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Retrieving electric resistivity data from self‐potential
measurements by cross‐correlation
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[1] We show that the two‐point cross‐correlation of self‐
potential field recordings is equal to the electric resistivity
between the two points. This holds under the condition
that spatially and temporally uncorrelated noise sources
exist throughout the volume. These sources should have a
known amplitude spectrum and their correlated strengths
should be proportional to the dissipative medium property
function. Natural fluctuations, such as thermal noise, may
occur that satisfy the necessary conditions. When these
fluctuations are random deviations from a state of thermal
equilibrium, the fluctuation‐dissipation theorem can be
used to describe these sources. Other types of sources may
exist, such as the ones creating the self‐potential field
through coupling with fluctuations in pressure, temperature
and chemical potential gradients. Citation: Slob, E., R. Snieder,
and A. Revil (2010), Retrieving electric resistivity data from self‐
potential measurements by cross‐correlation, Geophys. Res. Lett.,
37, L04308, doi:10.1029/2009GL042247.

1. Introduction

[2] Many of the underlying theories for Green’s function
extraction, which in the seismological community is referred
to as seismic interferometry, have in common that the
medium is assumed to be lossless to exploit time‐reversal
invariance [Scherbaum, 1987; Schuster, 2001; Campillo and
Paul, 2003; Wapenaar, 2004; Shapiro et al., 2004; Snieder,
2004]. It has been shown [Snieder, 2006, 2007] that a vol-
ume distribution of uncorrelated noise sources, with source
strengths proportional to the dissipation parameters of the
medium, precisely compensates for the energy losses. This
allowed for extracting Green’s functions of diffusive and
wave fields in dissipative media. Wapenaar et al. [2006],
Snieder et al. [2007], and Weaver [2008] showed that
Green’s function extraction by cross‐correlation, including
its extensions for wave fields and diffusive fields in dissi-
pative media, can be represented in a unified form. Thermal
noise in dissipative fluids gives rise to the required volume
distribution of sources to extract the corresponding acoustic
Green’s function [Godin, 2007]. Recently, this has been
extended to elastic waves in dissipative media [Godin,
2009]. The macroscopic electrodynamic theory was devel-

oped by Rytov [1956] from the fluctuation‐dissipation the-
orem [Callen and Welton, 1951]. Rytov found that under
thermal equilibrium conditions the cross‐correlation product
of the electric field, generated by thermal noise and mea-
sured at two locations, is proportional to the real part of the
electric field Green’s function in the frequency domain be-
tween these two locations. The question of whether potential
fields can also be retrieved by cross‐correlation of noise
measurements is investigated here. Both low‐frequency
induced polarization methods and Self‐Potential methods
use quasi‐static electric fields [Revil et al., 2003]. In prac-
tice, potential field values are obtained by integrating mea-
sured time varying field values. The resulting average value
is then stored as the value corresponding to the potential
field. The noise average is zero, but the cross‐correlations of
the noise is not. We show that these cross‐correlations are
equal to the noise power spectrum times the electric potential
Green’s function.
[3] Here we derive identities for the sum and difference of

the Green’s function and its time‐reversed version between
two points, from cross‐correlations of electric potential field
fluctuations generated by sources throughout the volume
and measured at the same two points. The expression for the
sum is based on a fundamentally different formulation of
Green’s function extraction by cross‐correlations (R. Snieder
et al., Lagrangian Green’s function extraction, with appli-
cations to potential fields, diffusion, and acoustic waves,
submitted to New Journal of Physics, 2010) than the ones
used in seismic interferometry. The identity is valid in an
arbitrary heterogeneous anisotropic medium and is derived
for point sources. Then we show that the results obtained by
Rytov [1956] for thermal noise sources can be used in our
result to determine the properties of such sources. We point
out that thermal noise sources may be of interest for labora-
tory scale experiments, but for field experiments other types
of noise sources may dominate. Other source mechanisms
can be random variations in subsurface fluid pressure, tem-
perature and chemical potential gradients in porous soils and
rocks. These other source mechanisms need to couple into
electric fields and we argue that by virtue of the fluctuation‐
dissipation theorem the strength of the corresponding electric
sources is expected to have the desired cross‐correlation
functions.

