
Geophysicists are often concerned with reconstructing
subsurface properties using observations collected at or
near the surface. For example, in seismic migration, we
attempt to reconstruct subsurface geometry from surface
seismic recordings, and in potential field inversion, obser-
vations are used to map electrical conductivity or density
variations in geologic layers. The procedure of inferring
information from indirect observations is called an inverse
problem by mathematicians, and such problems are com-
mon in many areas of the physical sciences. The inverse prob-
lem of inferring the subsurface using surface observations
has a corresponding forward problem, which consists of
determining the data that would be recorded for a given sub-
surface configuration. In the seismic case, forward model-
ing involves a method for calculating a synthetic
seismogram, for gravity data it consists of a computer code
to compute gravity fields from an assumed subsurface den-
sity model. Note that forward modeling often involves
assumptions about the appropriate physical relationship
between unknowns (at depth) and observations on the sur-
face, and all attempts to solve the problem at hand are lim-
ited by the accuracy of those assumptions. In the broadest
sense then, exploration geophysicists have been engaged in
inversion since the dawn of the profession and indeed algo-
rithms often applied in processing centers can all be viewed
as procedures to invert geophysical data.

Uncertainty in the information obtained from inverse
problems is a central issue in many areas of science. In
exploration and production geophysics in particular, the
uncertainty surrounding the information retrieved from
measurements that are inherently limited, incomplete, or
redundant is the driver in making sound business decisions
(Scales and Snieder, 2000), and as such assumes a central
role in many studies. In global geophysical problems such
as whole-earth seismology, the stakes are usually not mon-
etary, but the implications of basing scientific judgment on
the ambiguous or nonunique results of an inverse problem
are not less important.

Rather than addressing uncertainty explicitly, however,
geophysicists usually prefer to build models that fit the data
to some acceptable level. In this case uncertainty is regarded
as a measure of how far the preferred model is likely to be
from the truth. A simple example where this is valid is lin-
ear regression (fitting straight lines through scattered x,y
data). In regression problems a pair of error bars on each
estimated unknown (e.g., the slope and gradient) repre-
sents their statistical uncertainty given the “known” errors
in the data. Closely related to regression problems are lin-
ear discrete inverse problems, i.e., ones where the number
of unknowns is fixed and the mathematical relationship
between data and unknowns is linear. (Note that many
exploration problems are either linear or are approximated
as linear inverse problems. For example, techniques based
on seismic ray theory fall into this category, e.g., traveltime
inversion, if the dependence of raypaths on the seismic
wavespeeds is ignored.) For linear discrete inverse problems,
well-known techniques can be used to obtain the standard
deviations (or errors) of each parameter (Menke, 1989;

Tarantola, 2005; Aster et al., 2005). There is, however, no gen-
eral theory to characterize the uncertainty in nonlinear
inverse problems (Snieder, 1998). The latter arise when sim-
plifying assumptions on the relationship between data and
unknowns are dropped, e.g., if we recalculate seismic ray-
paths every time the wavespeed model is updated in trav-
eltime inversion.

Characterizing uncertainty. We present examples from
global seismology that capture some essential features of the
characterization of uncertainty in geophysical inverse prob-
lems. Figure 1 shows a set of models of shear velocity in the
upper mantle that fit a certain set of group velocity mea-
surements of the fundamental-mode Rayleigh wave (a sur-
face seismic wave confined to the vertical plane between
source and receiver and sensitive to earth structure in the
outer few hundred kilometers of the crust and lithosphere)
(Douma et al., 1996). One might be tempted to characterize
the uncertainty in this model by computing the standard
deviation of this population of models at every depth. This
approach is, however, flawed, because the variance of the
population changes as the model parameterization is
changed; a model with thinner layers allows for larger vari-
ations in the velocity. Moreover, characterizing the uncer-
tainty by the variance only does not account for the trade-offs
that are present in this population of models; a high veloc-
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Figure 1. An ensemble of models obtained from a Monte Carlo search
that fit measurements of the Rayleigh-wave group velocity within the
error bounds.



ity at a certain depth is, in general, associated with a lower
velocity at adjacent depths.

