
CSIRO PUBLISHING

www.publish.csiro.au/journals/eg Exploration Geophysics, 2007, 38, 189–199

Constraints on coda wave interferometry estimates of source
separation: the acoustic case∗

David Robinson1,2,4 Malcolm Sambridge1 Roel Snieder3

1Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia.
2Risk Research Group, Geoscience Australia, GPO Box 378, Canberra 2601, Australia.
3Center for Wave Phenomena and Department of Geophysics, Colorado School of Mines,
Golden CO 80401, USA.

4Corresponding author. Email: david.robinson@anu.edu.au

Abstract. Synthetic experiments are used to test the applicability of coda wave interferometry (CWI) as a means for
estimating distance between sources of nearby earthquakes. Acoustic waves for 45 sources are propagated through a
Gaussian random medium. A pair-wise analysis of resulting waveforms illustrates the applicability of CWI as a tool for
estimating source separation. Results suggest that, when the waveforms are filtered between 1 and 5 Hz, CWI provides
accurate estimates of the separation for source-pairs separated by δ < 250 m. The technique provides a lower bound on the
actual separation when δ > 250 m. The CWI breakdown distance of 250 m is likely to vary with frequency content in the
waveforms.

The interpretation of CWI source separation estimates is aided by the construction of a conditional probability density
function (PDF) P(δt | δCWI), which describes the probability of actual separation δt for given CWI estimates δCWI. The
conditional PDF provides a constraint on event separation that is asymmetric. It can be used independently of, or combined
with, standard travel-time techniques to improve earthquake location.
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Introduction

Earthquake location is important for many applications. It
indicates regions of relatively higher seismicity such as major
lithospheric plate boundaries or local active source zones.
Earthquake locations are required for magnitude determination,
seismological studies of the Earth’s interior and computing
moment tensors. They are needed to understand strong motion
and seismic attenuation and to model earthquake hazard or risk.

Uncertainty associated with absolute location techniques can
be of the order of several kilometres. For example, Gutenberg
and Richter (1939) considered events with location uncertainties
of up to 2◦ horizontally and 50 km vertically when studying the
velocity of longitudinal waves at depth. More recently, Bondár
et al. (2004) demonstrated that absolute locations are accurate to
within 5 km with a 95% confidence level when local networks
meet several station-related criteria. Such uncertainty is too
large for studying micro-seismicity or re-constructing rupture
surfaces from aftershock sequences.

Relative location techniques calculate displacements
between pairs or groups of earthquakes. In principle, relative
locations can be computed by differencing absolute locations.
However, Pavlis (1992) shows that inadequate knowledge of
velocity structure leads to systematic biases when relative
positions are computed from absolute locations. This is
confirmed by Richards et al. (2006), who state that inaccuracies
in the travel-time velocity model are one of two primary
error sources in absolute earthquake location, the other being
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noise in arrival-time picks. To reduce errors caused by the
velocity model, relative location techniques constrain separation
directly from travel-time differences between phases of two
waveforms (Ito, 1985; Nadeau and McEvilly, 1997). By doing
so, they remove errors associated with unknown lateral velocity
variations outside the local region, because such variations
influence all waveforms in a similar manner (Shearer, 1999).
These techniques have achieved accuracies of the order of
15–75 m in local settings with good station coverage (Ito, 1985;
Got et al., 1994; Waldhauser et al., 1999).

