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ABSTRACT

Recent papers show that imaging with the retrieved Green’s
function constructed by the Marchenko equations, called Marche-
nko imaging, reduces artifacts from internal and free-surface mul-
tiples compared with standard imaging techniques. Even though
artifacts are reduced, they can still be present in the image, de-
pending on the imaging condition used. We have found that when
imaging with the up- and downgoing Green’s functions, the multi-
dimensional deconvolution (MDD) imaging condition yields bet-
ter images than correlation and deconvolution. “Better” in this
case means improved resolution, fewer artifacts, and a closer
match with the true reflection coefficient of the model. We have
determined that the MDD imaging condition only uses primaries

to construct the image, whereas multiples are implicitly subtracted
in the imaging step. Consequently, combining the first arrival of
the downgoing Green’s function with the complete upgoing
Green’s function produces superior (or at least equivalent) images
than using the one-way Green’s functions because the first arrival
of the downgoing Green’s function excludes all the downgoing
multiply reflected waves. We also find that standard imaging al-
gorithms which use the redatumed reflection response, con-
structed with the one-way Green’s functions, produce images
with reduced artifacts from multiples compared with standard im-
aging conditions, which use surface reflection data. All imaging
methods that rely on the Marchenko equations require the same
inputs as standard imaging techniques: the reflection response at
the surface and a smooth estimate of the subsurface velocities.

INTRODUCTION

TheMarchenko equations can be used to retrieve the up- and down-
going Green’s function between an arbitrary virtual receiver in the
subsurface and a source on the surface. However, these equations
do not prescribe how to use the Green’s function for imaging. The
purpose of this paper is to explain and compare different strategies
for imaging using these up- and downgoing Green’s functions. Im-
aging using these Green’s functions is called Marchenko imaging.
Standard imaging techniques assume single scattering, and therefore
misposition multiple-reflection events in the image. However, imag-
ing with the Marchenko-retrieved Green’s functions significantly re-
duces (if not eliminates) the artifacts associated with multiple
reflections (Slob et al., 2014;Wapenaar et al., 2014; Singh et al., 2015,
2016). There are many types of imaging conditions that can be used to
image the subsurface with the Marchenko Green’s functions; they are,
however, mostly restricted to imaging with Green’s functions that in-
clude only primaries and internal multiples, and they have never been
systematically compared for imaging artifacts.

Broggini et al. (2011) show that one can retrieve at the surface the
up- and downgoing Green’s function in 1D at a point (virtual
source) in the subsurface. These Green’s functions include primar-
ies and internal multiples. Wapenaar et al. (2012) extend the
Green’s function retrieval to 3D by posing the problem as a multi-
dimensional Marchenko equation, which is then solved iteratively.
Imaging using the Marchenko-retrieved Green’s functions is first
proposed in 1D by Wapenaar et al. (2011), using deconvolution
of the associated up- and downgoing Green’s functions at zero
lag. Behura et al. (2012) apply the Marchenko Green’s functions
to image specific target locations in the 2D synthetic model, using
a correlation imaging condition. This imaging condition is defined
as the correlation of the up- and downgoing Green’s function at
each image point in the subsurface at zero lag and zero offset.
Broggini et al. (2014) show that the image constructed by multi-

dimensional deconvolution (MDD) (Wapenaar et al., 2008; van der
Neut et al., 2011) of the up- and downgoing Green’s function pro-
duces a similar image of the subsurface, compared with the corre-
lation image (Behura et al., 2012); however, the MDD image better
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matched the true reflectivity of the model. Imaging with MDD sig-
nificantly reduces imaging artifacts when compared with standard
imaging techniques, such as reverse time migration (RTM) and
downward continuation (Broggini et al., 2014; Slob et al., 2014;
Wapenaar et al., 2014). These imaging artifacts are due to the pres-
ence of internal multiples in the data that are not properly handled.
Singh et al. (2015, 2016) modify the Marchenko equations to not

only include primaries and internal multiples but also free-surface
multiples. These modified Marchenko equations obviate the need to
remove the free-surface multiples from the reflection response be-
fore computing the Green’s functions. The free surface is the
strongest reflector in the earth, and free-surface multiples are gen-
erally stronger than internal multiples. Free-surface multiples can
even be as strong as primaries (Weglein and Dragoset, 2007).
For models with free-surface multiples, Singh et al. (2016) show
that the MDD image with Marchenko Green’s functions reduces
imaging artifacts due to the multiples when compared with RTM.
We investigate different imaging conditions for the Green’s func-

tions that include primaries, internal multiples, and free-surface
multiples (see Table 1). In addition to the correlation- and decon-
volution-imaging conditions using the up- and downgoing Green’s
functions G�, we also image the subsurface with the first arrival of
the downgoing Green’s function Gþ

f and the upgoing Green’s func-
tion G−. Bakulin and Calvert (2006) and Mehta et al. (2007) show
that muting the wavefield recording at the virtual source location, so
that it is limited to its first arrival, improves the virtual source
method. This muting suppresses spurious events in the virtual
source gather. We use the same concept of muting the first arrival
of Gþ to further reduce the imaging artifacts from multiples in the
Marchenko image.

For simplicity, we separate our investigation on Marchenko im-
aging strategies into 1D and 2D. In our 1D investigation, we con-
sider analytical and numerical examples that investigate the
strengths and weaknesses of each imaging condition given in Ta-
ble 1. We also compare each imaging condition using either the
up- and downgoing Green’s functions or the up- and first arrival
of the downgoing Green’s functions. The conclusion of our 1D
analysis is used to complement our analysis in the 2D scenario.
In our 2D investigation, we compare imaging with a standard im-
aging technique, RTM, and Marchenko imaging.

1D STRATEGIES FOR IMAGING

In this section, we restrict our imaging and theory to 1D. How-
ever, the ideas, conclusions, and analyses are applicable, for the
most part, to multidimensions. The imaging conditions analyzed
in this section are (1) correlation and (2) deconvolution. We also
compare the application of these imaging conditions to either the
upgoing Green’s function G− and downgoing Green’s function
Gþ or to the upgoing Green’s function G− and first arrival of
the downgoing Green’s function Gþ

f . In addition, we investigate
the retrieval of the redatumed reflection response using correlation
and deconvolution. A summary of our findings are shown in Table 1.
For completeness and simplicity, we analyze each imaging condi-
tion in 1D; in two parts: an analytical investigation and a numerical
investigation. Our analytical model is shown in Figure 1, whereas
our numerical model is shown in Figure 2.
Note that our analytical and numerical models are different. The

numerical model has a free surface at the acquisition surface in con-
trast to the transparent surface of our analytical model. Omitting the
free surface in the analytical model in Figure 1 greatly simplifies the
mathematics and interpretation. The details of the Green’s function
retrieval for our analytical model are given in Appendix A.
For our 1D models, we denote the depth as zi, where the subscript

i ¼ 0; 1; 2; : : : corresponds to the depth in 1D; for instance, z0 is
the acquisition surface. Superscript (þ) refers to downgoing waves
and (−) to upgoing waves at the depth z. Any variable with a sub-
script 0 that is not the coordinate field z (e.g., R0) indicates that no
free surface is present. We start with an overview of the analytical

Figure 1. Analytical 1Dmodel for retrieval of the Green’s functions
and imaging. The model is used to compute the reflection response
for sources and receivers just as the first layer z0.

