i Þ. We then deduce from equa-
tion A-6 the identity

Volume V Surface S 

Free surface 

x1

S1

x 
z 

Volume V Surface S 

x 
z S1

S2

x1

x2

a)

b)

Figure A-1. Schematic representation of the integration volumes
for the derivation of the reciprocity theorems (a) with a free surface
and (b) without a free surface.
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∂zp−
Bðx1Þ ¼ −

ρðx1Þ
2

δðx1 − x1jÞ: (A-7)

This expression describes the vertical derivative of the upgoing
pressure field just above an impulsive source. A similar expression
is used in the derivation of the pressure-normalized Marchenko
equations by Wapenaar et al. (2014, equation A-8).

Case without a free surface

Consider now a volume V enclosed by a surface S composed of
two virtual horizontal boundaries S1 and S2, as represented in Fig-
ure A-1b. The coordinate x1 (respectively x2) denotes the horizontal
position along the boundary S1 (respectively S2), and z is the depth
coordinate. Because the surface S enclosing the volume V does not
include a free surface, the surface integral needs to be expressed at
S1 and S2. We further assume that there are no sources in the volume
V, so that the reciprocity theorem (equation A-1) simplifies toZ

S1

1

ρðx1Þ ½pAðx1Þ∂zpBðx1Þ − pBðx1Þ∂zpAðx1Þ�dx1

¼
Z
S2

1

ρðx2Þ ½pAðx2Þ∂zpBðx2Þ − pBðx2Þ∂zpAðx2Þ�dx2:

(A-8)

Similar to the previous case, we use the upgoing and downgoing
wavefield decomposition at boundaries S1 and S2. Assuming that
there are no reflectors crossing S1 and S2, we obtain the one-
way reciprocity theorem of the convolution type (Wapenaar et
al., 2014, Appendix):Z

S1

1

ρðx1Þ ½p
þ
A ðx1Þ∂zp−

Bðx1Þ þ p−
Aðx1Þ∂zpþ

B ðx1Þ�dx1

¼
Z
S2

1

ρðx2Þ ½p
þ
A ðx2Þ∂zp−

Bðx2Þ þ p−
Aðx2Þ∂zpþ

B ðx2Þ�dx2:

(A-9)

This relation is used in the next section to derive
equation B-13 of the redatuming technique. The
boundary S1 corresponds to the redatuming level,
and the boundary S2 is virtually located below
the deepest reflector of the full medium.

APPENDIX B

DERIVATION OF THE
REDATUMING EQUATIONS

Definition of the different wave states

We define four different wave states that are
used with the reciprocity theorems to derive
the redatuming equations (Figure B-1). The full
medium is represented in state A, with an irregu-
lar free surface. The original reflection data ac-
quisition is made along the boundary S0 at an
arbitrary depth below the free surface. The boun-
dary S0 can be curvilinear, and the acquisition
spatial interval can be irregular. The positions
of sources and receivers along the boundary S0

are denoted by the coordinate x0. The new datum boundary S1
is located below the overburden and is set to be horizontal. The
positions along the new datum are denoted by the coordinate x1,
and the spatial interval Δx is chosen to be constant. The target area
lies below the new datum S1.
For an impulsive pressure source located at position x0i , the reflec-

tion response Rðx0; x0i Þ ≡ gðx0; x0i Þ is the pressure recorded along x0.
We also define the downgoing (respectively, upgoing) pressure wave-
field at x1 gþ;pðx1; x0i Þ (respectively, g−;pðx1; x0i Þ). By reciprocity
(equation 5), these can be seen as the pressure response at x0i for
an upward-radiating (respectively, downward-radiating) impulsive
source at x1 gp;−ðx0i ; x1Þ (respectively, gp;þðx0i ; x1Þ). These last two
Green’s functions are the ones that we aim to determine to achieve
the redatuming. In summary, we have

fA ¼ ρδðx0 − x0i Þ;
pAðx0Þ ¼ Rðx0; x0i Þ ≡ gðx0; x0i Þ;
pþ
A ðx1Þ ¼ gp;−ðx0i ; x1Þ ≡ gþ;pðx1; x0i Þ;

p−
Aðx1Þ ¼ gp;þðx0i ; x1Þ ≡ g−;pðx1; x0i Þ: (B-1)