Precise relative location techniques have been applied to a
diverse range of problems, such as the location of active fault
planes (Deichmann and Garcia-Fernandez, 1992; Got et al.,
1994; Waldhauser et al., 1999; Waldhauser and Ellsworth,
2002; Shearer et al., 2005), studying rupture mechanics (Rubin
et al., 1999; Rubin, 2002b), interpreting magma movement
in volcanoes (Frèmont and Malone, 1987), and monitoring
pumping induced seismicity (Lees, 1998; Ake et al., 2005).
Poupinet et al. (1984), Bokelmann and Harjes (2000), and
Rubin (2002a) applied relative location techniques to identify
earthquake doublets, events which occur at different times
but have the same hypocentre and magnitude. Poupinet et al.
(1984) use this information to measure temporal variation in
crustal velocity, Bokelmann and Harjes (2000) use it to identify
systematic temporal variations in seismic anisotropy, and Rubin
(2002a) describes how it can be used to correct for time-
dependent station delays.
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All of these relative techniques are based on calculating
travel-time differences between the first arriving parts of
the waveform. That is, they typically use a cross correlation
between two events to measure delay times between the arriving
P and/or S waves. Information from the remainder of the
waveform, including the coda, is discarded. The term coda
refers to later arriving waves in the seismogram that arise
from scattering (Snieder, 1999). Snieder and Vrijlandt (2005)
demonstrate how coda wave interferometry (CWI) can be used
to estimate source separation between earthquakes using the
cross correlation of their coda waves. By using a different
section of the waveform, the CWI technique has the potential
to supplement other relative location techniques and improve
locations further.

Theory

In CWI one uses variations in coda to constrain the relative
location between two events. The main idea is that when the
source position is perturbed, some ray paths are longer and
some are shorter (Snieder, 2006). This notion is emphasised by
defining the reference waveform, u(t) by

u(t) =
∑

T

AT (t) (1)

and the perturbed waveform, ũ(t) resulting from the displaced
source

ũ(t) =
∑

T

AT (t − τT ), (2)

where τT is the travel-time perturbation on trajectory T and
AT is the trajectory contribution to the waveform. The mean
travel-time perturbation, µτ obtained by integrating over all
take-off angles from the source, vanishes when the scatterers
are distributed homogeneously (Snieder and Vrijlandt, 2005).
Variance of the travel-time perturbation στ is not zero and can
be related to the separation between the two sources. A summary
of the theory follows.

Coda wave interferometry relies on a cross correlation
between two waveforms. The cross correlation is computed for
sliding windows across the entire length of the waveforms. The
parameter of interest, the maximum cross correlation, is taken
over all lag times in the sliding window. This differs from the
relative location techniques which use a cross correlation to
determine the lag time between early onset body-wave phases.
Therefore, the value of the cross correlation is important in CWI
but not in relative location techniques. The normalised cross
correlation used in CWI is

R(t,tw )(ts) =
⌠
⌡

t+tw

t−tw

ui(t ′)ũi(t ′ + ts)dt ′

⌠
⌡

t+tw

t−tw

u2
i (t ′)dt ′ ⌠

⌡
t+tw

t−tw

ũ2
i (t ′)dt ′

, (3)

where ts is the shift time (or lag) and t′ represents the integration
variable. It is used to measure the change between the reference
ui and perturbed ũi displacement at the same recording station
over a time window of length 2tw (Snieder and Vrijlandt, 2005).
Note that R(t,tw )(0) is the correlation coefficient and that the
displacement u can be replaced with other wavefields such
as velocity or acceleration. Snieder (2006) demonstrates how
the maximum of the normalised cross correlation in the time
window is related to the variance of the travel-time perturbation
στ by

R(t,tw )
max (ts) = 1 − 1

2
ω

2
σ 2

τ
. (4)

The square of the dominant angular frequency ω
2 is

ω
2 =

⌠
⌡

t+tw

t−tw

u̇2
i
(t ′)dt ′

⌠
⌡

t+tw

t−tw

u2
i (t ′)dt ′

, (5)

where u̇i represents the derivative of ui with respect to time,
t. The relationship between the source separation δ and στ is
given by

δ2 = g(α, β)σ 2
τ
, (6)

where α and β are P and S wave velocities, respectively. The
function g depends on the type of excitation (explosion, point
force, double couple) and on the direction of source displacement
relative to the point force or double couple. For example, for two
double couple sources displaced in the fault plane,

g(α, β) = 7

(
2
α6 + 3

β6

)

(
6
α8 + 7

β8

) , (7)

whereas, for two point sources in a 2D acoustic velocity

g(α, β) = 2α2 (8)

(Snieder and Vrijlandt, 2005). Note that equations (7) and (8)
assume that sources have comparable source spectra. Practically,
this can be achieved by filtering the waveforms so that the
dominant frequency is less than the corner frequency of both
events. When this criterion is satisfied the source behaves
effectively like a point source in time, and the slip history is a step
function (as seen by the waves with frequency less then the corner
frequency). The importance of a change in orientation between
the double couples when applying equation (7) is discussed by
Robinson et al. (in press).

