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S U M M A R Y  
Both paraxial ray tracing and two-point ray tracing are powerful tools for solving 
wave propagation problems. When a slowness model is mildly perturbed from a 
reference model, one can use perturbation theory for the determination of the ray 
positions and the traveltimes. An extension of Fermat’s theorem is presented, which 
states that the traveltime is stationary with respect to the perturbations in the ray 
position provided that the endpoints of the ray are perturbed along the wavefront of 
the unperturbed ray. It is shown that when the ray perturbation satisfies this 
condition the second-order traveltime perturbation can be computed from the 
first-order ray perturbation. A perturbation analysis of the equation of kinematic ray 
tracing leads to a simple second-order differential equation for the ray deflection 
expressed in ray coordinates. This constitutes a perturbation method based on a 
Lagrangian formulation, and leads to a first-order expression for the ray deflection 
and a second-order expression for the traveltime perturbation. This is of relevance 
to non-linear traveltime tomography because it leads to an efficient method for 
evaluating the lowest order ray deflection and the non-linear effect this has on the 
traveltimes. The theory is applicable both to two-point ray tracing and to the 
determination of paraxial rays. The derivations in this paper are completely 
self-contained. All expressions, including the transformation to ray coordinates, are 
derived from first principles. In this way one obtains insight in the approximations 
that are actually made. A scale analysis leads to dimensionless numbers that give an 
indication whether the theory is applicable to a specific problem. For the special 
case of a layered reference medium the final equations are particularly simple. Plane 
discontinuities in the reference model and the slowness perturbation are incorpor- 
ated in the theory. The final expressions for the ray deflection and the traveltime 
perturbation can be implemented numerically in a simple way. It is indicated how 
applications to very large-scale problems can be achieved. Several examples, 
including the propagation of waves through a quasi-random model of the earth’s 
mantle illustrate the theory. 

Key words: Fermat’s theorem, paraxial rays, perturbation theory, ray tracing, 
tomography. 

1 INTRODUCTION 

Ray theory plays an important role both in exploration seismics and large-scale seismology. Green’s functions derived from ray 
theory form the basis of several algorithms for computing synthetic seismograms. Traveltime tomography is an important 
technique for the determination of seismic velocities on a variety of scales ranging from cross-borehole tomography to 
tomography of the earth’s mantle. There is a vast amount of literature on ray tracing methods. Traditionally one uses either 
shooting methods (e.g. Cerven? 1987) or bending methods (e.g. Julian & Gubbins 1077; Peyrera, Lee & Keller 1980). 
Recently, new algorithms have been developed which either solve the Eikonal equation with a finite difference method (Vidale 

294 



Ray perturbation theory 295 

1988) or search for the shortest path on a graph which approximates all possible ray paths emanating from a given source 
(Moser 1991). The bending method has recently been further developed by Moser, Nolet & Snieder (1992). In order t o  use the 
full potential of the steadily increasing data sets it is important to have an efficient method for tracing rays in heterogeneous 
media. 

This is especially important in traveltime tomography. When one linearizes the inverse problem for this case one can use 
Fermat’s theorem, which implies that one can use the rays of the reference medium and assume that the observed traveltimes 
are due to slowness perturbations along the unperturbed ray (e.g. Nolet 1987). In reality the inverse problem is non-linear, 
because the slowness perturbations perturb the rays themselves. The true rays are curves along which the traveltime is a 
minimum. This means that if one uses the rays in the reference medium for the inversion, rather than the true rays, that one 
overestimates the time needed for the propagation from the source to the receiver. In order to obtain a fit of the observed 
traveltimes one will obtain a velocity model that is too fast. This means that neglecting the non-linearity of the inverse problem 
leads to  a bias in the reconstructed model. 

The fact that a linearized approach has been relatively successful in traveltime tomography indicates that the effects of ray 
bending on the inversion may not be too dramatic. In fact, a radially stratified earth accounts for a large amount for the 
slowness variations within the earth. This suggests that perturbation theory could be used to account for the effect of the 
slowness perturbation on the ray positions and the traveltimes. It is shown by Snieder. (1990, 1991) how one can set up an 
inversion method based on a perturbation expansion of the forward problem. The theory presented here could be used for this. 

The use of perturbation methods in ray theory is not new. The equations of dynamic ray tracing can be cast in a 
Hamiltonian form. Perturbation methods for Hamiltonian systems are well developed, and a number of authors have used this 
to develop a perturbation theory for ray tracing problems (Chapman 1985; Wunsch 1987; Farra & Madariaga 1987; Farra, 
Virieux & Madariaga 1989; Virieux 1991). As an alternative to  Hamiltonian perturbation theory, one can also apply 
perturbation theory directly to the equation of kinematic ray tracing (Moore 1991). In the jargon of classical mechanics this 
corresponds to a Lagrangian formulation of the perturbation theory. It is a priori not evident that the different perturbation 
methods lead to the same result. Furthermore, i f  one sets up a perturbation problem in two different coordinate systems that 
are related through a non-linear transformation, then perturbation theory in general leads to  different physical results in the 
two formulations. 

Another ambiguity in setting up a perturbation treatment is the choice of the independent parameter and the employed 
coordinate system. Wunsch (1987) uses the horizontal distance of a ray as independent parameter and solves for the depth of a 
ray. Farra & Madariaga (1987) use the distance along the unperturbed ray as independent parameter and employ ray 
coordinates. I n  later studies Farra et al. (1989) and Virieux (1991) use Cartesian coordinates. Moore (1991) uses the distance 
along the perturbed ray as independent parameter. This last choice leads to conceptual problems since the independent 
parameter depends on the ray perturbation itself, which is a serious inconsistency in the theory. The approach of Moore (1991) 
also has the disadvantage that in two-point ray tracing the receiver is not a t  a known position of the independent coordinate 
since the arc length of a perturbed ray joining a given source and receiver is not known a priori. 

Treating ray perturbation theory with a Hamiltonian formalism has the advantage that the derivations are algebraically 
simple, and that one can change relatively easy from one coordinate system to another. However, the derivation of the 
perturbation equations from a Hamiltonian formalism gives little physical insight and it is often not trivial to derive the 
conditions of validity for Hamiltonian perturbation theory. In contrast to this, Lagrangian perturbation theory gives direct 
physical insight because the Lagrangian is the traveltime, and the Euler-Lagrange equation is the equation of kinematic ray 
tracing. The disadvantage of  Lagrangian perturbation theory over Hamiltonian perturbation methods is that the algebra usually 
is more complicated, and that the algebra has to  be redone whenever one changes to  a new coordinate system. 

The aim of this paper is to  present a perturbation solution of the equation of kinematic ray tracing which is conceptually 
simple. In contrast to  earlier perturbation methods, the theory leads to  an explicit expression for the traveltime that is correct 
to second order in the slowness perturbation. The theory leads to  equations that can be applied well to extremely large data 
sets, because the problem can be set up  in such a way that the perturbations in the ray position and traveltimes can be reduced 
to vector operations. Two dimensionless numbers are derived that give an indication whether the method is applicable to a 
certain problem. 

This paper has a tutorial flavour and is completely self-contained. Since the perturbation theory is applied directly to  the 
equation of kinematic ray tracing, rather than to Hamilton’s equations, one can understand how the perturbation in the 
slowness affects the ray positions and the traveltimes. In Section 2 general expressions are derived for the perturbation of the 
traveltime, and it is established under which conditions one can obtain the second-order traveltime perturbation from the 
first-order ray deflection. The equation of kinematic ray tracing is perturbed in Section 3. A transformation to  ray coordinates, 
as shown in Section 4,  simplifies this expression considerably. All expressions needed to make the transformation to ray 
coordinates are derived. The relation with the Frenet equations is shown in Appendix A.  In Section 5 ,  the second-order 
traveltime perturbation is related in three alternative ways to the ray perturbation derived in ray coordinates. Dimensionless 
numbers are derived in Section 6 which indicate whether the perturbation theory can be applied to a specific problem. In 
Section 7 the equations for the ray perturbation are simplified for the important case of a stratified reference medium. The 



296 R.  Snieder and M .  Sambridge 

theory is illustrated with several examples. In Section 8 the theory is applied to  a model with a linear velocity gradient for 
which t h e  exact solution is known in closed form. The theory is applied in Section 9 to  rays propagating through a model of the 
earth’s mantle that is perturbed by quasi-random slowness fluctuations. The effect of slowness discontinuities is introduced in a 
heuristic way in Section 10 for the case of a two-layer model. In Section 11 it is shown in a more rigorous way how the theory 
can be adapted in order to  handle plane discontinuities in the reference slowness and/or the slowness perturbation. Finally, the 
application to rays propagating through a mantle model where both the reference slowness and the slowness perturbation are 
discontinuous at the 670 discontinuity is shown in Section 12. 