Wave states B and C take place in the upper medium that rep-
resents the overburden and that extends from the free surface to the
new datum S1. The medium below the new datum is homo-
geneous. We run two different simulation sets in this upper
medium. For wave state B, an impulsive pressure source is placed
at x0j and the reflection response R

Uðx0; x0jÞ ≡ gUðx0; x0jÞ from S0 to
S0 is recorded along x0. The transmission response TUðx1; x0jÞ ≡
gUjþ;pðx1; x0j Þ from S0 to S1 is also recorded. We have

fB ¼ ρδðx0 − x0jÞ;
pBðx0Þ ¼ RUðx0; x0jÞ ≡ gUðx0; x0jÞ;

∂zpþ
B ðx1Þ ¼ ∂zTUðx1; x0jÞ ≡ ∂zgUjþ;pðx1; x0jÞ;

∂zp−
Bðx1Þ ¼ ∂zgUj−;pðx1; x0jÞ ¼ 0; (B-2)

Target 

Overburden 

State A 

S0 

S1 

R 

x0 

x1 

g-,p g+,p 

 

Homogeneous 

Overburden 

State B 

S0 

S1 

 RU 

TU 0 

x0 

x1 

Overburden 

State C 

Homogeneous 

S0 

S1 

x0 

x1 

 

T1
U 

R1
U 

Homogeneous 

State D 

Target 

S1 
x1 

 R1
L 

a)

b)

c)

d)

Figure B-1. Illustration of wave states A, B, C, and D used in the reciprocity theorems
for the derivation of the redatuming equations.
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where the superscript U denotes quantities computed in the upper
medium. The upper medium being homogeneous below the new
datum, no energy can propagate upward at the redatuming level.
For wave state C, an impulsive pressure source is placed at x1k,

and the reflection response from S1 to S1 in the upper medium
RU
1 ðx1; x1kÞ ≡ gUðx1; x1kÞ is recorded along x1. The transmission re-

sponse TU
1 ðx0; x1kÞ ≡ gUðx0; x1kÞ from S1 to S0 is also recorded. We

have

fC ¼ ρδðx1 − x1kÞ;
pCðx0Þ ¼ TU

1 ðx0; x1kÞ ≡ gUðx0; x1kÞ;
∂zpþ

Cðx1Þ ¼ ∂zRU
1 ðx1; x1kÞ ≡ ∂zgUðx1; x1kÞ;

∂zp−
Cðx1Þ ¼ −ρδðx1 − x1kÞ∕2; (B-3)

where the source is located at a distance ε → 0 below S1. The ex-
pression of ∂zp−

C was derived in the previous section (equation A-7).
We note that to comply with the strictly downgoing character of pþ

C ,
the practical implementation of this step should include the removal
from RU

1 ðx1; x1kÞ of the direct wave that propagates quasi-hori-
zontally.
Wave state D takes place in the objective medium that represents

the target area below the new datum S1. The medium above the new
datum is homogeneous. The redatumed or objective data set corre-
sponds to an acquisition made along S1. For an impulsive pressure
source at x1l , the pressure wavefield measured at x1 forms the re-
flection response RL

1 ðx1; x1l Þ ≡ gLðx1; x1l Þ. We have

fD ¼ ρδðx1 − x1l Þ;
∂zpþ

Dðx1Þ ¼ ρδðx1 − x1l Þ∕2;
∂zp−

Dðx1Þ ¼ ∂zRL
1 ðx1; x1l Þ ≡ ∂zgLðx1; x1l Þ; (B-4)

where the superscript L denotes quantities related to the objective
(or lower) medium. The source is located at a distance ε → 0 above
S1. By antisymmetry with respect to the z-axis, we have
∂zpþ

Dðx1Þ ¼ −∂zp−
Cðx1Þ. Because p−

Dðx1Þ only describes upgoing
wavefields, we expect the quasi-horizontally propagating direct
wave to be absent from RL

1 ðx1; x1l Þ after practical implementation
of this step.

