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1 Introduction

The Earth is a big place: its radius is about 6400
km. In comparison, the deepest boreholes drilled
are about 10 km deep. We thus have little oppor-
tunity to take direct measurements or samples
inside the Earth: it is mostly inaccessible. And
even for the upper 10 km that we can sample, the
cost of drilling deep boreholes is very high. This
means that inferences about the Earth’s interior
are largely based on physical and chemical mea-
surements taken at the Earth’s surface, or even
from space. Investigating the inside of the Earth
thus resembles that classical black-box problem:
determine the contents of a closed box when you
can do anything except open the box.

If one knew physical fields, such as the grav-
itational field or the elastic wave field, inside
the Earth, one could infer the local properties
of the Earth by inserting the measured field into
the equation that governs that field, and extract
the physical parameters, such as the mass den-
sity, from the field equation. However, the fields
are measured at the Earth’s surface or sometimes
even above that surface. One thus needs a recipe
for propagating the measured field from its sur-
face of observation into the Earth’s interior. This
is a problem where mathematics comes to the res-
cue in the form of Green’s theorem. It relates
measurements taken at a surface bounding a vol-
ume to the fields inside that volume. This prin-
ciple is called downward continuation.

In the following we apply Green’s theorem to
a large class of physical systems and show that
this theorem only relates measurements at a sur-
face to measurements in the interior when the
equations are the same regardless of whether one
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moves towards the future or towards the past.
Such equations are said to be invariant for time
reversal. We focus in particular on seismic imag-
ing because this is the technique that provides the
highest spatial resolution.

2 Green’s theorem for general
systems

Consider physical systems that satisfy the follow-
ing partial differential equation for a field u(r, t)
that is excited by sources q(r, t):

N∑
n=0

an(r)
∂nu

∂tn
= ∇ · (B(r)∇u(r, t)) + q(r, t). (1)

This equation captures many specific equations.
An example is the wave equation
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where κ is the bulk modulus, γ is a damping pa-
rameter and ρ is the density. Another example of
equation (1) is the diffusion equation

∂u(r, t)

∂t
= ∇ · (D(r)∇u(r, t)) + q(r, t), (3)

with D(r) the diffusion constant. This equation
is used to describe flow in porous media such
as aquifers and hydrocarbon reservoirs. It also
accounts for heat conduction and for diffusive
spreading of pollutants. A variant of (3) is the
Schrödinger equation that accounts for the dy-
namics of microscopic particles

i~
∂ψ(r, t)

∂t
− V (r)ψ(r, t) = − ~2

2m
∇2ψ(r, t). (4)

Here ~ is Planck’s constant divided by 2π, m is
the mass of the particle and V (r) the real poten-
tial in which the particle moves. In geophysics the
gravitational potential plays an important role
because it helps constrain the mass density in-
side the Earth. The gravitational field satisfies
Poisson’s equation

0 = ∇2u(r)− 4πGρ(r), (5)

with G the gravitational constant. This equation
does not depend on time.
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Note that the applications (2)–(5) are special
forms of the general equation (1). In these ap-
plications B(r) is real, hence we use B = B∗ in
the following, with the asterisk denoting complex
conjugation. We also use the Fourier convention
and notation f(t) =

∫
f(ω)e−iωtdω. With this,

the general equation (1) reduces to

N∑
n=0

(−iω)nan(r)u(r, ω)

= ∇ · (B(r)∇u(r, ω)) + q(r, ω). (6)

Each time derivative is replaced by a multiplica-
tion with −iω. The treatment that follows is valid
in the frequency domain. For brevity we omit the
frequency dependence of variables.

Green’s theorem follows by considering two dif-
ferent field states, uP (r) and uQ(r), that are ex-
cited by sources qP (r) and qQ(r), respectively.
Take equation (1) for state P , multiply with u∗Q,
and integrate over volume. Next take the com-
plex conjugate of (1) for state Q, multiply with
uP and integrate over volume. Subtracting these
two volume integrals and applying Green’s theo-
rem to the terms containing B(r) gives

N∑
n=0

(−iω)n
∫
AnuPu

∗
Q dV

=

∮
B

(
∂uP
∂n

u∗Q − uP
∂u∗Q
∂n

)
dS

+

∫ (
u∗QqP − uP q∗Q

)
dV, (7)

where ∂/∂n denotes the outward normal deriva-
tive to the surface S that bounds the volume over
which we integrate and

An(r) = an(r)− (−1)na∗n(r). (8)

In the following the Green’s function G(r, r0),
defined as the solution of (6) to a point excitation,
q(r) = δ(r− r0), plays a key role. An important
property of G is reciprocity:

G(r, r′) = G(r′, r). (9)

Under suitable boundary conditions, this prop-
erty is valid for all applications that follow.

Consider the case where uP is source-free (qP =
0) and uQ is excited by a point source, qQ(r) =

δ(r − rQ). Then uQ(r) = G(r, rQ) = G(rQ, r).
Using this in (7), denoting uP by u, and replacing
rQ → r and r→ r′ gives

u(r) = −
N∑

n=0

(−iω)n
∫
An(r′)G∗(r, r′)u(r′) dV ′

+

∮
B(r′)

(
G∗(r, r′)

∂u

∂n′
− ∂G∗(r, r′)

∂n′
u

)
dS′.