2 P E R T U R B A T I O N  T H E O R Y  FOR TRAVELTIMES 

In geometrical optics, a ray is defined as a curve aloqg which the traveltime is stationary. The Euler-Lagrange equation 
corresponding to  this variational problem is the equation of kinematic ray tracing 

where the  slowness is given by u(r), s is the arc length along the ray and r is the position vector. Suppose that the slowness can 
be written as a reference slowness uo(c) and a perturbation EuI(r) 

u(r) = uo(c) + Eul(r). (2) 

The reference slowness l~()(r) may for instance denote the slowness in a flat layered earth model, and the perturbation Eul(r) 
may denote lateral variations in the slowness. The parameter E is used for bookkeeping purposes and facilitates a systematic 
perturbation approach of the ray tracing problem. It is assumed momentarily that uo(r) and u,(r) are  continuous functions of 
the space coordinates, but there are no further restrictions. 

The case where the slowness is perturbed is relevant for two-point ray tracing problems. In paraxial ray tracing one 
perturbs the initial conditions of the ray, and one may or  may not perturb the slowness too, depending on the application. For 
paraxial ray tracing problems with a fixed slowness one may simply set u ,  = 0 in ensuing expressions. 

Let a ray in the reference medium uo(r) be denoted by rO(sl)), where so is the arc length along this reference ray. The ray 
in the perturbed medium is a non-linear function of the slowness perturbation. Except in the vicinity of caustics, the ray 
perturbation can b e  expanded in a regular perturbation series 

r(so) = r I M  + Erl(So) + E ~ ~ ~ ( s ~ ~ )  + . . . . (3) 

The ray perturbation i:i parametrized with the arc length along the reference ray. Perturbations in the ray position along the 
reference ray are irrelevant because these perturbations don’t change the position of the ray. Therefore without loss of 
generality the ray perturbations can be restricted t o  the plane perpendicular to the direction of the reference ray 

(ri * i(,) = 0 for i 2 1. (4) 

‘I’ht: derivative along the reference ray is denoted with a dot: 

In two-point ray tracing the perturbed ray joins the source and receiver of the reference ray; the ray perturbation therefore 
vanishes a t  the endpoints of the ray 

r,(O) = ri(&,) = 0 for i 2 1 (two-point ray tracing), 16) 

where the source is a t  location so = 0 and the unperturbed ray has total arc length So. Since sn measures the arc length along the 
reference ray rO(sO), the vector rO is of unit length: 

The deflection of the ray due to  the slowness perturbation has the effect that the perturbed ray has a different arc length than 
the unperturbed ray. By inserting (3) in the relation 

and by using (4) and (7) one finds after some algebra that to  second order 

dS 
- = 1 + &(i0 * i l )  + E 2 [ $ ( i I  * i l )  - ;(r,, * il)2 + (ill * i2)]. 
&, 
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and its reciprocal expression 

- 1 - &(i" * i,) - E2[$(i1 * il) - &) * i,)2 + (i,) * i*)]. (9) 
3s 0 - _  
dS 

Note that Moore (1991) ignores the distinction between the unperturbed and the perturbed arc length. In that case the O ( E )  
and O(E')  terms in (8) and (9) are ignored and the resulting perturbation scheme is not consistent. 

Now consider the traveltime T 

T = u[r(s)] ds. (10) J 
The perturbation in the slowness and the ray position has two effects. First, the perturbed ray samples different regions than 
the unperturbed ray. By inserting (3) into (2) and performing a Taylor expansion of uo and u I  about r,,, une finds that to 
second order 

u(r) = uo(r0) + E[ul(ro) + rl ~ u ~ , ( r ~ , ) I  + ~ ~ [ r ~  - vul(rO) + tr lr l  :VV~, l ( ro )  + rz * V ~ d r l l ) 1 .  (11) 
In this expression the symbol ':' denotes a double contraction. Second, the perturbation of the ray path leads to a perturbed arc 
length. Using cts = ds/3s,, dso and (11) in (10) this leads with (8) to a perturbation expansion of the traveltime 

T = T,, + E T ~  + E ~ T ~  + O ( E ~ ) ,  (12) 

where it is understood that the slowness and its derivatives are to be evaluated on  the reference ray rO(sO). 

ray in the reference medium. Consider the following integral: 
The expressions for the first- and second-order traveltime perturbation can be simplified by using the fact that rO(so) is a 

where 6(s,) is an arbitrary vector function along the reference ray which at the endpoints of the reference ray is perpendicular 
to  the reference ray 

(6 . i,m = (6 * io)(&) = 0. 

VU,) = U$" + (1" . V U ( ) ) i ( ) .  

(15) 

It follows from (1) that the reference ray satisfies 

(16) 

In deriving this it is used that 

- (i, * V F ) .  
dF -- 
ctso 

Using integration by parts and the condition (15) one may derive the general result 
$1 .%I .%I 

uo(5 -4J 4, = -J uo(k * 4)) 4, - (4, - VUo)(6 * 4)) dsw 

By inserting (16) and (18) in (14) one finds 

Using this expression in (13b, c), the first- and second-order traveltime perturbation have the simplified form 

i7 = Ji[hu'(r") 
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Equation (19) is nothing but Fermat's theorem. It has the consequence that the first-order traveltime perturbation is the 
integral of the slowness perturbation along the reference ray (see 20a). This expression forms the basis of linearized 
tomographic inversions. Another consequence of Fermat's theorem (19) is that the second-order traveltime perturbation does 
not depend on the second-order ray perturbation r2 (see 20b). This means that in order to obtain expressions of the traveltime 
perturbation which are correct to second order, it suffices to know the ray perturbation to first order. For this reason, only the 
first-order ray perturbation is derived in this paper. 

Note that in the derivation it is not used that the ray perturbation vanishes at the endpoints of the ray, but that it is only 
required that (15) is satisfied. Since the wavefront is perpendicular to the ray, this expression states that Fermat's theorem is 
valid when the endpoint of the ray is perturbed along the wavefront of the reference ray. This means that (20b) is not only 
applicable to two-point ray tracing problems, but also to perturbed paraxial rays provided one works in a coordinate system 
where (15) is satisfied. 

3 FIRST-ORDER PERTURBATION THEORY FOR THE RAY DEFLECTION 

The first-order ray deflection can be derived by applying a perturbation analysis to the equation of kinematic ray tracing (1). 
With (17) this equation can be written as 

d2r d r  dr 
u ( r ) s  + (z- vu)  z= vu. 

In evaluating the derivatives in this expression one should take into account that the derivative along the perturbed ray and the 
unperturbed ray are different: 

d ds,, d 
ds - ds ds,,' 

with 3s,,/& given by (9). For the gradient of the slowness one finds with (2), (3) and a Taylor expansion that 

V4r)  = v4)(ro) + 4VU, (ro )  + rl * ~ ~ ~ n ~ ~ o ~ ~ .  

Inserting (ll), (22) and (23) in (21), and differentiating carefully, leads to a linear differential equation for r I :  

~ $ 1  - ~ o ( i i 1  * in)i() - ~ ( ~ ( i i ~ ~  * i l ) i c )  - 2 ~ 4 4 ,  * il)?,) + (i1 V ~ o ) i o  - 2(iO * il)(k(i * VU,))~,)  + io(i(~1 : VVU,)) + ti(?() . V U ~ )  

+ (rl Vuoyr, - r,  - VVuo = Vu,  - (in * V U , ) ~ , ,  - u,ro, (24) 

where it is understood that the slowness and its derivatives are to be evaluated on the reference ray. 

derivatives r,, can be eliminated by writing (16) in the form 
Equation (24) contains a large number of terms, but it is possible to simplify this expression considerably. The second 

1 

uo 
io=- [Vu,- (io * V ~ o ) i o ] .  

Differentiating (4), using (25) to eliminate ro and invoking the orthogonality of rI  and r,, gives 

1 
(il - in) = -- (cl - Vu,). 

un 

Inserting (25) and (26) in (24) leads after some algebra to 

1 

4) 
UOf, - u()(i() f l ) i ( )  + il(f() * vu(J) + - (rl * vu(l)[3vu() - 2(r[> ' vu())r<J] - ' vvuO) - ('($1 : vvU,))rl l l  

= uov(;j - u,,[i,, * v(:)]i". 

It follows that the slowness perturbation affects the first-order ray deflection only through the gradient of the relative slowness 
perturbation V(u,/u,,). Indeed, one finds from (1) that multiplying the slowness with a constant [u(r)-+ Cu(r)] leaves the rays 
unaffected. For such a perturbation ul(r) = (C - l)uo(r), hence V(u,/u,,) = 0 and the ray perturbation vanishes. 

Because of the orthogonality condition (4), only the component of the ray deflection perpendicular to the reference ray is 
relevant. For an arbitrary vector 6 the component perpendicular to the reference ray may be denoted by 

5, ZE g - ( r ( J  g)iO> (28) 
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where it is used that io is of unit length (see 7). Using the definition (28) gives 

3VU,) - 2(i0 * V U ( ) ) i ( )  = 3v, U() + (r() V U ( ) ) i ( ) ,  

(rl * 5 )  = (rl * 5 1 ). 