2. Quasi‐Static Electric Field Equations

[4] When the time variations in the magnetic field are
negligible, the electric field is curl‐free, and hence the
electric field can be written as the gradient of a space‐time
dependent scalar electric potential function; this is known as
the quasi‐static electric field. The macroscopic space‐time
quasi‐static electric field is determined by the scalar electric
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field potential V(r, t), the electric conduction current density
J(r, t), the anisotropic electric‐conductivity 3 × 3 tensor
time‐convolution operator, s(r, t). The time‐dependence of
the conductivity allows for dispersion effects, which corre-
sponds in the frequency domain to a complex‐valued fre-
quency‐dependent conductivity. The external electric‐
charge injection or extraction rate is denoted _qe(r, t), and the
external electric field strength, Ee(r, t). We develop the
theory in the time‐domain and use the following notation for
time‐convolution f (r, t) ⋆ g(r, t) =

R1
!¼"1 f (r, t)g(r, t − t)

dt, and use the subscript notation for vectors and tensors,
while the summation convention applies to repeated lower
case Latin subscripts, ranging from one to three. The electric
conductivity is given by skr(r, t). The effects of all possible
time‐relaxation mechanisms are incorporated in the time‐
dependent conductivity tensor. The reciprocal of the con-
ductivity tensor is the resistivity tensor rrs(r, t), such that
skr⋆rrs = dksd(t), where dks denotes the 3 × 3 identity matrix.
Note that both skr and rrs are symmetric tensors and contain
causal tensor elements. Starting from Maxwell’s equations
the quasi‐static electric field equations can be written as

@kJk ¼ " _qe; ð1Þ

@kV þ "kr ? Jr ¼ ""kr ? J ek ; ð2Þ

where the external electric current density, Jk
e is introduced

for later convenience as the time‐convolution of the medium
electric conductivity and the applied external electric field
strength

J ek r; tð Þ ¼ #kr r; tð Þ ? Ee
r r; tð Þ: ð3Þ

These field equations can be combined into a single equa-
tion given by

@k #kr ? @rVð Þ ¼ "J ; ð4Þ

where the source term, J is the effective volume density of
electric current that is injected or extracted; it is given by

J r; tð Þ ¼ _qe r; tð Þ þ @kJ ek r; tð Þ: ð5Þ

Henceforth the dependency on time is omitted from function
arguments where possible. For Green’s functions we use
point sources J (r) = d(r − r′)d(t), and the electric potential
becomes a Green’s function, V(r) = G(r, r′), which satisfies

@k #kr rð Þ ? @rG r; r
0

! "h i
¼ "$ r" r

0
! "

$ tð Þ: ð6Þ

Two source types are given in equation (5) and we can
define the monopole response

GVq r; r
0

! "
¼def G r; r

0
! "

; ð7Þ

where the left superscript denotes the field type, in this case
the electric potential V, and the right superscript denotes the
source type, in this case the charge injection or extraction
rate. The dipole response GVJ is then the electric potential
field (first superscript) impulse response generated by an
electric dipole current source (second superscript). It is a

vector function whose components (subscript) can be written
as

GVJ
k r; r

0
! "

¼ "@kG r; r
0

! "
: ð8Þ

For a distributed external electric field occupying the
domain D, the electric potential is given by

VJ rð Þ ¼ "
Z

r0 2D
@rG r; r

0
! "

? J er r
0

! "
d3r

0
: ð9Þ

3. Global Field Interactions

[5] A state is a particular measurement situation in a
spatial and temporal domain. It is determined by its source
type and location, its receiver type and location, and by the
medium parameters in the domain. We consider two dif-
ferent states, labeled A and B. The states can differ in their
source mechanisms, their medium parameters, and their
spatial and temporal locations. Here we take sA = sB = s,
and assume that s is symmetric. Equation (4) for state B can
be time‐convolved with the electric potential VA, resulting in