Table 1. Summary of the imaging conditions we use in this
paper. All imaging conditions, be it correlation,
deconvolution, or multidimensional deconvolution, are taken
at zero time and zero offset to construct the image. The G�,
G−, and G�

f are the downgoing, upgoing, and first arrival of
the downgoing Green’s function at the image point,
respectively. The tick marks (✓) mean that the condition at
the top of the column holds, whereas (X) means that the
condition is not satisfied.
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and numerical investigations before evaluating each imaging con-
dition in 1D.

Analytical investigation

We use a three-interface (two-layer) model with the first interface
just below the acquisition surface. The analytical expression for the
reflection response for such a model (see Figure 1; equation A-1) is
given by Goupillaud (1961). The analytical model does not include
a free surface; however, the ideas for this simple model can be ex-
tended to models with a free surface. In Appendix A, we discuss in
detail the retrieval of the Green’s function for the analytical model
in Figure 1.
We retrieve the Green’s function at a virtual receiver in the sub-

surface using equations A-4 and A-5 (Broggini et al., 2012; Brog-
gini and Snieder, 2012; Wapenaar et al., 2013, 2014; Slob et al.,
2014; Singh et al., 2015, 2016). In our analytical investigation,
we retrieve the Green’s functions at two virtual receiver locations:
(1) in the middle of the first layer (z ¼ za) and (2) just above the
second interface (z ¼ z1), in Figure 1. The expressions for the up-
and downgoing Green’s functions G� at z ¼ za and z ¼ z1 are
given by equations A-8, A-9, A-14, and A-13. We chose these lo-
cations because there is no interface at za, whereas immediately be-
low, at z1, there is an interface with reflection coefficient r1, as
shown in Figure 1.

Numerical investigation

Unlike the analytical investigation, we use the model in Figure 2,
which has variable density and constant velocity, to numerically im-
age the subsurface using the Marchenko retrieved Green’s func-
tions. Although here we use a constant velocity model, the
Marchenko equations and the corresponding imaging methods
are applicable to media with variable velocities. Our analytical work
is restricted to imaging at only two locations in Figure 1, whereas
our numerical investigation computes the image at 5 m intervals in
the numerical model in Figure 2. Each image point corresponds to a
virtual receiver location of the Green’s function. We compute the
up- and downgoing Green’s functions at each virtual receiver loca-
tion in the subsurface for sources on the surface.
We build our intuition of imaging with these Green’s functions

by analyzing snapshots of these Green’s functions (see Figure 3) at
all virtual receiver locations. For example, in Figure 3a and 3b,
when Gþ reaches the first interface at 1.5 km, it generates an up-
going wave in the Green’s function G−. In Figure 3b, Gþ and G−

are kinematically equivalent at the interface, and we exploit this
kinematic equivalence to determine the position and reflection co-
efficient of the interface.
In addition, a multiple (labeled A) is generated at the free surface

in Figure 3e. This multiple can also become kinematically equiv-
alent with other reflections in G− (labeled B) in Figure 3f, which
can cause imaging artifacts (false interfaces) depending on the im-
aging condition. However, this free-surface multiple in Gþ (labeled
A in Figure 3e and 3f) also interacts with the interfaces and creates
an associated upgoing wave in G−.
This intuition of kinematic similarity between waves at interfaces

is related to the work of Claerbout (1985), who has shown that the
up- and downgoing wavefields at an arbitrary datum can be used for
imaging. Hence, we can use the up- and downgoing retrieved
Green’s function at the virtual receiver location to image the subsur-

face. The governing equation for imaging with up- and downgoing
wavefields in 1D is

G−ðzi; z0; tÞ ¼
Z

∞

−∞
Gþðzi; z0; t − t 0ÞR0ðzi; zi; t 0Þdt 0; (1)

where zi is an arbitrary depth level and R0 is the reflection response
of the medium below zi (Claerbout, 1985; Amundsen, 2001; Wa-
penaar et al., 2008). In this expression, R0ðzi; zi; tÞ is the reflection
response for sources and receivers at zi, with the medium above zi
being homogeneous.
The image of the subsurface is R0ðzi; zi; t ¼ 0Þ, the reflec-

tion response R0 at zero time. Intuitively, for a source and a receiver
coincident at an interface zi, the zero-time response R0ðzi; zi; t ¼ 0Þ
at that location is the contribution to the image corresponding to the
interface. Similarly, in the absence of an interface at zi, the contri-
bution of R0ðzi; zi; t ¼ 0Þ at the zero time is zero.
We now investigate the Marchenko imaging conditions as sum-

marized in Table 1: (1) correlation and (2) deconvolution. The last
column of Table 1, obtaining the correct redatumed reflection re-
sponse, is investigated as a separate subsection in this 1D imaging
strategies segment.

Imaging condition: Correlation

In this section, we introduce the correlation imaging condition to
the Marchenko wavefields and discuss the advantages and disad-
vantages to applying this imaging condition to our analytical model
(Figure 1) and our numerical model (Figure 2). Note that, in com-
parison with the analytical model, the numerical model includes a
free surface, but the reader should appreciate the similarities in the
imaging results for each model.
The contribution at the zero-lag correlation of two 1D signals is

due to kinematically similar events in the signals. For this reason,
standard imaging techniques, for example, RTM, generally use the
crosscorrelation at zero lag as the contribution to the image (Baysal
et al., 1983; Whitmore, 1983; McMechan, 1989). As discussed in
the previous section, kinematically similar events in the up- and
downgoing Green’s function are generally the location of the inter-
faces. However, unlike the Marchenko wavefields, the fields used in

ρ
1
 = 2 g/cm3 ν  = 3 km/s

ν  = 3 km/s

2.2 km

1.5 km

0.0

ρ
2
 = 4.5 g/cm3

Figure 2. Numerical 1D model with a free surface and constant
velocity of 3 km∕s. The Green’s functions are retrieved at each po-
sition in space to create snapshots of the wavefields propagating
through this model. We use this model in our 1D strategies for
the imaging section to describe our numerical investigation in 1D.
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conventional RTM assume the first-order Born approximation, and
therefore RTM has artifacts when the data have multiples (O’Brien
and Gray, 1996; Glogovsky et al., 2002).
In the time domain, the zero-lag correlation-imaging condition in

1D for the retrieved up- and downgoing Green’s function is

Cðzi; z0; t ¼ 0Þ ¼
Z

∞

−∞
G−ðzi; z0; t 0ÞGþðzi; z0; t 0Þdt 0: (2)

Equation 2 means that the correlation image is the time integral of
the up- and downgoing Green’s function.