Method
In order to investigate the range over which CWI can be
applied for estimating source separation, we present a numerical
experiment with the following objectives:

1. Investigate the accuracy of CWI as a function of source
separation. For example, how far apart can a pair of events be
before the CWI breaks down?

2. Compute a conditional probability density function (PDF)
to describe the likelihood of actual separation given a CWI
estimate.

3. Explore the influence of the free surface, which is currently
not considered in the theory, by repeating the experiments at
three different depths.

To achieve these objectives we generate synthetic waveforms
by solving the acoustic (or scalar) wave equation

∂2φ(x, z, t)

∂x2
+ ∂2φ(x, z, t)

∂z2
= 1

α2

∂2φ(x, z, t)

∂t 2
(9)

and apply the CWI theory. We solve equation (9) using a
finite difference (FD) algorithm supplied by Heiner Igel (pers.
comm., 2005, the code originally in MATLAB is re-coded in
Fortran90 to improve efficiency). It is fourth order accurate in
space and second order accurate in time. The model domain
extends 80 km laterally and 40 km in depth and has reflective
boundary conditions on all four boundaries (Figure 1). To avoid
unwanted reflections from the boundaries we define a ‘region
of interest’ with dimensions 20 km by 30 km. Reflections from
the sides and bottom of the model domain arising from events
located within the region will not re-enter it in the time frame of
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Fig. 1. (a) Model domain indicating reflective boundaries as solid lines. The 11 recording stations are
equally spaced along the surface. They are referred to as s1, s2 to s11 from left to right. Reflections from the
top surface represent the free-surface effect, whereas reflections from the bottom, left, and right boundaries
for sources located within the dashed box (‘region of interest’) do not reach the stations within the time
frame of the simulation. A small axes indicates the x and z orientation. (b) Spatial relationship between the
reference (star) and perturbed (circles) sources.

the experiment. Reflections from the top of the model domain
represent the free-surface effect. The grid separation in the
medium is 20 m.

A P wave velocity model is created by computing
a realisation of the Gaussian random media with mean
velocityµα = 6 km−1, correlation length a = 1.2 km and standard
deviation σα = 1.5 km−1. Frankel and Clayton (1986) and
Baig and Dahlen (2004) define Gaussian random media and
provide techniques for creating them. Figure 2 illustrates
the medium.

The scattering mean free path ls of a medium classifies the
strength of scattering. It is the distance required for intensity
to decay to 1/e the value expected in the absence of scattering.
Snieder and Vrijlandt (2005) demonstrate that CWI can be used
to estimate source separation when

ls >> λ, (10)

where λ represents the dominant wavelength of the scattered
waves. Following a treatment similar to De Rosny and Roux
(2001) and Scales and Van Wijk (2001), we define the intensity
in a homogeneous medium by

Ih(x) = Io

2πx
, (11)
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Fig. 2. P wave velocity in a 10 × 10 km section of the Gaussian random
medium.

where x is the radial distance from the source, 1/2πx is the
geometrical spreading factor and Io is a source dependent
intensity term. Note that equation (11) assumes no energy loss
due to absorption. The intensity in the scattering medium is
given by

Ic(x) = Io

2πx
e−x/ls , (12)

where e−x/ls describes the scattering-induced intensity decay.
It follows that the scattering mean free path is related to the
intensities by

Ic(x)

Ih(x)
= e−x/ls . (13)