Derivation of the downward-radiating source Green’s
function matrix G�

This matrix represents the surface response at S0 for a virtual
downward-radiating source at the new datum S1. We apply the reci-
procity theorem (equation A-5) to wave states A and B to obtain

Z
S1

2

ρðx1Þ g
p;þðx0i ; x1Þ∂zTUðx1; x0jÞdx1

¼ Rðx0i ; x0jÞ − RUðx0i ; x0jÞ; (B-5)

using the reciprocity relation Rðx0i ; x0jÞ ¼ Rðx0j ; x0i Þ. A discretized
version of this equation can be written as the matrix relation:

GþTU ¼ R − RU; (B-6)

where the matrices R, RU, TU, and Gþ are defined as

fRgij ¼ Rðx0i ; x0jÞ;
fRUgij ¼ RUðx0i ; x0jÞ;
fTUgij ¼ ∂zTUðx1i ; x0jÞ;
fGþgij ¼ 2Δxgp;þðx0i ; x1jÞ∕ρðx1jÞ: (B-7)

We remind here that the boundary S0 can be curvilinear and that
the acquisition spatial interval along x0 can be irregular.

Derivation of the upward-radiating source Green’s
function matrix G−

This matrix represents the surface response at S0 for a virtual up-
ward-radiating source at the new datum S1. We apply the reciprocity
theorem (equation A-5) to wave states A and C, to obtain

− gp;−ðx0i ; x1kÞ þ
Z
S1

2

ρðx1Þ g
p;þðx0i ; x1Þ∂zRU

1 ðx1; x1kÞdx1

¼ −TU
1 ðx0i ; x1kÞ; (B-8)

using the fact that fC ¼ 0 in the integration volume V. A discretized
version of this equation can be written as the matrix relation:

G− ¼ TU
1 þGþRU

1 ; (B-9)

where the matrices RU
1 , T

U
1 , and G− are defined as

fRU
1 gij ¼ ∂zRU

1 ðx1i ; x1jÞ;
fTU

1 gij ¼ TU
1 ðx0i ; x1jÞ;

fG−gij ¼ gp;−ðx0i ; x1jÞ: (B-10)

Derivation of the redatumed reflection response RL
1

This matrix contains the redatumed data set that simulates an ac-
quisition made at S1 and for which the imprint of the overburden is
completely removed. We apply the one-way reciprocity theorem
(equation A-9) to wave states A and D, and we choose a virtual
boundary S2 to be below the deepest reflector of the target area.
Because there is no upgoing energy at this boundary, the one-
way reciprocity theorem (equation A-9) simplifies to

Z
S1

1

ρðx1Þ ½p
þ
A ðx1Þ∂zp−

Dðx1Þ þ p−
Aðx1Þ∂zpþ

Dðx1Þ�dx1 ¼ 0:

(B-11)

We replace the expressions of ∂zpþ
D, ∂zp−

D, p
þ
A , and p−

A to obtain

Z
S1

1

ρðx1Þ
gp;−ðx0i ; x1Þ∂zRL

1 ðx1; x1l Þdx1 ¼ −
1

2
gp;þðx0i ; x1l Þ:

(B-12)

A discretized version of this equation can be written as the matrix
relation:

Gþ ¼ G−RL
1 ; (B-13)

Q12 Planès et al.

D
ow

nl
oa

de
d 

01
/2

9/
18

 to
 1

38
.6

7.
12

9.
10

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



where the matrix RL
1 is defined as

fRL
1 gij ¼ −4ðΔxÞ2 ∂zR

L
1 ðx1i ; x1jÞ

ρðx1i Þρðx1jÞ
: (B-14)

Note that Δx appears squared to compensate for its presence in the
definition of Gþ.
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