Analytical investigation

In this subsection of correlation imaging, we investigate math-
ematically the correlation imaging condition (equation 2) applied
to the 1D model in Figure 1. To illustrate the properties of the cor-
relation image at the center of the first layer z ¼ za and at the top of
the second interface z ¼ z1 for our analytical example in Figure 1,
we first perform a series expansion of the respective up- and down-
going Green’s function given in equations A-8, A-9, A-13, and
A-14. We first analyze the image at the center of the first layer
z ¼ za, where there is no interface.
The series expansion of the upgoing Green’s functions G− (equa-

tion A-8) at the center of the first layer is

G−ðza; z0;ωÞ ¼ τ0

�
r1e−

3
2
iωt1 þ r2e−iωð

3
2
t1þ2t2Þþ · · ·

�
; (3)

where r1, r2, t1, and t2 are the reflection coefficients and one-
way traveltimes of the first and second layers, respectively; τ0 is
the transmission coefficient of the first interface (see Figure 1);
and : : : represents the higher order terms in the reflection coeffi-
cients of the series. The series expansion of three follows from the
geometric series rule 1∕ð1 − rÞ ¼ P∞

k¼0 r
k. The inverse Fourier

transform of equation 3 is

G−ðza; z0; tÞ ¼ τ0

�
r1δ

�
t −

3

2
t1

�
þ r2δ

�
t −

3

2
t1 − 2t2

�

þ · · ·

�
: (4)

Additional terms in the series are given in equation A-10, and we
verify these terms in Figure 20.
For the downgoing Green’s function Gþ, the series expansion

yields

Gþðza; z0;ωÞ ¼ τ0

�
e−

1
2
iωt1 þ r1r2e−iωð

5
2
t1þ2t2Þ

− r0r1e−
5
2
iωt1þ · · ·

�
: (5)

In the time domain, equation 5 becomes

Gþðza; z0;ωÞ ¼ τ0

�
δ

�
t −

1

2
t1

�
þ r1r2δ

�
t −

5

2
t1 − 2t2

�

− r0r1δ

�
t −

5

2
t1

�
þ · · ·

�
: (6)
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Figure 3. Snapshots of the Green’s functions: downgoing Gþðz; z0; tÞ (top), upgoing G−ðz; z0; tÞ (middle), and total Gðz; z0; tÞ (bottom) for
each figure panel with virtual receivers ranging from 0 to 2.5 km depth. We start at 0.4 s for the model given in Figure 2. The vertical black lines
at 1.5 and 2.2 km are the interfaces.
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For a model where t2 ¼ t1∕2, the second and third terms of the
series in equations 4 and 6, respectively, coincide in time, as shown
in Figure 4. From equation 2, the correlation image at z ¼ za is
r0r1r2þ · · · ; hence, there is a contribution, although there is no
interface at this depth. This contribution to the image at z ¼ za
is an artifact (false interface) (see Table 1) from an internal multiple
in the first layer and a reflection from the second layer, as shown in
Figure 4.
At z ¼ z1, the location of the interface, the series expansion of the

up- and downgoing Green’s functions G� in equations A-13 and A-
14 yields (in the time domain)

G−ðz1; z0; tÞ ¼ τ0fr1δðt− t1Þ þ r2δðt− t1 − 2t2Þþ · · ·g;
Gþðz1; z0; tÞ ¼ τ0fδðt− t1Þ þ r1r2δðt− t1 − 2t2Þþ · · ·g: (7)

In equation 7, the events in the up- and downgoing Green’s func-
tions occur at the same time; hence, they contribute to the image.
The higher order terms in the series expansion of equations A-13
and A-14 also have similar times in the up- and downgoing Green’s
functions and also contribute to the image at z1. Therefore, at the
interface, all events in the up- and downgoing Green’s functions
are kinematically equivalent. These events (kinematically the same)
are multiplied by each other and integrated in time (equation 2) to
produce the correlation image. The contribution to the correlation
image at z1 for the terms in equation 7 is τ20ðr1 þ r1r22þ · · · Þ instead
of the true amplitude r1. This is expected as we do not solve equa-
tion 1 exactly for R0 (as shown in Table 1: x at the true reflectivity
image for correlation imaging).

Numerical investigation

We apply the correlation imaging condition at each virtual
receiver location for the associated Gþ and G−; the corresponding
image is shown in Figure 5.
For the actual model in Figure 2, the reflection coefficient of the

first layer at 1.5 km is 0.33, whereas the second interface at 2.2 km
is 0.38. Comparing the parameters for the actual model with the
correlation image in Figure 5 shows that (1) the reflection coeffi-

cients of the actual model do not match the correlation image; how-
ever, the two interfaces are correctly positioned at 1.5 and 2.2 km,
respectively; (2) we obtain a spurious event at 0.7 km in the corre-
lation image that does not match the interfaces in the actual
model (refer to Table 1 in the correlation imaging row); and
(3) the relative amplitudes of the interfaces in the correlation image
are also incorrect.
The presence of the false interface is explained in Figure 3f,

where a free-surface multiple in Gþ (labeled A) interacts with the
upgoing reflection (labeled B) from the second layer in G− at ap-
proximately 0.7 km. At this depth of 0.7 km, Gþ and G− have kin-
ematically similar events (waves A and B) and hence an incorrect
contribution to the correlation image. This false event at 0.7 km is
due to free-surface multiples in Gþ correlating at zero lag with the
second layer primary event and also other multiples at later times.

Imaging condition: Deconvolution

In this section, we introduce and apply the deconvolution imag-
ing condition to our analytical and numerical imaging examples.
The findings of this subsection are summarized in Table 1. As
opposed to the correlation imaging condition, the deconvolution im-
aging condition is the more mathematically correct way to image
the subsurface in 1D (determine the location of reflectors and its
parameters).
In the frequency domain, the reflection response R0 (equation 1)

in 1D is a deconvolution

R0ðzi; zi;ωÞ ¼
G−ðzi; z0;ωÞ
Gþðzi; z0;ωÞ

⇒
G−ðz;ωÞGþðz;ωÞ�
jGþðz;ωÞj2 þ ϵ

; (8)

where * represents the complex conjugate and ϵ is a regularization
parameter to avoid division by zero (Clayton and Wiggins, 1976).
The deconvolution imaging condition similar to the correlation im-
aging condition is R0 at zero time at the location of the Green’s
function virtual receiver zi.

Figure 4. Schematic of a event in the up- and downgoing Green’s
function at za for the one-way traveltime t2 ¼ t1∕2. The reflected
wave shown by the solid line represents the second term in equa-
tion 3, whereas the dotted line is the third term in equation 5. These
events occur at the same time at za in their corresponding Green’s
function; hence, they contribute to the correlation image.

0 0.5 1 1.5 2 2.5
−20

−10

0

10

20

30

Depth (km)

A
m

p
lit

u
d

e

Figure 5. Correlation imaging condition constructed from the up-
and downgoing retrieved Green’s functions between virtual sources
in the subsurface to the surface. We construct these Green’s func-
tions at virtual source positions every 5 m in the subsurface.
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Analytical investigation

Because we obtain the up- and downgoing Green’s function at a
point in the subsurface analytically (no noise), solving equation 8 is
simply a division of these functions in the frequency domain. We
first analyze R0 at the center of the first layer za for the model given
in Figure 1. The division of the upgoing by the downgoing Green’s
function at za, given in equations A-8 and A-9, respectively, yields

R0ðza; za;ωÞ ¼
G−ðza; z0;ωÞ
Gþðza; z0;ωÞ

;

¼ r1e−
3
2
iωt1 þ r2e

−iωð32t1þ2t2Þ
e−

1
2
iωt1 þ r1r2e

−iωð12t1þ2t2Þ ;

¼ r1e−iωt1 þ r2e−iωðt1þ2t2Þ

1þ r1r2e−2iωt2
;

¼
�
r1e−iωt1 þ r2e−iωðt1þ2t2Þ

�

×
�
1þ

X∞
n¼1

ð−r1r2e−2iωt2Þn
�
: (9)

Note that the denominators inGþ andG− in equations A-8 and A-9,
respectively, cancel by the spectral division in equation 9. The de-
nominators of these Green’s functions are the multiple scattered
contributions in the Green’s function after a series expansion.
The time-domain expression for the series expansion of equa-

tion 9 is

R0ðza; tÞ ¼ r1δðt − t1Þ þ Eðt > t1Þ; (10)

where Eðt > t1Þ are the events in R0 that occur for t > t1. Equa-
tion 10 tells us that the contribution to the image after applying
the deconvolution imaging condition R0ðza; t ¼ 0Þ is zero at za be-
cause there are no contributions at zero time. This vanishing con-
tribution to the image is expected because we do not have any
interface at za.