A scatter plot of decay in intensity for heterogeneous, Ic(x)
versus homogeneous, Ih(x) propagation is provided in Figure 3
for all grid points. Intensities Ic(x) and Ih(x) are approximated
by max{u2(t)}t . The yellow line represents the standard least-
squares fit to ln(Ic(x)/Ih(x)) versus x. It is influenced strongly
by data at larger distances from the source at the expense of
closer grid points. This leads to a poor fit at short distances. The
problem occurs because the number of grid points located on the
circumference of a source-centred circle grows with r (i.e. there
is more data at greater distances). The red line represents the best
fit when a weighted least-squares algorithm is chosen with data
weights defined by 1/r. This approach results in an improved fit
at shorter distances. The slope of the red line is used to define the
mean free path ls in the medium (i.e. from equation (13)). The
mean free path is 7.3 km. Note that intensity and hence ls depend
on frequency content of the waveforms and will therefore vary
with filtering.

Three reference events are defined at different depths in the
model domain. The event depths are denoted shallow, mid, and
deep corresponding to increasing depths with respect to the mean
free path. The shallow reference source is buried at a depth of
0.4ls (or 3 km), the mid source 0.7ls (or 5 km) and the deep source
2.1ls (or 15 km). Applicability of the CWI technique is tested
by considering perturbations from each of the three reference
sources.

All sources are modelled as line sources perpendicular to the
model domain with source time functions defined by a Ricker
wavelet of form

s(t) = (
1 − 2π 2f 2

o
(t − to)2

)
e−π 2f 2

o (t−to)2

, (14)
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Fig. 3. Scatter plot showing the logarithm of relative decay in waveform
intensity between homogeneous and heterogeneous propagation (y-axis)
versus the distance in metres from the source location (x-axis). The
intensities Ic(x) and Ih(x) represent the intensity in the heterogeneous and
homogeneous velocity models, respectively. Error bars indicate the mean
and standard deviation (tails) of intensity ratio ln(Ic(x)/Ih(x)) when the data
is sorted into distance bins of width 3 km. The yellow line represents a
standard least-squares fit and the red one a least-squares fit with data weights
defined by 1 over the radial distance from source. The mean free path ls
of the medium is computed from the red line’s slope. That is, we favour
the data at short distance when computing ls . Data at greater distances are
more likely to be effected by artificial reflections from the boundaries of the
model domain.

with dominant frequency, f0 = 8 Hz and time delay, t0 = 0 s.
The time step used in the finite difference calculation is
defined by

�t = �x

2αmax

, (15)

where �x = 20 m is the grid separation and αmax is the maximum
velocity in the medium. Note that equation (15) satisfies the
Courant, Friedrichs, Lewy (CFL) condition (Courant et al.,
1928). This ensures that the propagating wave cannot travel more
than one half of any cell within a single time step, which is a
necessary condition for the stability of the simulation. Reference
waveforms are computed at stations S1 to S11 (see Figure 1) for
each of the 3 reference events.

Perturbed sources are defined at progressively increasing
distances from each reference source in a diagonal direction
towards the upper right corner of the model domain (Figure 1).
They are defined at equi-distant grid separations (from the
reference source) in the positive x- and negative z- directions
of 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, and 28 grid
points, corresponding to actual separations of 57, 113, 170, 226,
255, 283, 311, 339, 368, 396, 424, 453, 566, 679, and 792 m,
respectively. The finite difference software is used to generate
waveforms at stations S1 to S11 for all perturbed sources
resulting in 11 waveforms for each of the 15 perturbations
from the 3 reference sources (i.e. a total of 495 perturbed
waveforms). Note that the same source time function is used
for all simulations.

Results

Coda wave interferometry source separation theory is applied
to sliding windows of length 0.75 s for each of the reference-
perturbed pairs on a station-by-station basis for all pairs
sharing the same reference depth. This analysis results in
roughly 14 station specific estimates of separation (a total of
154 estimates of separation across all stations) for a given
perturbation - source depth.