Since r l  is perpendicular to the reference ray one has 

From the definition (28), and the relations (26) and (30) it follows that 

1 
r, = i, , - - (rl  * Vuo)ro, 

4) 

Using (29) and (31) in (27) gives with the definition (28): 

ut;, + (iO * vuo)r1 I + - (rl  - Vu,,)v  I uo - (r,  - V V ~ J  = u(,v, (:). 3 
4) 

Note from this expression that we only need the perpendicular components of r l  and 'i,. 

4 THE TRANSFORMATION TO RAY COORDINATES 

Expression (32) is considerably simpler than the original perturbation equation (24). Nevertheless, it is not the most convenient 
form to use in numerical computations. First, the simplicity of equation (32) is deceptive, because the relation between the 
perpendicular components of r, and its derivatives is in general not trivial. For example, in general one has (dr1/ds,,), # 
dr ,  L/dsO because the direction r,, of the unperturbed ray varies with so. Second, the first-order ray deflection r, is a 3-D vector. 
However, the constraint (4) reduces the number of independent components of r1 by one,  SO that (32) should be solved under 
the constraint (4). These complications are both handled when a transformation to ray coordinates is made. An additional 
advantage of using ray coordinates is that the condition (15) for the validity of Fermat's theorem is automatically satisfied. 

Consider two mutually orthogonal unit vectors G I  and ij2 that are orthogonal to the reference ray. This implies that 

(31 * 31) = ( 3 2  4*) = (io * 4,) = 1 .  (34) 

The direction i,, of the reference ray changes along the reference ray, so that the unit vectors 3, also change direction along the 
reference ray: lit = qz(so). Since the ray perturbation is perpendicular to  the reference ray, it can be expanded as 

r i =  41Ql+ 9 4 2 .  (35) 

It is the aim of this section to convert the differential equation (32) to  a differential equation for the components q1 and q2. 

expand as 
In order to do so one needs the derivatives of the unit vectors at. Since the basis ( Q l , ~ 2 , i o )  is orthonormal, one can 

The vectors qi are normalized, it follows by differentiation of (34) that 

($1 * 31) = ($2 * %) = 0. (37) 

The quantity (6, Ci2) describes the rotation of the unit vectors tj, and Q2 along the reference ray. This quantity is completely 
arbitrary, since one is free in choosing the direction of the unit vector Q 1  in any direction within the plane perpendicular t o  the 
reference ray. This choice may vary along the reference ray. Denote the rotation rate of the unit vectors Cjl and 42 along the 
reference ray by R(s,,): 

($1 * 42) Q(sn). (38) 

In order to find the term (6, * ro) in (36), differentiate the expression (qi io) = 0 with respect to  so, and eliminate ro with (25); 
this gives 

Note that (4, * Vu,,) is nothing but the derivative of uo in the normal direction ai. Inserting (37), (38) and (39) in (36) one finds 

1 

4) 
4, = Q32 - - (ijl * V U ( ) ) i ( ) .  
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A similar expression follows for q2. By differentiating the first term of (33) one finds that 

(3, * i2) = - (q ,  * 3 2 , .  

so that qz  is given by 

(40b) 
1 

% I  
q2 = -Qq, - - (ljz * vull)r(l .  

I t  is convenient to  use the summation convention for summing over the two unit vectors 3, and G2 and their related 
components. Let F,, denote the second-order Levi-Cevita tensor: 

F , ,  = &2* = o ,  E , Z  = - E 2 ,  = 1. (42) 

The expressions (40a) and (40b) can then be written as 

1 

4 1  
q, = QE,/q/ - - (3; * vU(,)r(l. (43) 

It is shown in Appendix A how equation (43) is rclated to the Frenet equations. The second derivative of 3, follows by 
differentiating (43) and eliminating rl) with (25) and q, with (43); this gives 

where a, is used to represent the coefficient of the i,, terms and where we have expanded the vector VU,, using 
VUIJ = (VUO * G I ) %  + (VUII * 32132 + (Vu,, * i l l ) 4 , .  

In order to convert (32) to ray coordinates it is necessary to  express the derivatives i, and r ,  in the components q, and their 
derivatives. It follows from the definition (28) that for any vector g 

t ,  = (3, 5)iir 
Differentiate (35) with respect to y I l  and use (43) to give 

(45) 

1 

uo 
i, = (4; - QE,f?/ )3,  - - 4;(3, * VU,Ih.  (46) 

Differentiate this expression once more with respect t o  .v,~; with (45) one finds that 

1 

4 1  
r,, = (ql  - Q Z q ,  - 2Q&;jqj - &,/q/)q; - T(3, * Vu,,)($ * Vu,,)q,ij,. (47) 

Insert (46) and (47) in (32) ,  and take the inner product o f  the resulting expression with the unit vectors 3, and Cj2. Using the 
identities 

2 1 

UII 
vvu, ,  - - (Vu,,)(Vu,,) = -U:,VV - 

and 

one finds after some algebra that the components ql satisfy 

This equation needs to  be supplemented with two boundary conditions. For two-point ray tracing these are given by 

q,(0) = q , (S , , )  = 0 (two-point ray tracing); (51) 

for initial value ray tracing one prescribes q,(0) and q,(0). 
The system (50) for the ray perturbation constitutes a pair of coupled linear second-order differential equations and may 

be solved efficiently using a variety of standard numerical techniques (see Press et al. 1986). After discretization, ( S O )  with the 
appropriate boundary conditions can be reduced to a linear system of equations, where only the main diagonal and four other 
bands of the involved matrix have non-zero elements. For the important application of layered reference media (see Section 7) 
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Figure 1. Paraxial rays that are parallel to the reference ray at point A for several values of the transverse curvature of the velocitv 
@:vv(l/u(,). 

the equations for q ,  and q2 decouple, and the resulting matrix system is tridiagonal. Such a system can be solved extremely 
efficiently (e.g. Press et al. 1986). 

Alternatively, one can solve (SO) using a Green's function G,,(s,,, s) which satisfies 

with appropriate boundary conditions. For example, the solution of (SO) subject to the boundary condition ( 5  1)  for two-point 
ray tracing is given by 

This representation of the solution may be useful when one wants to compute the ray deflection for a very large number of 
rays. In that case one can compute the Green's function GJs,,, s) once and store this function in tabulated form. The 
numerical computation of the solution (53) can then be reduced to efficient array processing operations. This may be useful in 
very large-scale tomographic inversions where one wants to  take ray bending effects into account. 

Equation (50) is a second-order differential equation for the ray deflection which bears a remarkable resemblance to the 
equation of motion of a particle in classical mechanics. When one considers ug as the mass of a particle, then uoq, denotes the 
momentum. When sg is associated with time, then the first term in (SO) is the time derivative of the momentum, which is 
present in Newton's law. The terms containing 9 in (50) can be associated respectively with the centrifugal force and the 
Coriolis force which operate because of the rotation of the coordinate system (q,, q2) around the reference ray. The term with 
d(u,Q)/ds,, is due to  the variation in the rate of rotation along the reference ray. The right-hand side of (SO) is equivalent to 
the external forces in Newton's law. This term IS proportional to the gradient of the relative slowness perturbation. The term 
ui(gziil : VVl/u,,)q, arises because of the change in direction of the reference ray. It acts in (SO) as a linear restoring force that 
forces the ray deflection towards the reference ray or repels the perturbed ray from the reference ray depending on the term 
(Cjzij, : VVl/u,). This effect can be understood as follows. Consider momentarily a 2-D medium in which in a certain region the 
reference velocity increases linearly with depth (Qq: VV1 /uo )  = 0 and where the slowness perturbation vanishes. Consider a 
perturbed ray that at a certain position A has a finite displacement from the reference ray and that runs parallel to  the 
reference ray at  that point (see Fig. 1). In that case the reference ray and the perturbed ray are concentric circles, and the ray 
displacement q is constant. One sees in (SO) that for this reference medium the linear restoring force vanishes because 
VVl/u,, = 0. Now consider the same situation, but let the velocity increase faster than linear with depth: (39: VVl/u,,) > 0. In 
that case the perturbed ray is curved more strongly than the reference ray (see Fig. 1), which means that the perturbed ray is 
attracted towards the reference ray. For a medium where the velocity increases slower than linear with depth (qq : VVl/u,,) < 0 
the reference ray has a smaller curvature than in the case of a constant velocity gradient, and the perturbed ray is effectively 
repelled from the reference ray. This behaviour is described by the linear restoring force in equation (SO). 

5 THE SECOND-ORDER TRAVELTIME PERTURBATION 

Once the ray deflection is known, one can compute the change in the traveltime due to  the ray deflection by integrating the 
slowness along the perturbed ray. However, it is possible to simplify expression (20b) for the second-order traveltime 
perturbation. This leads to  compact expressions for the bias in the traveltime that can be evaluated efficiently. 