The characterization of uncertainty is even more diffi-
cult to handle for models that represent a two- or three-
dimensional field, as arises in tomographic problems. In that
case displaying the variance constitutes a nontrivial visu-
alization problem. One strategy is to adopt a color scheme
based on hue-saturation-brightness (HSB) values. Hue and
saturation can be used to represent the model value itself,
with the brightness controlled by the width of the confidence
interval. This conveys a visual impression of uncertainty
through the intensity of the image, which can be intuitive.
Alternatively image-processing techniques might be used
to blur an image with a chosen filter whose width depends
on the uncertainty value (Johnson, 2003). The space-filling
option would be to display scalar uncertainty estimates as
a separate image to accompany each tomographic slice
shown. All of these techniques have been used with vary-
ing success. Visualization of simple scalar estimates of uncer-
tainty is, however, rather limited since the correlation of
errors between estimated parameters (described by off-diag-
onal elements of a model covariance matrix) as well as the
trade-off between the parameters themselves (described by
a resolution matrix) are not well characterized by simple
error bars. (See Figure 2 and Box 1 for an explanation of
model covariance and model resolution matrices.)

Visualizing sensitivity. Box 2 together with Figure 3 explain
the concept of nonuniqueness in an idealized three-para-
meter linear inverse problem in terms of how data misfit
varies as a function of the model parameters. The idea of
directly visualizing the sensitivity of data fit to model para-
meters can be useful in some real problems also, i.e., by
examining how data fit varies in the vicinity of a preferred
solution model. If a least-squares misfit criterion is used to
measure data fit then it can (in principle) be “mapped out”
by repeated forward solutions either along axes passing
through the “best fit” solution, or across 2D planes centered
about a pair of parameters in the solution. Figure 4 shows
some examples. Each colored dot is the result of a forward
calculation with one or two variables perturbed from the
preferred solution in parameter space. The height and color
of the dot represents the fit to data with higher values indi-
cating a worse fit. If the data model relationship were lin-
ear, each “slice” would have a simple quadratic shape. The
minimum in the data misfit surface indicates the best data-
fit model. If this is at a single unique point, then the inverse
problem is said to have a global unique solution. In this case
the curvature of the surface at the solution determines the
model covariance and resolution matrices routinely calcu-
lated in discrete linear inverse problems (Menke, 1989;
Tarantola, 2005). However if the lowest data misfit value lies
in an extended flat region, or perhaps in a long, narrow val-
ley (as in panel D of Figure 4), then there is no unique solu-
tion and the problem is said to be “ill-posed.” Since the shape
of the misfit surface controls the relative degree of con-
straint placed on each parameter, trade-offs between pairs
of parameters can be detected by examining contours of the
data misfit, with long narrow valleys suggesting strong
trade-offs between corresponding variables. This process of
mapping out the misfit function in the vicinity of a solution
is not restricted to linear problems and can be illustrative
in nonlinear cases as well. Figure 4 shows an example of the
least-squares data misfit used in a problem of seismic
receiver function inversion. (A process whereby seismic
shear wave speeds in beneath a recording station are
inverted for, using a “transformed” three-component seis-

mogram at the surface.) In this particular case the 24
unknowns represent a 1D shear wave velocity profile as a
function of depth beneath a seismic station. The data mis-
fit measures the difference between predicted and observed
seismic waveforms at the surface. This is a nonlinear prob-
lem, which is clearly seen in the complex nature of the mis-
fit function near the solution.

If the computational burden of the forward problem is
high, the mapping out process may become rather costly and
even impractical in some cases. However, since each forward
solution is independent, one can take full advantage of mod-
ern cluster computing hardware, or large parallel comput-
ing facilities. Indeed for moderately sized problems and with
appropriate software it is quite possible to interactively visu-
alize such misfit surfaces in real time. (The software which
generated Figure 4 did this across a networked set of desk-
top PCs, using a freely available software toolkit written in
the Java programming language.) In this case repeated solu-
tions of the forward problem in parallel show the limitations
of linearized estimates of uncertainty (e.g., see Aster, 2005),
which require that the misfit in the immediate vicinity of the
solution is representative globally.

Characterizing the trade-off. Douma et al. (1996) used prin-
cipal-component analysis to compute the patterns of vari-
ability that are hidden in the population of earth models in
Figure 1. This approach is useful when the population mod-
els form one cluster, as in the example of Figure 1.

A popular approach in tomographic problems are check-
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Figure 2. An example of a model covariance matrix (left) and six rows of
a model resolution matrix (right) for an inverse problem with 24 parame-
ters. On the left, blue indicates positive covariance values, and red indi-
cates negative ones. On the right, the number in the box identifies the
parameter index. Each column height represents the resolution value. The
arrow shows where the row crosses the diagonal of the resolution matrix.
For rows corresponding to well-resolved parameters, we expect to see a
dominant column at the position of the corresponding arrow. (See Box 2).