The acoustic wave propagation is illustrated in Figure 4
with six snapshots in the ‘region of interest’ for the mid depth
reference source. Recall that the mid depth corresponds to
roughly 0.7ls and represents an actual depth of 5 km. The
direct wave (outermost arc) and the reflection from the free
surface (innermost arc) are clearly depicted. Strong scattering
is observed by the colour variation following each of the
major arcs. Coda wave interferometry theory does not explicitly
consider reflections from the free surface. The decision to
repeat numerical experiments at three depths is motivated by the
strength of the surface reflection in Figure 4 and the unknown
influence that it could have on CWI separation estimates.

Recording station S6 is represented by the triangle in Figure 4
and the associated waveform is shown in the top panel of
Figure 5a in blue. The red waveform is computed at the same
station when the event is perturbed by �x = 8 and �z = 8 grid
cells (i.e. roughly 226 m) in the manner described in Figure 1.
The second panel of Figure 5a emphasises the similarity of the
first arrivals (left) and differences between the coda (right) for
the reference and perturbed sources. The high level of similarity
between direct arrivals would not be observed if the source
properties varied significantly.

The third panel illustrates the maximum cross correlation and
the fourth panel the actual (blue dashed) and CWI computed
(green solid) separation. Note that the waveforms are filtered
between 1 and 5 Hz using a Butterworth filter before calculating
the maximum cross correlation and source separation.

Figure 5b illustrates the corresponding data when the
reference and perturbed sources are moved to the deep location.
This depth corresponds to roughly 2.1ls (equivalent to 15 km).
As with the mid depth, the figure illustrates similar direct arrivals
and different coda. The third panels of Figures 5a and b illustrate
a high level of maximum cross correlation for early windows,
which is associated with the similarity of the first arrivals. This
high correlation is followed by a decay as the sliding windows
move further into the coda.

For the middle source depth the maximum cross correlation
flattens and fluctuates between 0.7 ± 0.1 for sliding window
centroids exceeding 2 s. The CWI separation estimates for the
mid depth are shown in the fourth panel of Figure 5a. These
start at zero and increase until sliding window centroid 2 s, after
which they fluctuate around the actual separation of 226 m.

The underestimation of separation for initial sliding windows
occurs because the waves reaching the receiver at early times
result from scattered waves that have not propagated in all
directions from the source (Snieder and Vrijlandt, 2005). That
is, more time is required for those waves that began their
propagation away from the receiver to be scattered back towards
it. Snieder (2004) explains how fluctuations in the separation
estimates can be related to cross terms that are ignored in
the CWI theory. The influence of these cross terms decreases
with increasing sliding window size. However, a larger window
size leads to fewer independent estimates of separation. A
preliminary investigation revealed that a window length of 0.75 s
provides a healthy balance between fluctuation and the number of
independent separation estimates for these synthetic waveforms.
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Fig. 4. Snapshots of the modelled scalar potential φ in the region of interest for the mid reference event at times (a) 0.1,
(b) 0.5, (c) 1, (d ) 2, (e) 4, and ( f ) 6 s. The S6 receiver location is illustrated by the triangle. Note that the colour map is
re-scaled in each snapshot to assist visualisation of φ throughout the entire model domain. The corresponding φ at receiver
location S6 is shown as a function of time in blue in Figure 5a.

For the deep source (Figure 5b), the maximum cross
correlation decays until 5.8 s and then increases again. The
separation estimates (panel 4) start low, rise to the actual
separation and then decrease for sliding windows where the
maximum cross correlation is increasing. The cause of this
turning point is not clear. Preliminary investigations have
suggested that it is neither related to artificial boundary
reflections nor local anomalies. In summary, the CWI
performs marginally worse for deeper sources than it does for
the mid one.

Figure 6 illustrates separation estimates as a function
of running window centroid for six of the perturbations.
The estimates are illustrated in subplots Figure 6a–f for
perturbations of 57, 170, 226, 255, 311, and 424 m, respectively.
The three panels in each subplot represent the shallow (top), mid
(middle) and deep (bottom) sources. The estimated separation
from each of the 11 stations is plotted as a thin grey line, the
mean separation across all stations in thick green and the actual
perturbation in dashed blue.