We now consider R0 at the second interface z1 in Figure 1. The
reflection response R0 given by the division of equations A-13 and
A-14 yields

R0ðz1; z1;ωÞ ¼
G−ðz1; z0;ωÞ
Gþðz1; z0;ωÞ

; ¼ r1 þ r2e−2iωt2

1þ r1r2e−2iωt2
: (11)

Similarly, the time-domain expression for the series expansion of
equation 11 is

R0ðz1; z1; tÞ ¼ r1δðtÞ þ Eðt > 0Þ; (12)

where Eðt > 0Þ are the events in R0 that occur for t > 0. Therefore,
considering equation 12, the contribution to the deconvolution im-
aging R0ðz1; z1; t ¼ 0Þ at the second interface z1 is r1. This imaging
condition result R0ðz1; z1; t ¼ 0Þ ¼ r1 corresponds to the actual re-
flection coefficient at the second interface r1.
Note that the multiple reflections that are embedded in the de-

nominator of equations A-13 and A-14 are removed by the spectral
division of G− and Gþ (equation 11) to produce the image, whereas
at zero time only, the first term in the expansion contributes to the
image. This is in agreement with the conclusions of Snieder (1990a,
1990b) that the multiples are removed in the inversion to produce
the image, whereas only the first Born approximation term, i.e., the
primary reflections, contribute to the image. We emphasize that for
R0 at the interface and at zero time, the primary reflections alone
contribute to the construction of the image.

Numerical investigation

Using equation 8, we apply the deconvolution-imaging condition
to the up- and downgoing Green’s function for the numerical model
given in Figure 2. The corresponding image is shown in Figure 6
and matches the true reflectivity of the actual model (the solid
black line).
Figure 6 conforms well to the conclusions we have made in the

analytical work of this section: (1) There are no artifacts in Figure 6
due to kinematically similar events in the up- and downgoing
Green’s function at 0.7 km compared with the correlation image
in Figure 5 and (2) the deconvolution image obtains the correct re-
flection coefficients at the two interfaces of the model (Figure 2)
because we exactly solve for R0 in 1D. There is a weak artifact
in the deconvolution image at 0.7 km; however, these relatively neg-
ligible events, compared with the events at the interface, are due to
deconvolution numerical error and the finite-recording time of the
reflection response at the surface. Therefore, in Table 1, there are
tick marks (✓) under the true reflectivity imaging and no false in-
terfaces for deconvolution imaging in 1D, which is corroborated by
the analytical and numerical investigations.

Imaging condition: Marchenko redatuming

Once we have a reflection response with the complicated over-
burden waves removed, we can apply standard imaging algorithms,
such as RTM, on this response to image the subsurface. The result-
ing image, below the overburden, will also be void of any of the
overburden artifacts; for instance, the free-surface multiple artifacts
will be removed. This section discusses how to obtain a reflection
response with the complicated overburden removed and howwe can
use this response for imaging.
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Figure 6. Deconvolution imaging condition constructed from the
same up- and downgoing retrieved Green’s functions used in the
correlation imaging section. The black line represents the exact re-
flection coefficient of the model in Figure 2.
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We obtain the reflection response in 1D below an arbitrary point
in the model by also solving equation 1 for R0, as previously stated.
We call this reflection response the redatumed reflection response
R0ðzi; zi; tÞ because we can interpret R0ðzi; zi; tÞ, at depth zi, as the
reflection response for a source at zi and for receivers at zi, whereas
above zi the medium is homogeneous. Because the redatumed re-
sponse R0ðzi; zi; tÞ contains the reflection events below the arbitrary
chosen datum, we can use this response to image below an arbitrary
datum zi, thus ignoring the overburden reflection. The function R0

includes internal multiples from reflections below zi; therefore,
RTM imaging with R0 will still have artifacts due to the presence
of internal multiples generated below zi.

Analytical investigation

The redatumed response is obtained by solving equation 1. In our
1D analytical model, we solve for R0 using deconvolution (equa-
tion 8). At za (the center of the first layer), equation 10, including
some higher order terms, gives the redatumed response R0ðza; za; tÞ
at depth za:

R0ðza; za; tÞ ¼ r1δðt − t1Þ þ r2δðt − t1 − 2t2Þ
− r21r2δðt − t1 − 2t2Þ − r1r22δðt − t1 − 4t2Þ
þ r31r

2
2δðt − t1 − 4t2Þ þ Eðt > t1 − 4t2Þ;

¼ r1δðt − t1Þ þ τ21r2δðt − t1 − 2t2Þ
þ τ21r1r

2
2δðt − t1 − 4t2Þ þ Eðt > t1 − 4t2Þ: (13)

In the last line of equation 13, the first three events on the right side
are verified in the schematic in Figure 7; notice that we account for
transmission through the interfaces.
The R0ðza; za; tÞ (equation 13) not only includes the primary

events but also the internal multiples, and these reflection events
have the correct amplitudes (see Figure 7). Therefore, we can
use this redatumed reflection response R0ðza; za; tÞ for imaging,
which ignores the reflections from above za.

Numerical investigation

For our numerical model in Figure 2, we compute the redatumed
reflection response at z ¼ 1.75 km in Figure 8. This response is the

deconvolution of the up- and downgoing Green’s functions at the
virtual receiver and source at z ¼ 1.75 km, below the first layer in
Figure 2, i.e., R0ðz; z; tÞ. Below the virtual source at z ¼ 1.75 km,
our model has one interface at z ¼ 2.2 km with a reflection coef-
ficient of 0.38, which is retrieved in the redatumed response in Fig-
ure 8 at 0.35 s. We can now use R0 to image the interface at 2.2 km
from above, i.e., at 1.75 km, using any imaging technique that uses
reflection recordings to construct an image of the subsurface.
Therefore, we obtain the redatumed reflection response (with the

correct amplitudes and kinematics of events) below an arbitrary da-
tum by using deconvolution but not correlation (see Table 1).

Imaging condition: First arrival of G� with G−

In this subsection, we propose using the first arrival of Gþ (de-
fined as Gþ

f ) and G− for imaging the subsurface. We begin our
analysis with Figure 3 to analyze the snapshots of the Green’s func-
tion. Up to 0.8 s (Figure 3b and 3c), the first arrival of Gþ (Gþ

f )
interacts with the two interfaces to generate upgoing reflections,
i.e., G− (Gþ

f and G− are kinematically similar at the interface).
Therefore, when Gþ

f reaches the interface, we get a contribution
to the image. We can use the correlation imaging condition and
the deconvolution imaging condition for imaging the subsurface
with Gþ

f and G−.