In order to  simplify the second-order traveltime perturbation, insert (35) and (46) in (20b). Using 

(54) 
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This expression can be simplified further by using equation (50) for the ray deflection. Multiply (SO) with q, ,  sum over i and 
integrate the result along the reference ray; this gives 

Now use that 

E,/4*9, = E1241q2 + ~2lqzq l  = q , q ,  - 9241 = 0 

E,/q'q, = &/A/4, = -&&A/. 

By changing dummy indices one finds 

Furthermore, using an integration by parts it follows that 

Inserting the results (57-59) in (56) gives 

Using this in  (55 )  leads to  a compact expression for the second-order traveltime perturbation 

Because of (51) the boundary term uoq,4i vanishes for two-point ray tracing problems. Once the ray deflection qi is computed 
one can determine the bias in the traveltime with the simple integral (61) along the reference ray. 

Expression (61) contains both the ray deflection and the slowness perturbation. For some applications it may be 
advantageous t o  have an expression for the second-order traveltime perturbation which contains either the ray deflection or the 
slowness perturbation. The  ray deflection q1 can be eliminated in a simple way from (61) using the Green's function. For 
example, for two-point ray tracing one finds from (53) that 

where the Greens function G,(s, s') satisfies (52) with the boundary conditions (51). This expression is useful for analytical 
computations where one specifies the slowness perturbation explicitly. If one has computed and stored the Green's function in 
tabulated form, one can obtain the second-order traveltime perturbation from (62) by performing a double integral along the 
reference ray. This computation can be reduced to efficient array-processing operations. In this way it may be possible t o  
incorporate second-order traveltime effects in very large-scale tomographic inversions. 

For completeness a n  expression is derived for T, which contains the ray deflection, but which does not contain the 
slowness perturbation explicitly. This is achieved by eliminating the term unqiV(u,/u,)q, ds,, from (55 )  using (60); this gives 

As mentioned in Section 4, the differential equation for the ray deflection can be closely associated with the motion of a 
particle in classical mechanics. This analogy can also be used for the second-order traveltime. As noted by Wunsch (1987) and 
Farra and Madariaga (1987), one can consider the traveltime in ray tracing problems as the Lagrangian of an equivalent 
problem in classical mechanics. (The basic connection is of course the variational principle of the action respectively the 
traveltime.) The  Lagrangian is the difference of the kinetic and the potential energy. One  can see that expression (63) is indeed 
of this form. The  term $u0qiqi denotes the change in the deflection formulated in ray coordinates (the velocity). The terms 
containing Q describe the change in ray deflection due to the rotation of the coordinate system along the reference ray. These 
terms together describe the absolute rate of change in the ray deflection, and are equivalent to the kinetic energy in classical 
mechanics. The  last term within the integral in (63) can be associated with the potential energy due to the linear restoring force 
term in (50). 
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6 CONDITIONS FOR T H E  APPLICABILITY O F  FIRST-ORDER P E R T U R B A T I O N  T H E O R Y  

When the slowness perturbation i s  large, the first-order perturbation method of this paper cannot be expected to give useful 
results. In this section estimates for the domain of the applicability of the first-order ray perturbation theory are derived. First, 
the change in the length of the ray induced by the perturbation may not be too severe, because the relations (8) and (9) are 
oniy useful when l ~ s / 3 . s , ,  - 11 << 1 .  This condition is satisfied when 

/ill << 1 .  (64) 

Furthermore a Taylor expansion of u I  is used (up to  order r l  . V u , ) ,  and of u(,  (up to order r lr l :VVuo) .  Let uo vary on a 
length-scale L, , ,  and let u I  vary on a length-scale L .  The truncated Taylor expansions represent the true slowness variations 
with an acceptable accuracy only when 

(rl( << Lo and ( r , (  << L. (65) 

One can check the conditions (64) and (65) after one has computed the perturbed ray, and one can thus verify a posteriori 
whether it was justified to use first-order perturbation theory. 

This is not very satisfactory from the practical point of view, where one would like to  know a priori whether the first-order 
perturbation theory is sufficiently accurate. For this one needs to  relate the slowness perturbation to  the total ray deflection. As 
a simple model, consider a homogenous reference slowness ull ,  and let the slowness perturbation have a constant derivative 
perpendicular to the reference ray: tj - Vu, = u l / L .  The solution of (50) for the ray deflection in the direction of the gradient of 
the slowness perturbation is given by 

The condition (64) implies that for the first-order theory to be valid one must have (aq/&,,l<<l. The angle between the 
perturbed ray and the reference ray is largest for s,, = 0. Using this, the condition (64) implies that 

The ray deflection of the solution (66) is largest when sll = S,,/2, so that the condition Ir, I << L is satisfied when 

The simple model discussed here cannot be used to  investigate the criterion Ir,I << Lo, because uO is constant. However, for 
most practical problems the slowness perturbation varies on a shorter length-scale than the reference slowness, so that the 
condition Ir, I << L usually ensures that Ir, 1 << Lo. 

Note that the criteria (67) and (68) depend on two dimensionless numbers; a factor u I / u ( ,  (which is usually small), and a 
factor SJL (which may be large). The first-order perturbation theory is only valid when the weakness of the relative slowness 
perturbation ( u I / u o )  outweighs the factor SOIL. The criteria (67) and (68) depend critically on the length S, of the unperturbed 
ray. The reason for this is that for a given slowness perturbation, a longer ray is deflected more than a short ray, so that the 
condition that the deflection is small is more stringent for long rays than for short rays. 

7 R A Y  P E R T U R B A T I O N S  IN A L A Y E R E D  REFERENCE M E D I U M  

For the important case of a layered reference medium the differential equation (50) simplifies considerably. Consider first the 
case where the reference slowness is a function of the depth coordinate z only: ug = u,,(z). In that case the reference ray defines 
a vertical plane (see Fig. 2). Let the unit vector vector ljz be perpendicular to  this plane, and let 4, be the unit vector in the 

Figure 2. Definition of the geometric variables for a layered reference medium. The unit vector 9 points out off the diagram. 



304 

plane of the reference ray (Fig. 2). In that case, the unit vectors Cjl and Cj2 do not rotate around the reference ray, hence 
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8 = 0 .  (69) 

Define a Cartesian coordinate system with the z-direction pointing downwards, and with the y-direction perpendicular to the 
vertical plane of the reference ray. In terms of the angle of incidence i,, of the reference ray, the unit vectors for defining the 
ray coordinates are given by 

i,, = sin i,f + cos i& (704 

ij, = -cos if$ + sin it#, (70b) 

ij* = 9 .  (7oc) 

Since the reference slowness depends only on depth, one has 

1 1 

uo uo 
VV--2aedz,-, 

and 

The relations (69-72) can readily be inserted in equation (50) for the ray deflection; this gives 

Since the coordinate system does not rotate around the reference ray (& = O), and since the cross terms (Cjiq,:VV(l/uo)) in (50) 
vanish (because u,, does not depend on the y-coordinate), the equations for q ,  are q2 decoupled. The trigonometric terms in 
(73a,b) can be eliminated by introducing the ray parameter p of the reference ray defined by 

p = u ~ ,  sin ill. (74) 

This parameter is constant along the reference ray (Aki & Richards 1980). Using this parameter, the equations (73a,b) can be 
written as 

The equation for the transverse ray deflection q2 can be integrated in closed form. For example, for two-point ray tracing one 
finds with the boundary conditions (51) that 

1 
q2(sn) = - [F(s,)h(S,) - F(Sn)h(so)] (two-point ray tracing), (76) 

h (&I) 

where 

and 

Equation (75a) with the boundary conditions for q 1  reduces after discretization to a tridiagonal system of linear equations that 
can be solved efficiently. Alternatively, one can use a Green’s function solution analogous to (53) for the solution of (75a). 
Note that in the special case where the reference velocity varies linearly with depth [a,,(l/u,) = 01, one can integrate (75a) 
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analytically, and the solution for 4 ,  is of the form (76); the only difference is that the term d,,u, in (78) should be replaced by 

For a reference model with a spherical geometry, a simple form of the differential equation for the ray deflection is obtained by 
choosing a system of spherical coordinates with the North Pole ( H  = 0) at the source. Lct (r+ 8. 6) denote the unit vectors in 
the vertical, 0 and 4 directions respectively. As in the case of Cartesian coordinates, choose i j 2  perpendicular to the vertical 
plane of the reference ray. This means that the unit vectors do not rotate around the reference ray, condition (69). When i0 
denotes the angle between the reference ray and the vertical, one has 

,. 
Q 1  = -cos i,,8 - sin i,,i, 

Q2 = 6.  (79b) 

(7%) 

The spherical symmetry of the reference velocity implies that 

1 1 

UI) 4) 
vv - = ii d,, - . 