Subplot 6a illustrates a clear scatter in station specific
estimates. The mean separation estimate for the shallow and
deep depth configurations are accurate, but the separation

estimates for the mid reference depth is biased above the actual
separation. Preliminary studies with other realisations from the
same Gaussian random medium have indicated that this bias is
related to a local anomaly.

The format of Figure 6a is repeated for increasing
perturbations from 170 m in Figure 6b to 424 m in Figure 6f.
The scatter of the grey station specific estimates is evident
for all perturbations and source depths. The mean estimates
for the shallow sources are close to the actual separation
for all perturbations less than 226 m. They are less than the
actual separations for perturbations of 255 m and higher. For
perturbations between 170 and 255 m the CWI separation
estimates perform well for the mid depth, but thereafter the
technique under-estimates the actual separation. For the deep
sources there is a turning point in the separation estimate
for actual perturbations greater than 57 but less than 311 m.
Generally, the deep CWI values under-estimate the actual
separation.

On average the estimates for the deep sources are marginally
lower than the actual separation. Estimates for the shallow
and mid sources are accurate for actual separations less than
255 m. However, there is a small upper bias in the mid depth
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Fig. 5. CWI estimates in medium 1 for a perturbation of 226 m at (a) mid and (b) deep source depths. In each
case the top panel illustrates the reference (blue) and perturbed (red) waveforms (φ) at S6 after normalisation
to amplitude 1. The blue horizontal line represents the sliding window length used to compute the cross
correlations. The left box surrounding the direct arrival and the right box surrounding a section of coda
are shown in more detail in the second panel. The third panel displays the maximum cross correlation as a
function of sliding window centroid and the fourth panel illustrates the estimated separation (green) and actual
separation (blue).

configuration for actual separations less than 170 m. There is no
evidence in this experiment to suggest that the free surface has a
detrimental effect on CWI source separation estimates. Rather,

the poorer performance of CWI for determining separations at
the deep focus suggests that there may be limits to the acceptable
source-to-station distance. We return to this point later.
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Fig. 6. Separation estimates for medium 1 as a function of sliding window. The 11 thin coloured lines represent CWI estimates
from the 11 synthetic stations, the thick green line indicates the mean from all stations, and the dashed blue line the true
separation. Three rows are shown in each subfigure to represents the shallow (top), mid (middle) and deep (bottom) source
experiments. Note that the y-scale is consistent for each row of a subfigure but varies between subfigures.

Separation estimate error bars are illustrated in Figure 7 for
all perturbation depth combinations. The error bars confirm
that CWI separation estimates are accurate for perturbations
up to ∼250 m. When the actual separation exceeds 250 m
the CWI estimates continue to fluctuate around 250 m. Such
error bar plots assist us by illustrating when CWI estimates
of source separation breakdown. However, they offer little
practical benefit in interpreting CWI estimates from real
observations because the actual separation is rarely known.
For this purpose it is convenient to represent the results
of the synthetic experiments with a conditional probability
density function, P(δt | δCWI) which describes the probability
density of actual separation δt given the CWI separation
estimate δCWI.

The conditional PDF P(δt | δCWI) is obtained by the following
procedure:

1. Combining estimates for all three depths to give a single error
bar for each perturbation (Figure 8).

2. Selecting a CWI estimate of interest (e.g. the red dashed line
at δCWI = 200 m in Figure 8).

3. Evaluating the probability density at each of the actual
separations by assuming that its associated error bar defines
a normal distribution for P(δCWI | δt ). This assumption is
supported by the histograms of δCWI at δt = 226 and 311 m
in Figure 8.

4. Fitting a smooth curve through the probability density
estimates obtained in Step 3 using cubic splines and re-
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normalising the data so that the area under the curve
integrates to 1.