Analytical investigation

For the analytical model given in Figure 1, at za (the center of the
first layer), the first arrival ofGþ is Gþ

f ¼ τ0δðt − ½1∕2�t1Þ. Because
there are no events with similar times in Gþ

f ðza; z0; tÞ and
G−ðza; z0; tÞ in equation 4, the contribution to the correlation image
at za is zero. The other events inGþ, apart from the first arrivals, are
the internal multiples or free-surface multiples. In the correlation
imaging section, these multiples in Gþ contribute to false interfaces
in the image (e.g., at 0.7 km in Figure 4).
The deconvolution of G−ðza; z0; tÞ (equation A-8) with

Gþ
f ðza; z0; tÞ in the frequency domain yields

Figure 7. Schematic of a few events in the redatumed reflection
response (equation 13) at za for the model in Figure 1.
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Figure 8. Redatumed reflection response at 1.75 km for the model
in Figure 2. Note that below 1.75 km is one interface with a reflec-
tion coefficient of 0.38, matching the obtained result.
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fR0ðza; za;ωÞ ¼
G−ðza; z0;ωÞ
Gþ

f ðza; z0;ωÞ

¼
τ0

r1e
−3
2
iωt1þr2e

−iωð32t1þ2t2Þ
1þr0r1e−2iωt1þr0r2e−2iωðt1þt2Þþr1r2e−2iωt2

τ0e−
1
2
iωt1

;

¼ r1e−iωt1 þ r2e−iωðt1þ2t2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
;

(14)

where fR0ðza; za;ωÞ is not equal to R0ðza; za;ωÞ (equation 9); we
are not solving equation 8 because we limit the downgoing Green’s
function to its first arrival. The time-domain series expansion of
equation 14 is

fR0ðza; za; tÞ ¼ r1δðt − t1Þ þ r2δðt − t1 − 2t2Þ
þ −r0r21δðt − 3t1Þ − r0r1r2δðt − 3t1 − 2t2Þ
− r0r1r2δðt − 3t1 − 2t2Þþ · · · : (15)

The deconvolution imaging of fR0ðza; za; t ¼ 0Þ (equation 15) is
zero because there are no terms at the zero time, which agrees with
the analytical model (no interface). The fR0ðza; za; tÞ, for nonzero
times, includes spurious events when compared with the correct re-
datumed response R0 given in equation 13. Consequently, standard
imaging with fR0 as the reflection response would include these spu-
rious events as false interfaces.
At z1, the first arrival of Gþðz1; z0; tÞ ¼ Gþ

f ðz1; z0; tÞ ¼
τ0δðt − t1Þ. The correlation image of the analytical model with
Gþ

f ðz1; z0; tÞ and with G−ðz1; z0; tÞ has a contribution at z1. This
contribution is due to the fact that the first term in G−ðz1; z0; tÞ
(equation 7) is at the same time as Gþ

f ðz1; z0; tÞ (kinematically sim-
ilar events correspond to a contribution to the correlation image).
The amplitude of this contribution is τ20r1, which differs from
the true reflectivity at z1 ¼ r1 (see Table 1).
Similarly, we can apply deconvolution (equation 8) to Gþ

f ðz1; tÞ
and G−ðz1; tÞ, in the frequency domain; this reads

fR0ðz1;z1;ωÞ¼
G−ðz1;z0;ωÞ
Gþ

f ðz1;z0;ωÞ

¼ r1þ r2e−iω2t2

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þr1r2e−2iωt2
:

(16)

Following a similar procedure in the deconvolution imaging sec-
tion, the time-domain expansion of equation 16 is

fR0ðz1; z1tÞ ¼ r1δðtÞ þ Eðt > 0Þ: (17)

Consequently, the deconvolution image, fR0 at zero time at z1 is
r1, the true reflectivity at this location, as shown in Table 1. Thus,
although we are not solving for the true reflection response R0, our
deconvolution image, using Gþ

f ðz1; tÞ and G−ðz1; tÞ, at time ¼ 0 s

is correct.
Because Gþ

f ðz1; tÞ excludes the multiples in Gþ, we are produc-
ing the image at zero time with only the first-order Born terms. We
already know that all the multiples are subtracted in the inversion to
obtain the image (Snieder, 1990a, 1990b); therefore, it should come
as no surprise that we produce similar images when using Gþ

f ðz1; tÞ
and G−ðz1; tÞ or the complete Gþðz1; tÞ and G−ðz1; tÞ.

Numerical investigation

Our imaging fields for the model in Figure 2 are the first arrivals
of the retrieved downgoing Green’s functions Gþ

f and the upgoing
Green’s functions G−. A smooth version of the velocity model can
be used, to compute the first arrivals and mute other events in Gþ to
get Gþ

f .
We follow the correlation and deconvolution imaging procedures

for imaging with Gþ
f and G−. Figures 9 and 10 show the corre-

sponding correlation image and the deconvolution image, respec-
tively.
Note that the correlation image (Figure 9) has no false interfaces

approximately 0.7 km compared with Figure 5 becauseGþ
f does not

include any multiples, only the first arrival of Gþ. The free-surface
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Figure 9. Correlation imaging of the first arrival of the downgoing
Green’s function with the upgoing Green’s function for the model
in Figure 2.
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Figure 10. Deconvolution imaging of the first arrival of the down-
going Green’s function with the upgoing Green’s function for the
model in Figure 2. The black line represents the exact reflection
coefficient of the model in Figure 2.
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multiple “A” in Figure 3e, no longer exists in Gþ
f and therefore does

not contribute to a false interface. However, the amplitudes of the
reflectors for the correlation image still do not match the true re-
flectivity, even though the image does not include false interfaces,
as illustrated in Table 1.
The deconvolution image (Figure 10) matches the true reflectiv-

ity of the model (solid black line), despite approximating Gþ with
Gþ

f . We do not get the artifacts at 0.7 km in Figure 10 compared
with Figure 6 (deconvolution image with Gþ and G−). Therefore,
imaging with Gþ

f and G− removes the false interface at 0.7 km and
gives the correct reflectivity of the subsurface. However, we are not
able to reconstruct the correct redatumed response R0ðz; z; tÞ, as
summarized in Table 1.

2D STRATEGIES FOR IMAGING

The equations that govern imaging of the retrieved Green’s func-
tions in multidimensions are similar to the imaging equations in 1D,
except in 2D, they have an additional horizontal spatial variable. In
2D, an analytical investigation of Marchenko imaging with different
imaging conditions is not feasible; thus, we restrict our analysis to a
numerical investigation.
In this section, the spatial coordinates are defined by their hori-

zontal and depth components; for instance, x0 ¼ ðxH;0; x3;0Þ, where
xH;0 are the horizontal coordinates at a depth x3;0. Similar to the 1D
section, superscript (þ) refers to downgoing waves and (−) to up-
going waves at the observation point x. Note that the 2D reflection
response in this paper is generated with the finite-difference pack-
age in Thorbecke and Draganov (2011).
The governing equation for imaging with up- and downgoing

wavefields in 2D is

G−ðx 0
i ; x

0 0
0 ; tÞ ¼

Z
∂Di

dxi

Z
∞

−∞
Gþðxi; x 0 0

0 ; t − t 0Þ

× R0ðx 0
i ; xi; t

0Þdt 0; (18)