(10)

3 Moving the field into the interior

Equation (10) is a powerful tool for propagating
measurements taken at the boundary of a system
into the interior of that system. This is of par-
ticular importance in Earth science. We first il-
lustrate this principle for the acoustic wave equa-
tion (2), which is a prototype of the equations
that govern seismic imaging. In the notation of
(1) the wave equation (2) has N = 2, a2 = 1/κ,
a1 = γ, a0 = 0 and B = 1/ρ. The coefficients an
enter (10) in a volume integral though the com-
bination (8),

An =

{
2i Im (an) for n even
2 Re (an) for n odd,

(11)

where Re and Im denote the real and imaginary
part, respectively. According to (11), a2 does
not contribute because κ is real. Consider first
the case when there is no attenuation, so that
a1 = γ = 0 and (10) reduces to the representa-
tion theorem

u(r) =

∮
1

ρ

(
G∗(r, r′)

∂u

∂n′
− ∂G∗(r, r′)

∂n′
u

)
dS′.

(12)
This expression relates measurements at the sur-
face in the integral on the right-hand side give the
wave field in the interior on the left-hand side.

What happens if there is attenuation? In that
case a1 = γ > 0, and according to (10) and
(11), equation (12) must be extended with a
volume term 2iω

∫
γ(r′)G∗(r, r′)u(r′) dV on the

right-hand side. This term contains the wave field
in the interior that we seek to determine, so that
this field does not follow from measurements at
the surface only. In principle, attenuation makes
seismic imaging impossible. In practice, attenu-
ation in the Earth is weak so that the offending
volume integral can be ignored.
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Can diffuse fields be imaged? For the diffusion
equation (3) the only nonzero terms in (1) are
a1 = 1 and B = D. Inserting these in (10) gives

u(r) = 2iω

∫
G∗(r, r′)u(r′) dV

+

∮
D(r′)

(
G∗(r, r′)

∂u

∂n′
− ∂G∗(r, r′)

∂n′
u

)
dS′.

Just as for attenuating acoustic waves the right-
hand side contains the unknown field in the in-
terior. This means that measurements of diffu-
sive fields taken at the surface cannot be used for
imaging using Green’s theorem.

The Schrödinger equation (4) is first order in
time, and for this reason one might think that
like for the diffusion equation one cannot infer
the field values within a volume from measure-
ments taken at the boundary. For this equation
N = 1, a1 = i~, a0 = −V and B = −~2/(2m).
According to (10) and (11), and assuming that
the potential V is real, the volume integral de-
pends on Im (a0) = Im (−V ) = 0 for n = 0 and
on Re (a1) = Re (i~) = 0 for n = 1. The volume
integral thus vanishes and field values in the inte-
rior can be determined from field values measured
at the boundary.

For the gravitational potential, field equation
(5), all an = 0 and B = 1, so that in a source-free
region the field satisfies

u(r) =

∮ (
G(r, r′)

∂u

∂n′
− ∂G(r, r′)

∂n′
u(r′)

)
dS′.

(13)
The potential field does not depend on time, and
as a result both the field u and the Green’s func-
tion G are real functions, hence there are no com-
plex conjugates in (13). This expression makes it
possible to infer the gravitational field above the
Earth when the field is known at the Earth’s sur-
face. Expression (13) can be used for upward con-
tinuation, where one infers the gravitational field
at higher elevations from measurements taken at
the Earth’s surface. This can be used, for ex-
ample, to compute the trajectories of satellites.
Similarly, one can use this expression for down-
ward continuation where one computes the grav-
itational field at lower elevations from measure-
ments taken higher up. An application is to infer
the gravitational field at the Earth’s surface from
measurements taken from satellites or aircraft. It

is, however, not possible to use (13) to compute
the gravitational field inside the Earth. In the
interior the mass density ρ(r) is nonzero, and ac-
cording to (5) the source q(r) is nonzero. This vi-
olates the assumption qP = 0 used in the deriva-
tion of equation (10). For this reason Green’s
theorem cannot be used to infer the mass density
in the Earth from measurements taken at the sur-
face.

In general, the property that the field in the
interior follows from field measurements taken at
the boundary is valid for systems that are in-
variant for time reversal. These are systems that
obey equations that are invariant when time is re-
versed and t is replaced by −t. This is true for the
wave equation in the absence of attenuation, but
attenuation breaks the symmetry between past
and future. The diffusion equation is not invari-
ant under time reversal; heat diffuses away when
moving to the future. Like the diffusion equation,
the Schrödinger’s equation is of first order in time,
and one might think it is not invariant for time re-
versal. One can show, however, that when ψ(r, t)
is a solution, then so is ψ∗(r,−t). According to
the principles of quantum mechanics one cannot
make a distinction between the wave function and
its complex conjugate, hence the equation is ef-
fectively invariant for time reversal and, as we
have seen, measurements at the surface suffice to
determine the field in the interior.