Furthermore, one has 

For a spherically symmetric slowness model the ray parameter defined by 

p = rug sin in ,  (82) 

is constant along the reference ray (Aki & Richards 1980). Inserting the expressions (79-81) in (50) and using (82) to eliminate 
i,, gives the following differential equations for the ray deflection 

For two-point ray tracing the solution of (83b) is given by (76), where one should replace the derivative 3, by ( r  sin 0)-' 3,. 

8 EXAMPLE 1: T H E  LINEAR VELOClTY G R A D I E N T  

As an example of the ray perturbation theory, consider a homogeneous reference medium with velocity qI, where the velocity 
is perturbed with a linear gradient 

c ( z ) = c g  1 + -  . ( ;I 
The slowness perturbation ( l /c  - l /cJ is given by 

(84) 

In this section the two-point ray tracing problem is considered. Since the relative slowness perturbation has a vanishing 
gradient in the horizontal direction, one needs only to  consider the ray deflection q 1  of Fig. 2. Now consider the situation 
where the endpoints of the ray are located at  z = 0, and the reference ray is horizontal. In this particular case equation (73a) 
reduces to 

where u ~ ,  is the slowness of the reference medium, ug = 1 / q l .  Equation (86), with the boundary condition (51), has the solution 

The distance along the reference ray is just the Cartesian coordinate x, while the Q1 direction is the vertical. The  ray deflection 
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Figure 3. True rays (solid lines) and perturbed rays (dashed lines) for a homogeneous reference model and a slowness perturbation 
corresponding to a linear increase of the velocity with depth, f o r  several values of the perturbation ES/L.  

then denotes the depth of the perturbed ray; according to  (87) the perturbed ray is given by 

where it is used that  the depth of the perturbed ray is zper, = E q , .  For this example, the true ray is the arc of a circle (e.g. 
Cervenf 1987), whose equation is given by 

or 

z,,,,, = 4 8 [-1 + [I  + ( ; )2x (s ( , -x ) ] ”2} .  

Expanding this result in E gives 

& E 3  
ze,,,t=-x(sO-x) 2L --x2(s(,-x)2+ 8L3 O(&S). (91) 

The first-order term in (91) agrees with the ray deflection obtained from the ray perturbation theory. Note that in the 
perturbed solution (88) the circle segment of the true ray is approximated with a parabola. 

The ray deflection depends critically on the non-dimensional parameter &S0/L. The true rays and the perturbed rays are 
shown for  several values of this parameter in Fig. 3 .  In agreement with the criterion (67) one sees that the ray perturbation 
deviates significantly from the true rays when the parameter ES,)/L > 2. For the case &S0/L = 1 the error in the ray deflection is 
only 5 per cent, despite the fact that the angle between the reference ray ( z  = 0) and the perturbed ray is about 30” at the 
source. 

The  true traveltime, the traveltime from the second-order perturbation expression (61), and the traveltime from numerical 
integration along the perturbed ray are shown in Fig. 4 as a function of ES,)/L. The traveltime by integrating numerically along 
the perturbed ray is always larger than the true traveltime; this reflects the fact that the true ray is a curve of minimal 
traveltime. A relative error in the traveltime of 0.1 per cent is reached for the traveltime from perturbation theory for 
&SO/L=O.7, while for the traveltime computed from the numerical integration along the reference ray this error level is 
reached for ES[,/L = 1.5. 

The traveltime from the numerical integration along the perturbed ray is much more accurate than the traveltime 
computed from second-order perturbation theory. The reason for this is that in the perturbation calculation one uses 
expression (8) t o  relate the path lengths along the perturbed ray and the reference ray. This expression is sensitive to  
discrepancies in the directions of the reference ray and the perturbed ray. It is striking that for large values of &SOIL (say 
around 3 )  where the ray deflection is not described well by the perturbation theory, the traveltime computed by numerical 
integration along the perturbed ray is relatively accurate. This is a consequence of Fermat’s theorem; since the true ray renders 
the traveltime stationary, the traveltime is relatively insensitive to perturbations in the ray position. 
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Figure 4. The exact traveltime, the traveltime obtained from perturbation theory using (61) and the traveltime from numerical integration 
along the perturbed ray for the model of Fig. 3 as a function of the perturbation E S / L .  

9 EXAMPLE 2: APPLICATION TO THE EARTH'S MANTLE 

In solid earth geophysics, large-scale linearized inversions of traveltimes have been used to construct 3-D models of the P 
velocity in the upper mantle (e.g. Aki, Christofferson & Husebye 1977; Spakman 1990). The linearization in these inversions is 
based on Fermat's theorem, and it is assumed that the observed traveltimes are caused by slowness perturbations integrated 
over the rays in a laterally homogeneous reference model. For a fixed slowness perturbation the true traveltime, computed 
along the true ray, is always smaller than the traveltime along the reference ray. The resulting models may thus suffer from a 
bias due to the neglect of ray bending effects. In this section, the application of ray perturbation theory to rays propagating 
through the earth's mantle is shown. 

The model used in this example is relatively crude. The Jeffreys-Bullen model (Jeffreys & Bullen 1940; Bullen & Bolt 
1985) is used as a reference model uo(r). By applying an earth-flattening transformation (Gerver & Markushevich 1966; Buland 
& Chapman 1983) the true rays and the perturbed rays can be computed in a Cartesian coordinate system. For the slowness 
perturbation a 3-D quasi-random field with the statistics of a Gaussian distribution is used. The method described by Frankel & 
Clayton (1986) is used for generating the slowness perturbation. The statistical properties of the slowness perturbation are 
assumed to be the same at every depth in the (earth-flattened) model. Scale lengths between 100 and 500 km have been used; 
the peak value of the relative slowness variation is normalized to 3 per cent, which corresponds to rms variations of about 1 per 
cent. A statistical analysis of ISC traveltimes suggests a slowness perturbation of about 1 per cent in the upper mantle, and 
dominant scale length of approximately 300 km (Gudmundsson, Davies & Clayton 1990). For the lower mantle, larger scale 
lengths and weaker inhomogeneities are probably more appropiate. Because of the earth-flattening transformation one would 
have to use even larger scale lengths in the lower mantle. In this sense, the results in this section may underestimate the 
applicability of ray perturbation theory to mantle tomography. 

True rays are computed with the two-point ray tracing algorithm of Sambridge & Kennett (1990). In the calculations 
presented here the traveltime accuracy is approximately 0.0001 s. The perturbed rays are computed by constructing a numerical 
solution of (75). A simple first-order finite difference approximation for the second derivatives leads to a pair of tridiagonal 
linear systems for the values of q 1  and q2 at a series of N points along the ray. The coefficients in each system require the 
values of the reference slowness u ~ ,  at points along the ray which are in between the points where the ray deflection is obtained. 
This means that the reference ray is sampled at 2N points. The degree to which the size of N controls the accuracy of the 
numerical solution of (75) depends on the complexity of the slowness perturbation u 1  and the length of the reference ray. Since 
tridiagonal linear systems can be solved efficiently using standard techniques (Press et al. 1986) one is able to set N large and 
ensure numerical accuracy. Computations are performed for epicentral distances of 13.6", 39.2" and 86.5". 

For an assessment of the usefulness of ray perturbation theory to this problem one needs to consider the accuracy of the 
ray positions. For every point along the reference ray, a vertical plane perpendicular to the source-receiver line can be 
defined. The deviation between rays is defined as the distance between the points of intersection within this plane (see Fig. 5). 
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Figure 5 ,  Definition of the distances between the true ray, the perturbed ray, and the ray in the reference medium. The distances are 
measured in the vertical plane. 

For the  medium length ray, with an epicentral distance of 3 9 2 ,  the distance between the true ray and the reference ray 
(T - R), t h e  perturbed ray and the reference ray (P - R) and the perturbed ray and the true ray (P-T) is shown in Fig. 6 for 
various scale lengths L.  Note that the slowness model is three-dimensional, so that the difference of T - R and P - R is not 
equal to T - P. Ray perturbation theory accounts for the ray deflection accurately when the error in the perturbed ray (P - T) 
is much less than the true deflection ( T  - R). For scale lengths of 200 km and larger, the error in the ray deflection computed 
with perturbation theory is much smaller than the total ray deflection. For a scale length of 100 km, the accuracy of the 
perturbation theory is greatly reduced. The reason for this is that in this case the ray deflection, which is about 70 km, is of the 
same order of magnitude as the scale length of the slowness perturbation. The condition (65) for the validity of the 
perturbation theory is therefore not satisfied, and the ray deflection determined from perturbation theory has an error of 
approximately 40 per cent. O n e  can see from Table 1 that the constant Cz, defined in (68) is larger than unity for L = 100 km. 