5. Repeating Steps 1 to 4 for all δCWI of interest.

The black, blue and red lines in Figure 9 illustrate
P(δt | δCWI) for δCWI of 50, 100, 150, 200, 250, 300, 350, and 400 m
when all stations, the single station S1 and stations S1 to S5 are
considered, respectively. Probability density peaks are observed
in each conditional PDF around the CWI estimate for δCWI of
50, 100, 150, and 200 m. This implies that the CWI separation
estimate is more likely to be around the actual separation
than not. For δCWI = 250 m the peak when all stations are
considered is only just noticeable and for estimated separations
greater than 300 m the peak occurs at separations exceeding
the estimate. Contrastingly, the peak remains more prominent
when the single station S1 or stations S1 to S5 are considered.
This observation provides further support for the suggestion
that there is a limit to the source-to-station distance because
stations S6 to S11 are further from the source than station
S1 to S5.

It is worth reflecting on the primary difference between
Figures 8 and 9. Figure 8 demonstrates that CWI estimates are
accurate for actual separations up to 250 m. However, Figure 9
demonstrates that if the CWI estimate is 250 m there is roughly
equal probability that the actual separation is any where between
250 and 800 m. The situation worsens for δCWI = 400 m where
the probability density suggests that the actual separation is
more likely to be 500 m. This observation, hereafter termed
the rising phenomena, should be interpreted with care because
calculation of the conditional PDF for larger δCWI is dominated

0 200 400 600 800
0

200

400

600

800

dt (m)

shallow source

mid source

deep source

d C
W

I (
m

)

Fig. 7. Separation estimates after Butterworth filtering between 1 and
5 Hz. An individual error bar represents the mean (central circle) ± 1
standard deviation (tails). For each perturbation-depth combination there
are 11 stations with 14 sliding windows, amounting to 154 separation
estimates. The first five computed separations for each station are removed
to ensure that initial estimates, demonstrated to under-estimate the actual
separation, are ignored. That is, a total of 99 estimates are used to compute
each error bar. The error bars are plotted as a function of increasing
perturbation (or actual separation) and are shown in green, blue, and red for
shallow, mid and deep sources, respectively. The shallow (green) and deep
(red) error bars have been translated to the left and right, respectively to
assist visualisation.

by small probability densities computed from tails of the normal
distributions (i.e. error bars in Figure 8).

Figure 10 represents the 2D conditional PDF obtained
by repeating Steps 1 to 4 for CWI estimates at increments
of 2 m and re-normalising all density estimates so that the
volume underneath the surface integrates to 1. Concentration
of probability density around the diagonal line occurs when
the CWI estimate is close to the actual separation. For
example, concentration in the lower left corner confirms the
accuracy of CWI at short distances. A second concentration
located to the right of the diagonal for δCWI > 300 m is
related to the rising phenomena described above. Even
when the CWI estimates are 400 m the 2D conditional PDF
tells us something about the probability density of different
actual separations.

An alternative view of the 2D PDF is given by Figure 11,
which illustrates probability that the CWI estimate is within
±30 m of the actual separation. For low CWI estimates of around
60 m there is a probability of 0.5 that the estimate is within
±30 m of the actual separation. For estimated separations of
100, 150, and 200 m there are probabilities of 0.39, 0.18, and
0.11 that the estimated separations are within ±30 m of the actual
separations, respectively. Figure 11 suggests that the best result
over the broadest range of event separations is achieved when
stations S1 to S5 are considered.

Discussion

We use synthetic experiments to explore the range of
applicability of CWI for determining the separation between
pairs of earthquakes. A finite difference solver is used
to model acoustic wave propagation in a 2D velocity
model for line sources at increasing separations from one
another. We have shown that CWI is most sensitive in the
range 10–200 m and that accurate estimates of separation
can be attained from a single station. This has the
potential to provide further constraint on relative locations
that are independent of arrival-time data. We anticipate
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Fig. 8. Separation estimates when data from all depths are aggregated. The
error bars follow the same format as those described in Figure 7. The dashed
red line demonstrates the choice of a fixed δCWI in step 2 of the process
to compute P(δt | δCWI). Histograms illustrate that the distribution of δCWI

is normal at δt = 226 m (bottom) and δt = 311 m (top), a requirement at
step 3.
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Fig. 9. Conditional probability density function P(δt | δCWI) for actual separation δt given CWI
separation estimates δCWI of (a) 50 m, (b) 100 m, (c) 150 m, (d ) 200 m, (e) 250 m, ( f ) 300 m, (g)
350 m and (h) 400 m. Black, blue, and red curves represent P(δt | δCWI) when all stations, the single
station S1 and stations S1 to S5 are used, respectively. The y-axis scale is omitted because each cross
section of the conditional PDF is amplitude-normalised to emphasise its major features.