where ∂Di is an arbitrary depth level and R0 is the reflection re-
sponse of the medium below ∂Di (Claerbout, 1985; Amundsen,
2001; Wapenaar et al., 2008). Unlike the 1D equation 1, there is
an additional integration over space xi. Note that R0ðx 0

i ; xi; tÞ is
the reflection response for sources and receivers on ∂Di, with

the medium above ∂Di being homogeneous. The image of the sub-
surface in 2D is not only the reflection response R0 at zero time but
also at zero offsetR0ðxi; xi; t ¼ 0Þ. Note that the summary in Table 1
holds for 1D and for multidimensions, so we will not repeat the
imaging analysis in the previous section (where the 1D imaging
section rigorously analyzed Marchenko imaging with different im-
aging conditions), but instead, we compare Marchenko imaging
with conventional RTM.
We use the velocity and density models in Figures 11 and 12,

respectively, to compute the reflection response R at the surface.
The reflection response R includes primaries, internal and free-sur-
face multiples. We use the reflection response at the surface and a
smooth version of the velocity Figure 13 as inputs for all imaging
examples in this section. Our goal is to image a target area in the
subsurface, which is enclosed by the box in Figure 11; the magni-
fied area of the velocity is shown in Figure 14.
We first show the image we obtain from RTM in Figure 15. We

construct the RTM image by evaluating the correlation of the back-
propagated reflection response and forward-propagated source
function in the smooth-velocity model given in Figure 13 at zero
time and zero offset. We call this the RTM correlation imaging con-
dition (Baysal et al., 1983; Whitmore, 1983), which is different

Figure 11. The velocity model used in the 2D imaging section. The
black box bounds the target area.

Figure 12. The density model ranging used in the 2D imaging sec-
tion. The black box bounds the target area.

Figure 13. Macromodel, i.e., the smooth version of Figure 11, used
to compute the first arrivals from the virtual source location to the
surface.
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from the correlation imaging condition previously mentioned that
uses the up- and downgoing Green’s functions. The RTM image in
Figure 15 is a magnified version of the entire image at the target
area. The free-surface multiples generated by the syncline above
the target area as well as internal multiples contaminate the image
in Figure 15 when compared with the model of the target area in
Figure 14.
We now investigate Marchenko imaging of the target area in Fig-

ure 14 with the following imaging conditions: (1) correlation,
(2) MDD, and (3) deconvolution. We compare the images generated
by these imaging conditions constructed with either Gþ and G− or
with Gþ

f and G−. In addition, we include a subsection that uses the
redatumed reflection response to image the subsurface. Note that
the associated Marchenko images are constructed from the same
inputs as RTM, i.e., the reflection response at the surface and
the smooth velocity model in Figure 13. We begin with the corre-
lation imaging condition using the retrieved Green’s function.

Correlation imaging in 2D

The multidimensional correlation in the frequency domain for the
retrieved up- and downgoing Green’s function is

Cðxi; x 0
i ;ωÞ ¼

Z
∂D0

G−ðxi; x 0 0
0 ;ωÞGþðxi; x 0 0

0 ;ωÞ�dx 0 0
0 : (19)

The integral of Cðxi; xi;ωÞ over all frequencies at zero-offset is the
correlation imaging condition. Conversely, in the time domain, the
correlation imaging condition is the zero-offset and zero-time con-
tribution of equation 2, Cðxi; xi; t ¼ 0Þ. The correlation images us-
ing the retrieved Green’s functions are shown in Figure 16.
We construct each image point independently of the other image

points and therefore we build a subset of the image; this process is
called target-oriented imaging. Figure 16 is obtained by computing
the Green’s function G�ðx 0 0

0 ; x
0
i ; tÞ at the surface for virtual receiv-

ers, at intervals of 4 m, in the target area; the image is the super-
position of the correlation imaging condition at each Green’s
function virtual receiver location. In the Marchenko image in Fig-
ure 16, the reflectors are clearly discernible and match the interfaces
in the target area in Figure 14. In the imaging box, the artifacts from

the free-surface and internal multiples are no longer visible com-
pared with the RTM image in Figure 15.

Multidimensional deconvolution imaging

As mentioned earlier, solving equation 18 for R0 in a 1D requires
deconvolution (equation 8). However, in a higher dimension, we
solve equation 18 for R0 by MDD. In the frequency domain, equa-
tion 18 becomes

G−ðx 0
i ; x

0 0
0 ;ωÞ ¼

Z
∂Di

Gþðxi; x 0 0
0 ;ωÞR0ðx 0

i ; xi;ωÞdxi: (20)

To solve equation 20 (discussed in Wapenaar et al., 2014) we first
multiply both sides of the equation by Gþ and integrate over source
positions at the acquisition surface x 0 0

0 to yield

Cðx 0
i ; x

0 0 0
i ;ωÞ ¼

Z
∂Di

Γðx 0
i ; x

0 0 0
i ;ωÞR0ðxi; x 0

i ;ωÞdxi; (21)

Figure 14. Target zone in the numerical model (velocity), in which
we conduct imaging. Note, we do not use this model to implement
Marchenko imaging, we use a smooth version of the velocity model
(Figure 13) only.

Figure 15. Magnified image of the RTM for the model in Figure 14
below the syncline structure (in the target area). The reflection re-
sponse used for imaging includes primaries, internal multiples, and
free-surface multiples.

Figure 16. Marchenko correlation imaging of the model in Fig-
ure 14 in the target zone.
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where the correlation function C is given in equation 19 and the
point-spread function is given by

Γðx 0
i ; x

0 0 0
i ;ωÞ ¼

Z
∂Di

Gþðx 0
i ; x

0 0
0 ;ωÞGþðx 0 0 0

i ; x 0 0
0 ;ωÞdx 0 0

0 :

(22)

We invert equation 21 for R0ðxi; x 0
i ;ωÞ (Wapenaar et al., 2008; van

der Neut et al., 2011). The multidimensional deconvolution imaging
condition is R0ðxi; xi; t ¼ 0Þ (the reflection response R0 at zero off-
set and at t ¼ 0 s). To construct the image, we compute
R0ðxi; xi; t ¼ 0Þ at every sampled point in the image.
The Marchenko images constructed with correlation and MDD

yield similar results; however, as a more instructive approach to
compare these images, we show a trace at x1 ¼ ð−0.2Þ km less than
1 km for each of the corresponding images (see Figure 17). The
traces in Figure 17 show that (1) MDD matches the true reflectivity
better than the other imaging conditions and (2) the events in the
traces (MDD and correlation) correspond to the interfaces in the
actual model at the right locations.
The true reflectivity trace in Figure 17 is constructed by comput-

ing the reflection coefficients at zero offset at x1 ¼ ð−0.2Þ km less
than 1 km, then convolving this trace with the Ricker wavelet used
in finite-difference modeling of the reflection response at the
surface.