VA ? @k #kr ? @rVB½ ' ¼ "VA ? J B; ð10Þ

and then be integrated over an arbitrary bounded spatial
domain D, with outer boundary ∂D, which has a continuous
outward pointing unit normal vector nT = {n1, n2, n3}, to
give
R
D VA ? J Bd3r ¼

R
D @kVAð Þ ? #kr ? @rVBð Þd3r

"
H
@D nmVA ? #mn ? @nVBd2r: ð11Þ

To arrive at equation (11), integration by parts and Gauss’
divergence theorem has been used in the integral containing
the divergence operator. The resulting boundary integral
runs over the outer boundary, where continuity conditions or
explicit conditions of the Dirichlet and/or Neumann types
are assumed to apply. In the latter case the boundary integral
vanishes. Similarly, equation (4) for state A can be time‐
convolved with VB and integrated over the domainD, resulting
in
R
D VB ? J Ad3r ¼

R
D @kVAð Þ ? #kr ? @rVBð Þd3r

"
H
@D nmVB ? #mn ? @nVAd2r: ð12Þ

Notice that the volume integral in the right‐hand side of
equation (11) is equal to the volume integral in the right‐hand
side of equation (12).
[6] We now use delta functions for the sources, J A =

d(r − rA)d(t), and a similar expression for J B, the potentials
become Green’s functions as defined by VA = G(r, rA) and a
similar expression for VB. For these sources and fields
equation (11) and (12) become

G rB; rAð Þ ¼
R
D @kG r; rAð Þð Þ ? #kr ? @rG r; rBð Þð Þd3r

"
H
@D nmG r; rAð Þ ? #mn ? @nG r; rBð Þd2r; ð13Þ

G rA; rBð Þ ¼
R
D @kG r; rAð Þð Þ ? #kr ? @rG r; rBð Þð Þd3r

"
H
@D nmG r; rBð Þ ? #mn ? @nG r; rAð Þd2r: ð14Þ
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Here we have assumed that both points rA, rB are inside D.
Subtracting equation (13) from (14) gives

G rA; rBð Þ " G rB; rAð Þ ¼
H
@D nmG r; rAð Þ ? #mn ? @nG r; rBð Þð
"nkG r; rBð Þ ? #kr ? @rG r; rAð ÞÞd2r: ð15Þ

For two locations, rA and rB, the left‐hand side of
equation (15) is independent of the choice of D, therefore
the right‐hand side is also independent of the choice of D.
The right‐hand side of equation (15) is therefore indepen-
dent of the size and shape of D as long as the points rA,B are
both inside the volume. When the volume is taken as infinite
space the surface integral goes to zero. This is because the
integrand goes to zero proportionally to inverse distance
cubed and the surface area of a sphere is proportional to
distance squared. This establishes the well‐known source‐
receiver reciprocity relation G(rA, rB, t) = G(rB, rA, t).

4. Green’s Function Retrieval

[7] For state B we now take the time‐reversed causal state.
Using this in equation (11) and (12) leads to expressions
involving cross‐correlations of quantities in the time‐
domain. Cross‐correlations of two functions f(r, t) and g(r, t)
are denoted as f(r, ±t) ⋆ g(r, ∓t). Using source‐receiver
reciprocity, we directly obtain the global interactions by
taking −t in the conductivity tensor and the Green’s function
for rB in equations (13) and in the Green’s function for rB in
(14), to obtain

G rB; rA; tð Þ ¼
Z

D
@kG r; rA; tð Þð Þ ? #kr r;"tð Þ ? @rG r; rB;"tð Þð Þd3r

"
H
@D nmG r; rA; tð Þ ? #mn r;"tð Þ ? @nG r; rB;"tð Þd2r;

ð16Þ

G rB; rA;"tð Þ ¼
Z

D
@kG r; rA; tð Þð Þ ? #kr r; tð Þ ? @rG r; rB;"tð Þð Þd3r

"
H
@D nmG r; rB;"tð Þ ? #mn r; tð Þ ? @nG r; rA; tð Þd2r:

ð17Þ
We extend the domain D to three‐dimensional infinite space
R3 and use the fact that in that case each surface integral
goes to zero. We then obtain two integral relations for the
Green’s function as

G rB; rA;(tð Þ ¼
R
R3 @kG rA; r; tð Þð Þ ? #kr r;)tð Þ
? @rG rB; r;"tð Þð Þd3r: ð18Þ

Interestingly, the only difference in the right‐hand side of
equation (18) is in the time‐dependence of the conductivity.
By adding and subtracting the result of equation (18) for
both signs of the time‐dependence, we obtain

G rB; rA; tð Þ ( G rB; rA;"tð Þ ¼ (
Z

R3
@kG rA; r; tð Þð Þ

? #kr r; tð Þ ( #kr r;"tð Þ½ ' ? @rG rB; r;"tð Þð Þd3r: ð19Þ

Equation (19) shows that either the sum or difference of the
Green’s function between rA and rB and its time‐reversed
version is obtained from cross‐correlation products of the
Green’s function measured at rA and Green’s function

measured at rB. Both are related to external electric‐current
point sources scaled with the medium conductivity tensor at
r. Integration over all sources in R3 finally gives the Green’s
function. The sum of the conductivity tensors corresponds in
the frequency domain to twice the real part of the complex
conductivity tensor, whereas the difference would correspond
to 2i times the imaginary part. We substitute equation (8) in
equation (19) to obtain the right‐hand side as contributions
from dipole responses

G rB; rA; tð Þ ( G rB; rA;"tð Þ ¼ (
Z

R3
GVJ

k rA; r; tð Þ

? #kr r; tð Þ ( #kr r;"tð Þ½ ' ? GVJ
r rB; r;"tð Þd3r: ð20Þ

For this equation we can find suitable source distributions that
allow for practical Green’s function extraction, which is
discussed in the next section.

5. Field Fluctuations

[8] In the time‐domain the Green’s matrix is causal, hence
G(rB, rA, t) = 0 for t < 0, and the time‐reversed Green’s
function is time‐reversed causal, hence G(rA, rB, −t) = 0 for
t > 0. Because of this difference in the time dependence,
both G(rB, rA, t) and G(rA, rB, −t) can be retrieved from the
left‐hand side of equation (20). Apart from the usefulness of
equation (20) for modeling and inversion [Wapenaar,
2007], and for validation of numerical codes, here the pri-
mary interest is in possible applications of remote sensing
without active sources.

5.1. Fluctuations About a Thermodynamic Equilibrium
State
[9] Rytov et al. [1989] worked out the full electrodynamic

theory for field fluctuations in piecewise continuous mac-
roscopic systems in thermal equilibrium. We write their
results here for the quasi‐static electric potential Green’s
function, which is in our notation given by

V rA; tð Þ ? V rB;"tð Þh i ¼ 2kBT G rA; rB; tð Þ þ G rA; rB;"tð Þ½ ';
ð21Þ

where kB is Boltzmann’s constant and T is absolute tem-
perature. The condition for the validity of this equation is
that the medium is unbounded, or that homogeneous
boundary conditions occur at the boundary of the domain.
Equation (21) states that the cross‐correlation of the electric
potentials at the two locations rA and rB is equal to the
thermal energy, kBT, times the sum of the Green’s function
and its time‐reversed version between rA and rB. We observe
that the right‐hand side of equation (21) is, apart from twice
the thermal energy, the same as the left‐hand side of equation
(20) with a plus‐sign.We can now use this fact to establish the
cross‐correlation of the thermal noise sources. We first write
the observation of the electric‐potential at rA or rB as a response
to thermal noise electric dipole sources distributed through-
out the volume, in accordance with equation (5), as