Figure 3. A visualization of the concept of nonuniqueness in a three-
parameter linear inverse problem. See Box 2 for details.



erboard or spike tests whereby a synthetic
input model (i.e., forward-modeled pre-
dictions based on a known set of para-
meters) is reinverted for. Comparison of
input and output models gives an impres-
sion of likely blurring effects and length
scales of resolvability. This technique has
its critics, but interestingly it is essentially
a discrete version of one advocated by
Parker (1994) as a way of estimating resolv-
ing widths in a 1D continuous inverse prob-
lem (see Figure 4.02a of Parker, 1994).

In general, uncertainty estimation is
complicated when the inverse problem is
nonlinear, data noise characteristics are
poorly known, model parameterization is
inadequate, and approximations in the for-
ward theory are present. Seismologists
have to grapple with all of these issues and
are expected to convey meaningful uncer-
tainty estimates to their peers through visu-
alization.

Changing the parameters. A commonly
used heuristic procedure to estimate the
effect of uncertainty arising from choices
made in parameterization and regulariza-
tion is to perform repeated inversions with
these factors varied between runs. A qual-
itative estimate of the robustness of con-
structed models is made by comparing the
results of different inversions. An example,
taken from the field of global seismology
(Beghein and Trampert, 2003), shows how
this can fail even if the problem is linear. Here three depen-
dent variables (α, β, and η), which characterize seismic
anisotropy in earth’s inner core, are constrained by normal
mode data. The upper and middle panels of Figure 5 show
the result of two linearized inversions using various levels of
damping. (Mathematicians know damping as regularization
and use it to stabilize inversion of ill-conditioned matrices. In
geophysics, this often takes the form of imposing additional
a priori information, such as smoothness constraints.) The
model shown in the upper panel of Figure 5 is heavily damped,
the model in the lower panel less so. The lack of change in the
constructed models might tempt a conclusion that the model
uncertainty is small in the deepest layers. This is, however,
not so. It turns out the data have little sensitivity to structure
in the deepest layers (none at the center of the earth) and the
regularization has forced the variation to nil. The lowest panel
in Figure 5 shows the results of a model space search using
the Neighborhood Algorithm, a new automated parameter
search technique which seeks out regions of model space
where data fit is high and concentrates sampling there. The
solid lines in Figure 5 show variability spanned by twice the
standard error in the family of models found which were
compatible with the data. In the upper regions of the model
the results are similar to the lightly damped linear inversion
but at the base the spread is large, confirming that the nor-
mal-mode data poorly resolve earth structure there, and uncer-
tainty should be large, not small as suggested by the “tweak
it and see” strategy. The models in the new ensemble are also
compatible with independent traveltime data which are sen-
sitive to the deepest part of the alpha model. This example
shows the problems that can occur in using simple “bootstrap”
type estimates of uncertainty on regularized solutions of ill-
posed inverse problems.

Posing questions to data. In investigating a complex geologic
problem, like the origin of seismic anisotropy below a conti-
nent, perhaps the best approach mixes the intuitive with the
formal, and the graphically clever with the explicit. In our view
the essence of an inverse problem is about asking questions
of data, rather than constructing models per se. Hence uncer-
tainty estimates are only useful if we know how they alter deci-
sions or interpretations drawn from the data. Simons and van
der Hilst (2003) take this view in a study of upper mantle
anisotropy beneath Australia. Here the crucial question is:
Are the directions of seismic anisotropy (the fast axes, shown
as black sticks in Figure 6) aligned with the absolute plate
motion or not? Oddly, “absolute” plate motion is a relative
concept. Assuming hot spots to constitute a fixed reference
frame for the movement of the earth’s lithospheric plates is
not without detractors. But requiring the net rotation of all
lithospheric plates to be zero reflects mantle strain under only
certain restrictive assumptions. The (lack of) alignment of seis-
mic anisotropy in either reference frame, hot spot (HS), or no-
net-rotation (NNR), may help us “decide” which is most
physically plausible and supported by the data.