For the  long ray, with an epicentral distance of 86.5", the ray deflection is less accurately described by perturbation theory. 
In  this case the error in the ray deflection (P - T) is about 30 per cent of the true deflection ( T  - R) for a correlation length of 
400 km; this error increases with a decreasing correlation length. The reason for this is that the conditions for the validity of 
perturbation theory depend critically on the ratio S,,/L (see equations 67-68). However, it should be noted that the employed 
model is probably t o o  rough for the lower mantle. This is aggravated by the use of the earth-flattening transformation because 
this transformation extends the deeper structures in the horizontal direction. Rays are  most sensitive slowness perturbations 
near the middle of the  ray. For the long ray, the turning point is deep in the lower mantle. For this reason the results for the 
long ray may be overly pessimistic. For the short ray, with an epicentral distance of 13.6", the ray deflection is described very 
well by the perturbation theory (see the error P - T  in Table 1). This error is between 4 and 10 per cent of the total ray 
deflection. Indeed one finds that for this ray the constant C, and C, are  much smaller than unity for all employed scale lengths. 

Note that the parameters C, and C2 used in the criteria (67) and (68) are derived for a homogeneous reference slowness 
and  a slowness perturbation with a constant gradient perpendicular to  the reference ray. However, a comparison of the error in 
t h e  ray deflection (P - T) with the total ray deflection (T - R) in Table 1 shows that for more complicated ray geometries the 
parameters C, and C, are good indicators for the accuracy of the ray deflection from perturbation theory. 

The traveltimes in the ISC data set have an accuracy of about 0.1 s. The theory used for performing the tomographic 
inversions should match this accuracy. In Table 2, the total traveltime is shown for various length-scales of the inhomogeneity. 
T h e  difference between the true traveltime and the traveltime in the reference velocity is shown, together with the error in the 
first- and second-order approximations of the traveltime computed with (20a) and (61) respectively. The  error in the traveltime 
by integrating the slowness perturbation numerically over the perturbed ray is also shown. 

For the long ray, the error in the traveltime computed using Fermat's theorem (Error 1st) is about four times as large as 
t h e  required accuracy of 0.1 s. Note that the error in the first-order traveltime perturbation and from the numerical integration 
is always positive. This is due t o  the fact that both traveltimes are computed by integration along a curve which is not the true 
ray. Since the true ray is a curve of minimum traveltime this implies that the error induced by integrating over another curve is 
always positive. In contrast to  this, the error in the traveltime computed with second-order perturbation theory has an 
alternating sign. Using the traveltime computed from second-order perturbation theory will thus reduce the bias in the models 
obtained from tomographic inversions. For the long ray, accounting for ray bending effects with perturbation theory reduces 
the  error in the traveltime for the long ray by a factor of 10, so that the error in the traveltime is about 0.04 s (see the entries 
'Error 2nd' and 'Error int' in Table 2). 

It may be surprising that for the long ray the traveltime computed with ray perturbation theory is very accurate, while the 
ray deflection has a relative error between 10 and 50 per cent (see Table 1). As shown in the example of Fig. 4, relatively large 
errors in the ray deflection d o  not necessarily produce large errors in the traveltime computed by numerical integration along 
the  perturbed ray. In contrast t o  the situation in Fig. 4,  the angle between the reference ray and the true ray in the examples in 
this section is extremely small. This is reflected in the small value of C, in Table 1;  this quantity measures to  what extent the 
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Figure 6. The distance between the true ray, the perturbed ray and the reference ray as defined in Fig. 5 for the continuous quasi-random 
model of the earth's mantle used in Section 9 for a ray of epicentral distance of 39.2". The correlation length is indicated above each figure. 
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Table 1. The distance (in km) as defined in 
Fig. 5 between the true ray and the re- 
ference ray (T- R), the perturbed ray and 
the reference ray (P -  R), and the per- 
turbed ray and the true ray (P -T)  aver- 
aged along rays for different epicentral 
distances and correlation lengths L. The 
constants C1 and C2 are defined in (67) and 
(68). 
L Dist. T-R P-R P-T CI C2 
ux) 86.5 45.49 33.05 22.11 0.230 3.548 
300 86.5 43.43 38.46 16.01 0.181 1.864 
400 86.5 47.50 37.69 15.90 0.167 1.290 
500 86.5 50.84 3607 6.69 0.165 1.018 
100 39.2 35.40 20.42 20.52 0.171 2.174 
200 39.2 17.75 16.37 1.86 0.076 0.484 
300 39.2 12.83 11.07 2.34 0.072 0.304 
400 39.2 11.69 9.98 2.26 0.074 0.234 
500 39.2 11.52 9.99 1.88 0.072 0.184 
100 13.6 6.56 7.24 0.70 0.071 0.274 
200 13.6 3.64 3.51 0.14 0.041 0.079 
300 13.6 1.84 1.77 0.08 0.028 0.036 
400 13.6 2.89 2.66 0.23 0.019 0.019 
500 13.6 3.47 3.15 0.32 0.015 0.011 

requirement (64) is satisfied and to what extent the quantity & / a s , ,  is close to  unity. The reason that the traveltime computed 
from second-order perturbation theory is so close to the traveltime computed by numerical integration along the perturbed ray 
is thus a consequence of the fact that the angle between the reference ray and the perturbed ray is extremely small. For the 
short ray and the medium ray, the error in the traveltime reduces by a factor of between 5 and 10 by taking ray bending effects 
into account using perturbation theory for the ray deflection (see Table 2). 

Equation (75) for the ray deflection and equation (61) for the second-order traveltime perturbation are implemented by 
using a discretization along the reference ray. The number of discretization points that is required depends on the length of the 
ray and 'the length-scale of the slowness fluctuations. In Table 3, the error in the traveltime is shown for the ray with an 
epicentral distance of 39.2" for various numbers of discretization points and a correlation length L = 300 km of the slowness 
perturbation. The same number of discretization points N was used for the numerical solution of the ray deflection and for the 
integration of the traveltime. The error in the first-order traveltime perturbation is only sensitive for the number of 
discretization points when one uses less than 58 points. The reason for this is that the first-order traveltime perturbation is 
independent of the ray deflection, so that the discretization of (75) does not affect the first-order traveltime. The error in the 
second-order traveltime computed from (61) does not change significantly with N for values of N between 58 and 2243. For 
larger values of N the  cumulative effect of the round-off errors in the discretization of (75) are apparent. For smaller values of 
N the discretization is simply too rough. The results in Table 3 indicate that for the media used here a relative small number of 
discretization points (around 200) is sufficient for the computation of the traveltime perturbation. 

Table 2. The total traveltime (Tref) of the reference 
ray, the true perturbation in the traveltime (True-ref), 
the error in the first-order traveltime computed with 
(20a) (Error lst), the error in the second-order travel- 
time computed with (61) (Error 2nd), and the error in 
the traveltime computed by numerical integration along 
the perturbed ray (Error int), for varying epicentral 
distances and correlation lengths L.  The time units are 
seconds. 

L 
200 
300 
400 
500 
100 
200 
300 
400 
500 
100 
200 
300 
400 
500 

Dist. 
86.5 
86.5 
86.5 
86.5 
39.2 
39.2 
39.2 
39.2 
39.2 
13.6 
13.6 
13.6 
13.6 
13.6 

Tref 
756.9 
756.9 
756.9 
756.9 
448.3 
448.3 
448.3 
448.3 
448.3 
188.2 
188.2 
188.2 
188.2 
188.2 

True-ref E 
-2.0738 
-3.0359 
-3.8291 
4.1722 
-0.4365 
- 1.6070 
-3.0264 
4.4218 
-5.4943 
-1.3414 
-1.5993 
-1.6044 
- I  ,6279 
-1.7131 

:nor IS1 
0.4223 
0.4021 
0.3678 
0.3344 
0.3462 
0.1332 
0.0938 
0.0703 
0.0513 
0.0355 
0.0116 
0.0063 
0.0061 
0.0084 

Error 2nd 
0.0305 
-0.0398 
-0.0020 
0.0461 
0.1235 
0.0077 
0.0143 
0.01 22 
0.0094 
-0.0033 
0.0003 
0.0015 
0.0007 
0.0023 

Error in1 
0.0576 
0.0399 
0.0209 
0.0191 
0.1120 
0.0026 
0.0069 
0.0030 
0.0068 
0.0002 
0.0003 
0.0015 
0.0001 
0.0024 
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Table 3. Accuracy of the traveltime computa- 
tions for the medium length ray, for the 
Jeffreys-Bullen reference model and the con- 
tinuous quasi-random slowness perturbation 
with a correlation length L = 300 km, as a 
function of the number of discretization points 
N .  Thc errors arc dcfincd in Table 2. 

N. Tref True-ref Error Is1 Enur2nd Error in1 
22418 448.3 -3.026 0.0938 0.11143 0.0044 
2243 448.3 -3.026 0.0938 11.0051 0.0023 

114 48.3 -3 026 0.0937 o.oosn n.11155 
sx 448.3 -3.026 0.0~37 n.wR 0.0526 

226 448.3 -3.026 0.0938 0.0050 0.0056 

22 448.3 -3.026 0.O967 0.0087 0.3784 

The model used here for the slowness perturbation in the earth's mantle is rather crude. It does not take into account that 
the lower mantle may be smoother than the upper mantle. The length-scale o f  the inhomogeneity is also not corrected for the 
effects of the earth-flattening transformation. Furthermore, a quasi-random slowness perturbation is not completely satisfactory 
for studying ray bending effects in mantle tomography, because the earth's mantle contains significant organized structures such 
as subduction zones. The validity of ray perturbation theory for mantle tomography is presently further investigated. 