V rAð Þ ¼
Z

r2R3
GVJ

r rA; r; tð Þ ? J er r; tð Þd3r; ð22Þ

V rBð Þ ¼
Z

r0 2R3
GVJ

k rB; r
0
; t

! "
? J ek r

0
; t

! "
d3r

0
: ð23Þ
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The correlation product of V(rA) and V(rB), can then be
written as

hV rA; tð Þ ? V rB;"tð Þi ¼
Z

R3

Z

R3
hGVJ

r rA; r; tð Þ ? J er r; tð Þ

? J ek r
0
;"t

# $
? GVJ

k rB; r
0
;"t

# $
id3r0d3r:

ð24Þ

In the right‐hand side of equation (21) we substitute equation
(20) to obtain

V rA; tð Þ ? V rB;"tð Þh i ¼ 2kBT
Z

R3
hGVJ

r rA; r; tð Þ ? #kr r; tð Þ½

þ #rk r;"tð Þ' ? GVJ
k rB; r;"tð Þid3r: ð25Þ

Comparing the right‐hand side of equation (24) with the
right‐hand side of equation (25) we find that cross‐correlation
of the thermal noise electric dipole sources are given by

Z

R3
hJ ek r; tð Þ ? J er r

0
;"t

! "
id3r0 ¼ 2kBT #kr r; tð Þ þ #rk r;"tð Þ½ ':

ð26Þ

Equation (26) states that the cross‐correlation product of
thermal noise electric dipole sources is equal to the sum of
the electric conductivity and its time‐reversed version, times
the thermal energy in the system. This result is also given by
Landau and Lifshitz [1960], where it is derived from the
fluctuation‐dissipation theorem.
[10] When the medium is not dissipative everywhere in

space, s(r, t) = 0 in some part of D, the non‐dissipative part
of the medium can be excluded from the volume integration
to allow the boundary to run at the intersection of the dis-
sipative and non‐dissipative domain. Under quasi‐static
electric field conditions, the earth surface is such an inter-
face, and Dirichlet conditions apply to the normal component
of the electric current, so that the boundary integrals present
in equations (16) and (17) are still zero and equation (19),
with a plus‐sign, and equation (21) remain valid in the re-
duced volume where the medium is dissipative. This implies
that the electric response of the earth as a heterogeneous half
space, or sphere, can be determined by cross‐correlations of
thermal fluctuational electric noise recordings.

5.2. Strengths of Electric Thermal Noise Signals
[11] The expected strength of the thermal noise fields

depends on the thermal energy. Boltzmann’s constant is kB ≈
1.4 × 10−23 J/K, hence for a temperature of T ≈ 300 K, kBT ≈
4.2 × 10−21 J. The total energy delivered between two
electrodes is equal to the energy dissipated in the medium by
the resistance of the medium, which is related to the location
of the two electrodes. This results in hVi2/R = 4kBTDf,
where R is the apparent resistance of the medium and Df is
the frequency bandwidth of the measurement. The energy
depends on the bandwidth of the instrument used in the
experiment. For a bandwidth of Df = 10 kHz, the power is
4kBTDf ≈ 1.7 × 10−16 Watt. If the apparent resistance of
the measurement is 0.6 W, the mean fluctuation of the
squared electric potential difference between these two
points is hVi2 ≈ 10−16 which corresponds to measuring a
voltage difference between the two electrodes of V ≈ 10 nV.

The bandwidth of the measurement can be increased by
increasing the receiver bandwidth, because the mean energy
of the signal is proportional to the bandwidth. Finally,
the apparent resistance of a measurement is given by V/I =
Rapp = rapp/(4pjr − r′j), where rapp is the apparent resistivity
of an equivalent homogeneous infinite medium, r and r′ are
the positions between which the potential difference is
measured. For the assumed 0.6 W apparent resistance in our
example, the apparent resistivity is rapp = 7jr − r′jWm. For a
distance between the two electrodes of jr − r′j = 10 m, the
apparent resistivity is rapp = 70Wm. For a certain distance
between the electrodes the potential fluctuations increase if
the conductivity decreases. We can always find electrode
pairs that will lead to a high quality virtual measurement
from cross‐correlations of thermal noise potential difference
recordings. While this may be sufficient in the laboratory as
demonstrated by Johnson [1928], in the field there will be
many other sources of electric noise.