The lower panels of Figure 6 show histograms of the angu-
lar difference between anisotropy and HS (gray bars) and
NNR (red squares) plate motion directions, as a function of
depth. The flat slopes above 140 km depth suggest anisotropy
is not aligned with absolute plate motion here, in either ref-
erence frame; below it, the opposite appears to be true. The
hot-spot reference frame (gray) is supported over the no-net-
rotation frame (red): Its histograms are more peaked at the
zero angle indicating perfect alignment. How are these con-
clusions affected by uncertainty? It is nearly impossible to
assign a significance to the difference in steepness in the his-
tograms. The directions of anisotropy are the result of a mul-
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Figure 4. Exploring data fit about a single solution in the seismic receiver function problem.
Here a 24-dimensional parameter space is explored in real time using interactive software. The
top panels show the variation of data misfit along three axes through a solution. In each case the
optimum model lies at the misfit minimum (marked with an arrow). Behavior can be multi-
modal and the data misfit may even contain discontinuities (as in cases b and c) indicating
strong nonlinearities in the inverse problem. Panels d–f show 2D data misfit surfaces. Height
and color represents increased data misfit. This type of repeated forward modeling combined
with interactive visualization can help determine the degree of constraint placed on parameters,
show trade-offs and assess the nonlinearity of the problem. Real time rotation of “dot” figures,
such as those in d–f creates a clearer impression of the the misfit surface than can be displayed in
the “snapshot” figures shown here.



titude of inversion steps, starting from the individual wave-
forms of many thousands of seismograms, inverted nonlin-
early for path-average structure, culminating in a
three-dimensional model which is a result of a linear inver-
sion of all the path constraints. Along the way, choices about
parameterization were made, damping factors chosen, sub-
jective errors of “what fits” are assigned, etc. Averitable night-
mare of uncertainty for any decision-maker.

Simons and van der Hilst (2003) address this question by
experimenting with synthetically generated data which mimic
the hypothetical truth as closely as possible (see their Figure
5). Working back from what they want to conclude (Is the deci-
sion sound? Can we tell the cases apart? Which is best sup-
ported by data?), they test out various what-if scenarios. They
calculate forward models based on known input models, re-
invert the synthetic data, and compare the effect on the his-
tograms directly. This, they do for a variety of random noise
levels on the input data. It appears that in Australia, the data
do allow them to determine the difference between the two
reference frames—and, what’s more, their conclusions stand
up to a sea of noise. Such an approach is heuristic, incomplete,
and imprecise, but in the absence of a tractable theory lack-

ing approximations (in both the physics and the mathemat-
ics), without access to infinite computer time, and in an imper-
fect world, directly focusing on how uncertainty affects
decisions/interpretations is a practical way forward.

The way forward? Characterizing and communicating the
uncertainty in geophysical inverse problems is still a problem
of formidable proportions. Finding effective solutions is cru-
cial for establishing a meaningful interface with those who
make financial or scientific decisions based on the data.
Increases in computing power make it possible to produce not
just a single model, but populations of models, that can be
used as input for stochastic modeling for the production of
reservoirs. The example of Figure 1 shows, however, that even
for simple one-dimensional earth models a large population
is needed to characterize the uncertainty.

As discussed above, one way of looking at inversion is a
process of asking questions of data. Trying to build a com-
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Box 1. Model covariance and resolution matrices.

A common way of describing uncertainty in linear inverse prob-
lems is by means of model covariance and resolution matrices.
Figure 2 shows an example of a model covariance (left) and the
rows of a model resolution matrix (right) for a 24-parameter
inverse problem. In essence the model covariance matrix shows
how errors in the data propagate into errors in the estimated
model parameters. It is a square symmetric matrix with as many
rows and columns as there are unknowns in the problem. Off-
diagonal entries indicate how errors are correlated between pairs
of model parameters. For example if the value is positive then the
errors in the two corresponding parameters will tend to be posi-
tively correlated [e.g. when data errors force one parameter too
high (low) they will also tend to force the other too high (low)]. A
negative entry indicates the converse. Significant off-diagonal
entries indicate strong trade-offs in the variables. Diagonal entries
give information on the variance of corresponding parameters, i.e.,
how data noise affects them individually.

It is important to note that the uncertainty is described by the
whole matrix and not just the diagonal entries. In practice off-diag-
onal entries are often ignored which means that the influence of
data noise can be severely underestimated, even in linear inverse
problems. For example this is often the case in published cata-
logs of earthquake locations, where usually only the diagonal
entries of the calculated model covariance values are ever recorded.
As the number of unknowns increases model covariance matri-
ces quickly become difficult to calculate both due to the compu-
tational burden, and also because the number of entries grows
quadratically with the number of unknowns.