that the incorporation of CWI techniques will lead to
improved accuracy when used in tandem with existing relative
location techniques.

Potential applications of CWI to relative earthquake location
problems include reconstruction of fault geometry by relocating
aftershocks. Snieder and Vrijlandt (2005) demonstrated the
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Fig. 10. Two-dimensional view of P(δt | δCWI).
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Fig. 11. Probability that CWI separation estimate is within 30 m of actual
separation.

successful application of CWI for estimating the source
separation between 3 pairs of events on the Hayward Fault,
California. In this case, the CWI separation estimates (obtained
from single stations) compared well with estimates from the
double difference technique of Waldhauser and Ellsworth
(2002) (which required the use of multiple stations). The
event pairs considered had separations between 50 and
150 m. Another potential application of CWI includes the
analysis of microseimicity. It is common for many events to
occur at small separations from one another in microseismic
sequences. For example, an analysis of the 4357 events
studied by Ake et al. (2005) Paradox Valley, Colorado reveals
that all events occur in a volume 3(NS) × 6(EW) × 2(depth)
km and that there are 370 000 pair-wise separations less
than 250 m.

We show that the PDF of interest P(δt | δCWI), the conditional
probability of the true separation δt given the CWI separation
estimate δCWI, is asymmetric. This implies that CWI estimates
cannot be used with a quadratic penalty function as in a
standard least-squares approach. Rather, the entire shape of
the conditional PDF must be considered, something that can
be achieved via maximum likelihood or Bayesian inversion
algorithms (Mosegaard and Sambridge, 2002; Aster et al., 2005).

The velocity model used in the experiments has been chosen
to produce a high level of scattering. Perturbations in the

velocity model exceed that which is expected in the crust
and the wave propagation is simplified by ignoring second
order effects such as velocity gradients and layering. We show
that even in such idealised conditions the CWI technique is
limited to providing a lower bound for the true separation of
events that are separated by more than 250 m. Preliminary
investigations in other random media suggest that the 250 m cut-
off is controlled by the dominant frequency of the waveforms and
not the perturbation size of the random medium. The dominant
frequency of the waveforms will depend on the nature of the
earthquake sources and the scattering properties of the medium.
However, filtering can control it and there is no need to have prior
knowledge of the velocity perturbations when applying CWI.
Consequently, CWI can provide accurate estimates of separation
at marginally greater distances by filtering the waveform to
smaller frequencies (larger wavelengths).

The experiments provide no evidence to suggest that the free
surface effect adversely influences CWI estimates. However, we
detect a tendency for CWI to under-estimate the true separation
as the source-to-station distance increases. Further work is
required to quantify a relationship between CWI performance
and the ratio d/ls where d is the source-to-station distance and ls
the mean free path of the medium.

Conclusion

We use numerical experiments to demonstrate that for
waveforms filtered between 1 and 5 Hz, coda wave
interferometry is accurate for source separations of 250 m
or smaller. Further work is required to quantify how the
cut-off value of 250 m varies with frequency content in the
waveforms and how the applicability of CWI depends on the
source-to-station distance. Separation estimates from CWI are
independent of arrival-time information and they do not require
data from multiple stations. The synthetic experiment provides
no evidence to suggest that the free surface has an adverse
effect on the ability of CWI to estimate source separation.

We show how to compute the conditional probability density
function (PDF) of actual separation given a CWI estimate. The
computed conditional PDF provides a convenient mechanism
for interpreting CWI separation and in addition, can be used as
the basis for relative earthquake location.
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