4 Seismic imaging

In this section, we discuss the application of the
representation theorem (12) to seismic imaging.
A typical marine seismic experiment is shown in
figure 1. A ship tows a streamer (dashed line).
This is a long tube with hydrophones (pressure
sensors) and/or geophones (motion sensors) that
act as recording devices. An air gun (a device
delivering an impulsive bubble of air) acts as a
seismic source just behind the ship. The waves
reflected by layers in the Earth are recorded by
sensors in the streamer.

The water surface is a free surface, hence the
pressure p vanishes there: p(z = 0) = 0. How-
ever, the particle motion does not vanish. Ac-
cording to Newton’s law, the acceleration a is re-
lated to the pressure by ρa = −∇p. The vertical
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p(z = 0) = 0

S1

S0

R

Figure 1: The geometry of a marine seismic survey.

component of this expression is given by

ρaz = −∂p
∂z
. (14)

We use this relation in the representation the-
orem (12) for the pressure p. For the bound-
ary we take the combination of the sea surface
S0 and a hemisphere S∞ with radius R (fig-
ure 1). In the presence of a tiny amount of at-
tenuation the pressure p and Green’s function G
decay as exp(−αR), with α an attenuation co-
efficient, and the contribution of S∞ vanishes
as R → ∞. The closed surface integral thus
reduces to the contribution of the free surface
S0. Since that surface is horizontal, the nor-
mal derivative is just the derivative in the −z-
direction. (Choosing a coordinate system with
positive z pointing down.) As the pressure van-
ishes at the free surface, expression (12) reduces
to p(r) = −

∫
S0
ρ−1(r′)G∗(r, r′)(∂p(r′)/∂z′) dS′.

Eliminating the vertical derivative of the pressure
with expression (14) gives

p(r, ω) =

∫
S0

G∗(r, r′, ω)az(r′, ω) dS′, (15)

having restored the frequency dependence. This
formula relates the pressure in the subsurface to
the motion recorded at the sea surface.

The reader may have wondered why the
complex conjugate of G was used, since
most of the expressions hold also when the
complex conjugation is not applied. The
time-domain Green’s function is related

to the frequency domain Green’s function
by G(r, r′, t) =

∫
G(r, r′, ω)e−iωt dω, hence

the time-reversed Green’s function satisfies.
G(r, r′,−t) =

∫
G∗(r, r′, ω)e−iωt dω. This means

that G∗(r, r′, ω) corresponds in the time domain
to the time-reversed Green’s function G(r, r′,−t).
As a consequence, equation (15) corresponds in
the time domain to

p(r, t) =

∫
S0

G(r, r′,−t) ? az(r′, t) dS′, (16)

where the star (?) denotes convolution. The
Green’s function G(r, r′, t) is causal, meaning
that it is only nonzero after the point source acts
at t = 0. It then moves the waves forward in time
away from the point of excitation. Consequently,
the time-reversed Green’s function G(r, r′,−t) is
nonzero only for t < 0, and it propagates the
wave backward in time. In (16) the time reversed
Green’s functionG(r, r′,−t) is convolved with the
recorded acceleration. This means that it takes
the waves that are recorded at the streamer and
propagates them backward in time. This is a de-
sirable property; in order to find the reflectors in
the Earth one needs to know the wave field at the
moment when it was reflected off the reflectors.
The recorded waves thus need to be propagated
back in time to know them at earlier times as
they were reflecting inside the Earth. This is the
reason why the time-reversed Green’s function is
used, and ultimately this is the reason why the
theory presented here used the complex conjugate
G∗(r, r′, ω) instead of G(r, r′, ω). If we had used
G(r, r′, t) instead of G(r, r′,−t), equation (16)
would give the pressure field inside the Earth after
it has been recorded at the receivers. This field
does not give information about the interaction
of waves with reflectors before the waves propa-
gated to the surface where they are recorded. For
this reason the theory in section 3 is based on G∗

rather than G.

5 A chicken and egg problem

As shown here, Green’s theorem makes it possible
to infer the value of a physical field in the inte-
rior of the Earth from measurements taken at the
Earth’s surface, or above that surface. There is,
however, a catch. In order to downward continue
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fields measured at the Earth’s surface, one must
know the Green’s function, see for example (15).
For the wave equation (2) the space and time
derivative fields are multiplied by the mass den-
sity and bulk modulus of the Earth, respectively.
The Green’s function needed for downward con-
tinuation of seismic waves thus depends on the
properties of the Earth, but it is these proper-
ties that one seeks to determine. We therefore
need the properties of the Earth to determine the
properties of the Earth!

Fortunately, there is a way out off this conun-
drum. It turns out that for seismic imaging it suf-
fices to have an estimate of the Green’s function
that positions the wavefronts at more or less the
correct location. Such an estimated Green’s func-
tion is computed from a smooth velocity model.
The velocity used is obtained from a procedure
called velocity estimation where one determines
a smooth velocity model from measured arrival
times from reflected seismic waves. The success
of the seismic method in the hydrocarbon indus-
try shows that this procedure works in practice.
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