10 EXAMPLE 3: A DISCONTINUOUS SLOWNESS PERTURBATION 

The theory for the ray perturbation was developed for continuous slowness perturbations, because Taylor expansions have 
been used in the derivation of the perturbed traveltime (11) and the ray perturbation (23). However, discontinuities in the 
slowness perturbation can be handled by representing the discontinuities by Heaviside functions and the gradient of the 
slowness perturbation by Dirac delta functions. An example of this is shown for the geometry of Fig. 7, where a homogeneous 
reference medium is perturbed with a constant slowness perturbation in the half-space z > 0: 

u, (z )  = -uoH(z) ,  (92) 

where H ( z )  is the Heaviside function. 
The ray is not deflected out of the plane of Fig. 7, so that only the deflection in the plane of the diagram needs to  be 

considered. For this reason the subscript on the coordinate q ,  is deleted in this section. In this case the differential equation 
(73a) for the ray deflection becomes 

ij = sin i,, 8, (2). 
From (92) it follows that 

so= 0 

(93) 

Figure 7. Definition of the geometric variables for the two-layer model. 
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where b ( z )  is the Dirac delta function. The derivatives in equation (93) are with respect t o  the parameter sg. The delta 
function in the right-hand side of (94) needs to  be expressed in s(,. This can be achieved using 

R. Snieder and M .  Sambridge 

I dso/.,,,=,, 

where s, denotes the distance between the source and the point of intersection of the straight reference ray with the slowness 
discontinuity. 

Inserting (95) in (93) gives 

q = -tan iO 6(s,, - s,). 

Integrating this equation leads with the boundary conditions (51) to the solution 

Note that this solution breaks down when i,, = n /2 .  This is the case when the source and the receiver are on the same side of 
the slowness discontinuity. This situation is not consistent with the assumption that the straight reference ray intersects the 
slowness perturbation. It will be clear that the solution of (93) will not give an accurate description of rays that are refracted 
along interfaces. 

However, the solution (97) gives for small values of E a good description of the perturbation o f  a reference ray that does 
intersect the slowness discontinuity. In Fig. 8 the true rays and the solution (97) from the perturbation theory are shown for 
several values of E.  For small values of F the true rays and the rays obtained from perturbation theory are close, but for values 
of E of t h e  order 0.4 the solutions start to  diverge. As shown in Fig. 7, the solution (97) leads to piecewise straight rays. Note 
that the kink in the representation of the perturbed ray does not occur exactly a t  the slowness discontinuity, which is an artifact 
of the use of ray coordinates. Since this is a second-order effect in the ray displacement this does not distract from the use of 
first-order perturbation theory for the ray perturbation. It is shown in Appendix B that Snell's law is satisfied to  first order by 
the solution (97). 

The second-order traveltime perturbation computed from (61) while treating the slowness gradient as a Dirac delta 
function is correct t o  second order, despite the fact that the perturbation theory is developed for continuous slowness 
perturbations. This is shown here for the case that the source and the receiver are separated by the same distance D / 2  from the 
slowness discontinuity. The horizontal distance between the endpoints of the ray is denoted by X (see Fig. 9). In this case we 

Discontinuous slowness perturbation 

"I 
0 

h! 
0 

2 

a: 
0 

I 

& =  -0.2 - 
E = -0.4 

~ 

0.2 0.4 0.6 0.8 
x l D  

Figure 8. The true rays (solid lines) and the perturbed ray (dashed lines) for the two-layer model for various values of the relative slowness 
contrast E. 
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Figure 9. Definition o f  geometric variables for  the compution of  the second-order traveltime perturbation f o r  the two-layer model 

have si = So/2. The second-order traveltime follows by combination of (61) and (94-95) and is given by 

Carrying out the integration over s(,, using the solution (97) and using that tan iO = X / D  (see Fig. 9) gives 

where 7, = u,,S,, is the traveltime of the unperturbed ray. In this case of a straight reference ray the second-order traveltime 
perturbation is always negative, regardless of the sign of the slowness perturbation. This reflects the fact that ray bending 

Trauel time 

v, 
d 

-0.50 -0.25 0.00 0.25 0.50 
& 

Figure 10. The exact traveltime, the traveltime obtained from perturbation theory using (61) and the traveltime from numerical integration 
along the perturbed ray for the two-layer model as a function of the relative slowness contrast E. 
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effects reduce the traveltime. Note also that for x = 0 the second-order traveltime perturbation vanishes, which is due to the 
fact that a ray perpendicular to the slowness discontinuity is not affected by the slowness discontinuity. me second-order 
traveltime in (99) is based on perturbation theory for continuous slowness perturbations, where a discontinuity is treated as a 
Dirac delta function in the slowness gradient. AS shown in Appendix C the result (99) agrees with the second-order traveltime 
perturbation computed for a discontinuous slowness model. 

The true traveltime, and the traveltime from the integration along the perturbed ray are shown in Fig. 10 as a function of 
E.  As in Fig. 4, the traveltime along the perturbed ray is always larger than the true traveltime. Note that the traveltime 
perturbation is dominated by a linear trend, and that the second-order effects on the traveltime are rather small. Indeed, for 
values of the slowness perturbation as large as E = 0.2 the relative error in the traveltime is less than 0.1 per cent. 

This example shows that one can use the ray perturbation theory of this paper for slowness perturbations with 
discontinuities, by describing the gradient of the slowness perturbation in terms of Dirac delta functions. 

11 DISCONTINUITIES IN THE REFERENCE MODEL A N D  THE SLOWNESS PERTURBATION 

Up to this point, the reference model ug(r) and the slowness perturbation u I ( r )  were assumed to be continuous. This was used 
in the expansions (11) and (23) where Taylor expansions of u<,(r) and uI(r) were used. In fact, the ray tracing equation (l),  
which forms the basis of the employed perturbation theory, breaks down at slowness discontinuities. In this situation the ray 
tracing equation (1) should be replaced by matching conditions at the slowness discontinuity. These matching conditions, the 
continuity of the ray position and Snell’s law, can be used to derive a perturbation scheme for the ray deflection and the 
traveltime. In this paper the simplest case of a plane discontinuity is considered for the special case where the reference 
slowness does not vary along the discontinuity. For the generalization to curved interfaces and variations of the reference 
slowness along the interface, an extension of the theory similar to the work of Farra et al. (1989) is needed. 

Consider a plane discontinuity in the slowness. Both the reference slowness u0 and the slowness perturbation u1 may be 
discontinuous across the interface. Let the unit vector perpendicular to the interface be denoted by 5;  see Fig. 11 for a 
definition of the variables. Quantities on one side of the interface are denoted with superscript (-), and the corresponding 
quantity on the other side of the interface is denoted with the superscript (+). The change of a quantity 6 across the interface is 
denoted by 

E ( + )  - t(-). (100) 

[q,]: = 0. (101) 

The reference ray is continuous across the interface, so that 

The continuity condition of the perturbed ray requires some attention. The slowness discontinuity affects the ray perturbation 
in two ways. First, a discontinuity in the relative slowness perturbation ( u l / u o )  leads to a kink in the perturbed ray. Second, 
when the reference model uo(r) is discontinuous, the reference ray has a kink at the interface. As shown in Fig. 11, the 

\ \  

\ 
Figure 11. Definition of the geometric variables for the analysis of the ray perturbation at a discontinuity. 
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definition of the ray coordinates produces in this situation a discontinuity in the representation of the perturbed ray. This is an 
artifact of the use of ray coordinates that needs to be corrected. This can be achieved by determining the point of intersection 
of the perturbed rays (or their extensions) with the interface. By imposing an appropriate continuity condition on the ray 
deflection on the two sides of the interface, one can obtain a continuous perturbed ray by replacing the broken representation 
of the perturbed ray by a new representation which is continuous at the interface (see the dashed line in Fig. 11). The condition 
to be imposed on the perturbed rays is therefore that the perturbed rays (or their extensions) intersect the interface in the same 
position Tin,. 