5.3. Other Types of Random Electrical Noise Sources
[12] Randomly generated electric fluctuations at the

microscopic level are caused by random motion of charge
carriers, such as electrons, ions, and small colloidal parti-
cles. At the macroscopic level these correspond to fluctua-
tions in the electric field, which then act as the source.
According to the fluctuation‐dissipation theorem, energy
that is dissipated is also radiated to maintain thermal equi-
librium. In a linear model for natural sources, obtained from
assuming linearity in the vicinity of thermodynamic equi-
librium, the source electric current density is given as the
sum of coupling coefficients multiplied by gradients in fluid
pressure, temperature, and chemical potential of the pore
water [Revil and Linde, 2006]. Fundamentally, random
fluctuations in gradients of temperature, fluid pressure, and
chemical potential of the pore water generate fluctuations in
the source current density that create small radiating dipoles.
These random fluctuations are through the coupling coeffi-
cients transformed into electrical currents. The coupling
coefficients also contribute to the strengths of these sources.
These coupling coefficients can be explicitly determined for
a porous material by upscaling the corresponding Nernst‐
Planck equation [Revil, 2007]. Other possible sources of
noise are related to drainage processes. When the pore water
is replaced by a non‐wetting fluid, electric bursts are gen-
erated that are associated with Haines jumps. Haines jumps
are sudden jumps in the position of the meniscus during
drainage and imbibitions. During drainage, the associated
electrical potential fluctuations can be higher than 10 mV
[Haas and Revil, 2009]. These are available subsurface
sources and their effects are measured in self‐potential
methods for subsurface characterization and monitoring
applications. Here we propose that these self‐potential mea-
surements be cross‐correlated to retrieve electric potential
data as if active resistivity surveys were carried out, because
equation (20) remains valid in absence of thermal noise and
can be used when the other noise sources are available.
[13] For thermal noise sources the strength of these

sources can be determined from the fluctuation‐dissipation
theorem as formulated in equation (21) in combination with
the reciprocity relation of the correlation type with a plus‐
sign as expressed in equation (20). This means that the
thermal noise cross‐correlations are determined by the basic
equations. This is not necessarily true for the other source
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mechanisms. They can be either thermal non‐equilibrium or
non‐thermal in nature. Then we will still have

V rA; tð Þ ? V rB;"tð Þh i / G rA; rB; tð Þ þ G rA; rB;"tð Þ½ '; ð27Þ

An important aspect for equation (27) to hold is that these
sources are uncorrelated. When they have a structural
component, non‐zero spatial correlation lengths may result.
Even if the random deviations do not depend on this
structural component there may be some correlation length
present in these sources. When the correlation lengths are
small compared to the measurement scale, they are not
important, but when they are of the same length scale or
larger than the measurement scale they cannot be neglected.
In that case the statistics of the sources need to be known or
determined by independent means. This can be achieved by
measuring simultaneously the noise in the electric potential,
fluid pressure and temperature fields, and analyzing their
noise characteristics.

6. Conclusions

[14] We have derived an identity that relates cross‐
correlations of fluctuations in the self‐potential, recorded at
two locations, to the electric resistivity between these two
points. We have used the fluctuation‐dissipation theorem to
arbitrary linear dissipative systems, which can be used for
Green’s function extraction. This leads to the identity for the
cross‐correlation of thermal noise measurements at two
locations being proportional to the Green’s function be-
tween those two locations, with thermal energy as the pro-
portionality constant. This is possibly of interest in
laboratory investigations.
[15] For possible field applications, thermal noise may not

be the major source of fluctuations. For other uncorrelated
sources of noise the mechanisms that couple into the electric
fields have been identified as possible noise sources and the
additional requirement is that their coupling coefficients are
known or can be determined by independent means. This
may lead to field procedures that allow for obtaining electric
resistivity data from cross‐correlations of self‐potential
noise recordings.
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