Deconvolution imaging 2D

The MDD requires the Green’s functions along the horizontal
datum ∂Di to construct an image at a point xi on ∂Di. Strictly speak-
ing, this MDD image is not imaging at a particular target because
we require the Green’s functions along the datum ∂Di. Target-ori-
ented imaging is the image at a point using only the Green’s func-
tion at that point. Similar to correlation imaging, deconvolution
imaging requires only the Green’s function at the virtual receiver
location to construct the image at that location, hence, this is tar-
get-oriented imaging.
Deconvolution imaging in 2D is the trace-by-trace deconvolution

of the up- and downgoing Green’s functions at each virtual receiver
location at zero offset and zero time R0ðx; x; t ¼ 0Þ. Alternative
techniques on the implementation of the deconvolution imaging

condition are given by Schleicher et al. (2007). The deconvolution
image yields similar results to correlation; therefore, we show a
trace of the deconvolution image for a closer analysis (see Fig-
ure 17). The trace of the deconvolution image in Figure 17 places
the reflector at the correct location, but it does not match the true
reflectivity of the model, as is also summarized in Table 1. The
traces of the correlation and deconvolution are scaled to match
the reflectivity of the interface at 1.1 km because neither correlation
nor deconvolution give the true reflection coefficients; however, in
1D, deconvolution imaging does match the true reflectivity as ex-
plained in the 1D imaging section.

Imaging with the redatumed reflection response in 2D

Similar to the 1D example on redatuming, we use the up-
and downgoing Green’s function at virtual receivers x 0

i ¼
ð−2 to 2; 1Þ km to compute the redatumed reflection response
R0 given in equation 18, and we use this response to image the sub-
surface using standard imaging algorithms. To retrieve the reda-
tumed response R0ðxi; x 0

i ; tÞ accurately, we solve equation 21 by
MDD. We perform RTM using the redatumed response
R0ðxi; x 0

i ; tÞ at xi ¼ ð−2 to 2; 1Þ km to image the target area (see
Figure 18). The RTM correlation imaging condition is used to con-
struct the redatumed RTM in Figure 18 and the RTM with surface
recordings in Figure 15.
In Figure 18, the artifacts are dramatically reduced compared

with the RTM image in Figure 15. Specifically, the multiples from
the syncline structure are not present in the image in Figure 18 using
the redatumed response compared with the RTM in Figure 15. This
reduction in artifacts is a result of the fact that the redatumed re-
flection response R0 only includes the reflections less than
1 km. However, the redatumed reflection response retains internal
multiples from the interfaces below the redatuming depth. There-
fore, the redatumed RTM image has artifacts from such internal
multiples, for instance, at z ¼ 1.68 km in Figure 18, but they are
significantly weaker than the reflections caused by the overburden,
i.e., the syncline reflections (see Figure 15). In higher dimensions,
trace-by-trace deconvolution does not solve for R0 in equation 18
(because we have the integral over space dx 0

i on the right side,

1
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1.5

D
ep

th
 (

km
)

Amplitude

Cor DecTrue MDD

Figure 17. Comparison of the imaging conditions: MDD, correla-
tion (Cor), and deconvolution (Dec), of the downgoing Green’s
function with the upgoing Green’s function for the model in Fig-
ure 14 at horizontal location −0.2 km in the target area.

Figure 18. The RTM of the redatumed reflection response in the
target area. The redatumed reflection response R0ðxi; x 0

i ; tÞ is the
reflection response obtained by MDD of the up- and downgoing
Green’s function at xi ¼ ð−2 to 2; 1Þ km.
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which we do not account for), and therefore we cannot use R0 ob-
tained by deconvolution to perform imaging of the subsurface
by standard imaging algorithms. The images obtained from these
algorithms using R0 (by deconvolution) will include additional ar-
tifacts due to the errors in R0.

Imaging with the first arrival of G� (G�
f )

and G− in 2D

We performed correlation, deconvolution, and MDD imaging
condition using Gþ

f and G−; those are the same as the images con-
structed with Gþ and G− using the same imaging conditions for our
2D examples. Figure 19 shows a comparison among the true reflec-
tivity, a trace from the MDD imaging with Gþ and G−, and MDD
imaging with Gþ

f and G−. As expected from the 1D imaging sec-
tion, imaging with Gþ and G− or imaging with Gþ

f and G− gives
similar contributions at the interfaces.
However, similar to the 1D imaging section, using Gþ

f and G−

does not give the correct redatumed response, and hence it should
not be used to create an image below the redatuming depth.

DISCUSSION

The findings of this paper are summarized in Table 1. Starting
with the first imaging condition in Table 1, correlation imaging with

the retrieved Green’s function gives false interfaces caused by the
interaction of the reflections in Gþ and in G−. A false interface in
Marchenko correlation imaging is due to events in Gþ, which exist
at the same time as events in G−. At the interface, however, all the
waves in Gþ arrive at the same time as all the waves in G−. There-
fore, at the interface, the stacking of all the kinematically similar
events is generally larger than at a false interface.
The MDD imaging condition applied toGþ andG− yields a good

match with the true reflectivity and minimizes false interfaces as
MDD is the theoretically accurate way to solve for the image com-
pared with the other methods in this paper. Note that, in the imaging
step, for instance equation 11, the denominators of Gþ and G− (the
multiple reflections in Gþ and G−) cancel out. Therefore, Gþ and
G− must either have all the multiples included or Gþ and G− must
be truncated in such a way that they (Gþ and G−) include the same
order of multiples to have the multiples removed in the imaging
step. Failure to include the same order of multiples in Gþ and
G− creates false interfaces in the imaging step. However, in prac-
tice, it is not feasible to know if we have the same order of multiples
in Gþ and G−. For this reason, it is more advantageous to use the
first arrival ofGþ

f andG− because we do not need to match the order
of multiples in the up- and downgoing fields while still matching the
true reflectivity and avoiding false interfaces.
Note that all imaging conditions using Gþ

f and G− result in com-
parable or better images than using Gþ and G−. The most advanta-
geous use of Gþ

f and G− is in the correlation imaging condition, in
which the false interfaces are completely removed.
Even though MDD with Gþ and G− does give the correct reda-

tumed response with accurate reflection amplitudes, applying stan-
dard imaging to the corresponding redatumed response does not
necessarily mean that the resulting image will be free of false in-
terfaces. These false interfaces are caused by the internal-multiple
reflections below the datum. However, the images constructed by
the redatumed response are void of overburden reflections.

CONCLUSION

Importantly, the inputs for Marchenko imaging are exactly the
same as most standard imaging techniques; a smooth version of
the velocity and the reflection response at the surface. Unlike stan-
dard imaging techniques, in Marchenko imaging, we do not need to
remove the free-surface or internal multiples from the reflection re-
sponse because the Marchenko equations in this paper properly
handle these multiples.
Although Marchenko imaging reduces the artifacts caused by

multiples compared with standard imaging algorithms, these arti-
facts are still present. Theoretically, the correct procedure to image
with the retrieved Green’s functions is MDD, and therefore it best
matches the correct image of the subsurface compared with other
Marchenko imaging conditions. However, instead of using Gþ and
G−, Marchenko imaging with the first arrival of the downgoing
Green’s function Gþ

f and the associated upgoing Green’s function
G−, removes these artifacts corresponding to false interfaces. De-
spite the fact that Gþ

f does not contain the reflection events, the
resulting MDD image better matches the true reflectivity of the
model compared with standard imaging or Marchenko imaging
with correlation or deconvolution. Note that because only the pri-
maries contribute to the construction of the image, whereas the mul-
tiples are implicitly removed in the inversion process to produce the

1
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Figure 19. The MDD imaging of first arrival of downgoing Green’s
function with upgoing Green’s function (MDD FA) for the model in
Figure 14 at horizontal location −0.2 km in the target area com-
pared with the true reflectivity and MDD imaging with the complete
one-way Green’s functions.