The right side of Figure 2 shows six rows of the resolution
matrix. These describe how independently each parameter can be
recovered from the data. Each row corresponds to a particular para-
meter and the height of the columns gives the relative “leakage”
or blurring of one parameter into another. For example in Figure
2 parameter 7 (first panel) is relatively well resolved since its own
column (shown by the arrow beneath) is much higher than the
others, whereas parameter 9 (third panel) is poorly resolved
because its column is virtually indistinguishable from the other
columns. Unlike the model covariance matrix the resolution matrix
does not depend on the errors in the data but instead reflects the
uncertainty arising from the nature of the forward problem as well
as the amount and distribution of the available data. For example,
in seismic traveltime inversion it is influenced by the distribution
of the sources and receivers (and hence raypaths) as well as the
thinness of the rays implicit in an infinite-frequency ray theory
approximation.

Figure 5. Models of inner core anisotropy resulting from the inversion of
normal-mode data (upper two panels) and from the application of the
Neighborhood Algorithm (lower panel) to these same data. (Normal
modes are whole-earth oscillations excited by large earthquakes.) α, β, and
η are the three anisotropic parameters to which the data are sensitive. A
larger damping was applied to the models displayed in the top panel than
to the models in the middle panel. The third panel displays the range of
good data-fitting models obtained from a model-space search approach.
The dotted line represents the mean model, and the thick surrounding
lines correspond to two standard deviations.



plete model of the subsurface from some particular data set
is tantamount to asking a very broad-ranging question. For
example “Give me your best estimate of the electrical con-
ductivity at every position in a 3D volume within my petro-
leum reservoir from the available EM field measurements.”
Many of the difficulties in characterizing uncertainty arise
from the imprecise nature of the questions we ask of data. For
example, there may be many (or an infinite number) of elec-
trical conductivity models that fit EM data accurately, and this
nonuniqueness means that it may not be possible to deter-
mine uncertainty everywhere in the 3D volume at once. If a
more precise question is asked the situation may be different.
For example “What is the maximum depth (or volume) of that
reservoir or ore body, given the available data and some rea-
sonable bounds on material properties everywhere?” Often

uncertainty is both simpler to determine and easier to convey
if the underlying data question is simpler or more precise.
Perhaps then the way forward is to ask many detailed ques-
tions of our data rather than a few loose ones. In each case
uncertainty may have a more straightforward interpretation
and the answers to many simple questions may collectively
convey reliable information. This is not to say that attempts
at “complete” inversion via model building are not useful. As
statistician Samuel Karlin put it: “The purpose of models is
not to fit the data but to sharpen the questions.”

It is clear that further research is needed. Returning to
exploration geophysics, we hope this contribution will stim-
ulate further research on the characterization of uncertainty
in nonlinear inverse problems, the visualization of uncer-
tainty, and on creating an effective interface between geo-
physicists who construct models and those who are responsible
for business decisions.
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Box 2. Nonuniqueness and uncertainty.

The concept of nonuniqueness can be succinctly explained
with the aid of visualization. Consider the case of a simple three-
parameter inverse problem where the mathematical relationship
between model parameters and data is linear. Let’s assume the
discrepancy between predictions and observations is measured
with a standard least-squares criterion. For every point in the
three-dimensional parameter/model space the fit to data can be
calculated. Figure 3 shows two different cases. The left panel is
for a “well-posed” inverse problem with a unique solution. We see
isosurfaces of a least-squares data fit function. Every point on the
isosurface has the same fit to data, and in this case they form
ellipsoids closed about a unique best-fit set of parameters (rep-
resented by a yellow sphere). In the right panel the isosurfaces
are cylindrical and correspond to an ill-posed problem. Here there
is no unique solution to the inverse problem because every point
along the yellow axis has minimum data misfit. In the left case,
uncertainty is well described by the confidence ellipsoids. On the
right side, uncertainty is defined only in directions perpendicular
to the axis and the combination of parameters along the axis is
completely unconstrained. The right inverse problem has nonunique
solutions with a complete trade-off between parameters corre-
sponding to the direction of the axis.

Figure 6. Are the anisotropic directions of fast shear-wave speed propagation in the Australian upper mantle related to the movement of the Indo-
Australian plate, and in what frame of reference? (a–d) Isotropic shear-wave speed anomalies (faster, slower than average) and fast polarization direc-
tions (black bars). (e–h) Histograms of the angle between fast directions and plate motion in two reference frames (gray bars, red squares), and compared
to an independent estimate derived from the anisotropy data themselves (blue).