Figure 20. Ray diagram of the waves in G−ðza; z0; tÞ (equation
A-10).
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image, it suffices to only useGþ
f andG− compared withGþ andG−

in the imaging.
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APPENDIX A

RETRIEVING THE GREEN’S FUNCTIONS
ANALYTICALLY USING THE MARCHENKO

EQUATIONS

For a three-interface model (two layers) in Figure 1,

1) The first interface is just below the acquisition surface with re-
flection and transmission coefficients r0 and τ0.

2) Similarly, r1, τ1, r2, and τ2 are the reflection and transmission
coefficients of the second and third interfaces, respectively.

3) The one-way traveltime in the first layer (between the first and
second interfaces) is t1.

4) The one-way traveltime in the second layer is t2.

The reflection response for the three-interface model (two layers)
for sources and receivers on the surface in Figure 1, in the frequency
domain, is (Goupillaud, 1961)

Rðz0;ωÞ ¼
r0 þ r1e−2iωt1 þ r2e−2iωðt1þt2Þ þ r0r1r2e−2iωt2

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
;

(A-1)

where r0, r1, and r2 are the reflection coefficients of the layers in
order of increasing depth, respectively, and t1 and t2 are the one-
way traveltime of the first and second layers, respectively.
We use the reflection response of this three-interface model to

compute the Green’s functions at two locations in the model:
(1) in the middle of the first layer (z ¼ za) and (2) just above
the second interface (z ¼ z1), in Figure 1.
Numerically, we retrieve these Green’s function by solving the

Marchenko equations (Broggini et al., 2012; Broggini and Snieder,
2012; Wapenaar et al., 2013, 2014; Slob et al., 2014; Singh et al.,
2015, 2016).
Here, because the model is known, we compute the focusing

functions f�1 (Slob et al., 2014) directly

fþ1 ðzi; z0;ωÞ ¼
1

Tþðzi; z0;ωÞ
; (A-2)

f−1 ðzi; z0;ωÞ ¼
Rðz0; z0;ωÞ
Tþðzi; z0;ωÞ

; (A-3)

where z0 and z1 are the depths of the first and second reflector,
Rðz0; z0;ωÞ is the reflection response at the surface for a source
at z0, and Tþðzi; z0;ωÞ is the transmission response at zi for a
source at z0.
The Marchenko equations relating the Green’s functions G� to

the focusing functions f�1 are

G−ðzi; z0;ωÞ ¼ fþ1 ðz0; zi;ωÞRðz0; z0;ωÞ − f−1 ðz0; zi;ωÞ;
(A-4)

and

Gþðzi; z0;ωÞ ¼ −f−1 ðz0; zi;ωÞ�Rðz0; z0;ωÞ
þ fþ1 ðz0; zi;ωÞ�; (A-5)

where G�ðzi; z0;ωÞ are the one-way Green’s functions at zi for a
source at z0 (Broggini et al., 2012; Broggini and Snieder, 2012;
Wapenaar et al., 2013, 2014; Slob et al., 2014; Singh et al.,
2015, 2016). The one-way Green’s functions are decomposed at
the observation point z denoted by the first superscript þ or −.
We consider downward to be positive; hence, the superscript þ rep-
resents downgoing waves and − upgoing waves.
The focusing functions are auxiliary wavefields that reside in a

truncated medium that (1) has the same material properties as the
actual inhomogeneous medium between z0 and zi (arbitrary depth
level) and (2) is homogeneous above z0 and is reflection-free below
zi (Slob et al., 2014). Therefore, the boundary conditions on z0 and
zi in the truncated medium, in which the focusing function exists,
are reflection-free.

GREEN’S FUNCTIONRETRIEVAL IN THEMIDDLE
OF THE FIRST LAYER za

The focusing function exist in a truncated medium, which we
label Υa. At za, we define the truncated medium Υa as homo-
geneous at and below za and the same as the actual model above
za. Therefore, for this truncated medium ϒa, the reflection response
Rðz0; z0;ωÞ in the frequency domain is r0, whereas the transmission
response Tðz ¼ za; z0;ωÞ ¼ τ0eiωt1∕2.
Substituting the reflection and the transmission response for the

truncated medium Υa into equations A-2 and A-3 yields

fþ1 ðza; z0;ωÞ ¼
r0
τ0

eiωt1∕2; (A-6)

f−1 ðza; z0;ωÞ ¼
1

τ0
eiωt1∕2: (A-7)

We retrieve the up- and downgoing Green’s function G�ðza; z0;ωÞ
by substituting equations A-1, A-6, and A-7 into equations A-4 and
A-5

G−ðza; z0;ωÞ

¼ τ0
r1e−

3
2
iωt1 þ r2e

−iωð32t1þ2t2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
;

(A-8)
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Gþðza; z0;ωÞ

¼ τ0
e−

1
2
iωt1 þ r1r2e−iωð

1
2
t1þ2t2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
:

(A-9)

To verify our result, we compute the time-domain expression for
the series expansion of equation A-8 to yield

G−ðza; z0; tÞ ¼ τ0

�
r1δ

�
t−

3

2
t1

�
þ r2δ

�
t−

3

2
t1 − 2t2

�

− r0r21δ

�
t−

7

2
t1

�
− r21r2δ

�
t−

3

2
t1 − 2t2

�
þ · · ·

�
;

¼ τ0

�
r1δ

�
t−

3

2
t1

�
þ τ21r2δ

�
t−

3

2
t1 − 2t2

�

− r0r21δ

�
t−

7

2
t1

�
þ · · ·

�
; (A-10)

where τ21 ¼ 1 − r21 and t1 and t2 describe the time for a wave to
traverse, in one direction, the length of the first and second layers,
respectively. These waves in equation A-10 are shown in the ray
diagram (see Figure 20), and they correctly correspond to the events
in Figure 1. Note that the retrieval of the Green’s function in equa-
tion A-10 takes into account the transmission coefficients of the
layers.

GREEN’S FUNCTION RETRIEVAL AT THE
SECOND LAYER z1

To retrieve the Green’s function at the second layer z ¼ z1, we
analytically compute the reflection response at z0 and the transmis-
sion response at z1 for the truncated medium Υ1. The truncated
medium Υ1 is homogeneous at and below z1 and the same as
the actual model above z1. For this reason, the reflection response
for the truncated medium Υ1 remains the same as the reflection re-
sponse in the truncated medium Υa because no new interfaces are
included.
The transmission response for the truncated medium Υ1 becomes

Tðz ¼ z1; z0;ωÞ ¼ τ0eiωt1 . The corresponding focusing functions
become

fþ1 ðz1; z0;ωÞ ¼
r0
τ0

eiωt1 ; (A-11)

f−1 ðz1; z0;ωÞ ¼
1

τ0
eiωt1 : (A-12)

Substituting equations A-1, A-11, and A-12 into equations A-4 and
A-5 yields the Green’s function at the second layer:

G−ðz1; z0;ωÞ

¼ τ0
r1e−iωt1 þ r2e−iωðt1þ2t2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
;

(A-13)

Gþðz1; z0;ωÞ

¼ τ0
e−iωt1 þ r1r2e−iωðt1þ2t2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
:

(A-14)
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