Consider for the moment a coordinate system with the z-axis perpendicular to  the interface, and let the interface be 
located at  z = zfJ. Let the interface be located at arc length S along the unperturbed ray. On either side of the interface the ray 
can in the vicinity of the interface be parametrized as 

r(so) = a + bso, (102) 

(103a) 

(103b) 

Let the point of intersection of the perturbed ray with the plane of the discontinuity occur for so = s,,[; this point is defined by 
the condition 

to = (ii - r,,,) = (a - ii) + (b * s)~,,,~. (104) 

Solving this expression for s,,,,, inserting the result in (102) and using the definitions (103a,b) gives to first order 

In this expression and the ensuing matching conditions, all quantities should be evaluated at 3,) = S. Since the perturbed rays 
(or their extensions) must intersect the interface in the same position, the quantity derived in (105) must be continuous across 
the interace. Because of the continuity of r,) (see 101), this implies that 

The second continuity condition comes from the requirement that the perturbed rays satisfy Snell's law, which states that (Aki 
& Richards 1980) 

[ ii x u "1 +(S,,,) = 0. 
d s -  

Note that this continuity condition holds a t  the point of intersection rint of the perturbed ray with the interface, hence the 
argument sin[ rather than so = S. Expanding (107) around the point so = S gives 

d [e x .d']'(S) + E(Sint - S) - [ii x u "]+(S) = 0. d s -  4 1  d s -  

The factor E has been introduced because (sin, - S) is linear in the ray deflection. Consider the last term in (108). Since only the 
first-order ray deflection is desired one can replace all quantities in the term 

by their zeroth-order approximations. Carrying out the differentiation with respect to  so, using that the discontinuity is plane so 
that Fi is a constant, and using (17) for the differentiation of uo, one finds that to  O(E)  

With (16) this implies that 

When u,] does not vary along the interface, Vu,, and ii are parallel, and the right-hand side of (110) vanishes. (This condition 
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can in fact be slightly relaxed, since only the discontinuity in the gradient of ug along the interface needs to vanish.) Using this 
in (108) implies that 

[P x u "1 + ( S )  = 0. 
l i p  

From this point o n  all quantities are evaluated for sg = S ;  the variable S is therefore omitted. The unperturbed ray also satisfies 
Snell's law at the point s,, = S,  so that 

[ii x u(+l,]: = 0. 

[ { u ,  - U 0 ( i l  * r(J}fi x r,, + Uof i  x ill: = 0. 

(112) 

Insert (2) and (22) in (111). with (112) this imp!ies that to  first order 

(113) 

The condition (106) imposes a relation on [rl]T, while Snell's law (113) constrains the kink in the ray perturbation [ill:. 
The matching conditions (106) and (113) are expressed in terms of the ray perturbation r, .  However, as in Section 4 it is 

advantageous to  re-express these conditions in ray coordinates. This results in matching conditions for q l ,  q2 and their 
derivatives. It is convenient to  define two unit vectors CII and 6 ,  in the plane of the interface (see Fig. 12). The unit vector kIl 
lies along the intersection of the plane of the interface, with the plane spanned by the incoming and the outgoing rays. The  unit 
vector is the unit vector in the interface perpendicular to  CII. The orthogonality of CI, and @I implies that 

el, (ci x ill) = 0. (114) 

The conditions (106) and (113) can be recast as conditions for q ,  and q2 by using (35) and (46) and dotting the results with both 
CI I  and 6 I .  This gives using (114): 

(1 15a) 

(1 15b) 

(115c) 

(1 15d) 

All unit vectors in these expressions are known, so they provide explicit matching conditions for q l ,  q2 ,  q I  and q2. 
Note that the unit vectors 4, may be chosen completely differently on either side of the interface. In fact, if the reference 

ray has a kink at  least one of the 4; must be discontinuous across the interface. As long as one uses the 9; appropriate for the 
two sides of the interfaces in (115) this poses n o  problems. Similarly, the rate of rotation Q of the unit vectors can be chosen 
independently on the two sides of the interface. 

At  the interface of the slowness discontinuity, the matching conditions ( 1  15) are to be used rather than the differential 
equation (50). In the regions between the slowness discontinuities one should of course use (50) for the computation of the ray 
perturbation. When one discretizes the ray perturbation, one can express the matching conditions as linear equations with a 
tridiagonal structure. The resulting h e a r  equations thus have the same algebraic structure as the linear equations that result 
from the discretization of expression (50) for the regions between the slowness discontinuities. This means that incorporating 
discontinuities in the reference slowness does not alter the structure of the algorithm for the computation of the first-order ray 
deflection. 

A s  an example of the matching conditions, consider a layered reference medium with horizontal interfaces z = consfmi. 

\ 

\ 
\ 

Figure l2. Definition of the unit vectors SII and 6, in the plane of the discontinuity. 



Ray perturbation theory 317 

For this situation it is convenient to assume that the 4 vectors d o  not rotate around the reference ray. condition (69). and to 
use the expressions (70) for the q,. Referring to Fig. 2 we have in this case 

(116a) 

( 1  1hb) 

( I  Ihc) 

Using these relations in (115) and using (74) to eliminate the sin i,, and cos i,, terms in favour of the ray parameter p one obtains 
the following matching conditions: 

[Uoq,]' = 0. 

(1 17b) 

(1 17c) 

( 1  17d) 

As an example, for the slowness perturbation (92) of the two-layer model of Section 10, one finds from (1  17) and the definition 
(74) that [4,]" = -tan io. This result is equivalent to expression (96) obtained by replacing the gradient of (uI/uo)  by a delta 
function when this quantity is discontinuous. 

For the computation of the second-order traveltime perturbation one can either integrate numerically over the perturbed 
ray using the dashed interval L,  in Fig. 11, or one can use the expressions of Section 5 for T,. T o  see that these expressions can 
be used when slowness discontinuities are present one should realize that the derivations in the Sections 2 and 5 hold for any 
subsection of the ray between the discontinuities. There is no reason why the interval 0 < s,, < S,, in the Sections 2 and 5 should 
denote the whole ray, it may also denote a subsection of the ray between the interfaces. The generalized condition (15) for the 
validity of Fermat's theorem allows for this flexibility. Because o f  the use o f  ray coordinates, the boundary condition (15) is 
automatically satisfied at all points along the reference ray, hence also at the points where the reference ray intersects the 
interface. This implies that when one uses for example (61) for the computation of T,, that one should take the boundary term 
$u,qiqi in (61) into account at the interface because this quantity is not necessarily continuous across the interface. One can 
verify easily that the contribution of this boundary term in (61) from subsections of the ray at the opposite sides of the interface 
leads to  a contribution [$uOqi4i]' to the second-order traveltime perturbation. Ignoring this contribution in the example of 
Section 12 for a mantle model with realistic discontinuities leads to a tenfold increase in the error in the second-order 
traveltime. For the special case of a layered reference medium with horizontal interfaces, as in expression (117), one can 
eliminate the q2 contribution to  the interface term: [~uOqjqt] '  = [ ~ u o q l ~ , ] ~ .  

12 EXAMPLE 4: DISCONTINUOUS SLOWNESS MODELS FOR THE EARTH'S MANTLE 

As an illustration of the effect of discontinuities, it is shown in this section what the effect of discontinuities of the reference 
model and the slowness perturbation are for waves propagating through the earth's mantle. The PREM model (Dziewonski & 
Anderson 1981) is used as a reference model. This model has a pronounced discontinuity in the slowness at a depth of about 
670 km. For the slowness perturbation, the quasi-random model used in Section 9 is used. The only difference is that the 
slowness perturbations are independent in the upper and lower mantle, so that the slowness perturbation is also discontinuous 
at a depth of 670 km. 

The ray deviations for an epicentral distance of 39.2" are shown in Fig. 13 for various values of the correlation length L. 
The ray deviations, as defined in Fig. 5 ,  exhibit a kink at  the location where the ray intersects the 670 km discontinuity. This is 
due to  the fact that the ray deviations are  measured in a vertical plane perpendicular to  the source-receiver line. When the 
rays have a kink this implies that the ray deviation has a discontinuity. 

A pronounced difference with the ray deviations of Fig. 6 for the continuous slowness model is that the ray deviation in 
Fig. 13 are largest a t  the slowness discontinuity. A t  these locations the ray has a kink; apparently this increases the sensitivity 
of the ray deflection to perturbations in the slowness. As in Fig. 6, the perturbed ray is not accurate for the shortest correlation 
length ( L  = 100 km). For the continuous slowness model used for Fig. 6 the error in the perturbed ray steadily decreases when 
the correlation length L is increased and the model becomes smoother. In that case the error in the perturbed ray is negligible 
when L = 5 0 0 k m .  This is not the case in Fig. 13 for the discontinuous slowness model. The reason for this is that for the 
discontinuous slowness model the ray deflection is caused both by the slowness variations with correlation length L in the 
upper and lower mantle, and by the discontinuity in the slowness perturbation [uI/u,,]+ at a depth of 670 km. When L 
increases, the effect of the quasi-random slowness perturbation on the ray deflection decreases, but the effect of the slowness 
discontinuity remains constant. One  can conclude that the error in the ray deflection in Fig. 13 for L > 300 km is due to the 
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Figure 13. The distance between the true ray, the perturbed ray and the reference ray as defined in Fig. 5 for the quasi-random model of the 
earth's mantle with discontinuities used in Section 12 for a ray of epicentral distance of 39.2". The correlation length is indicated above each 
figure. 
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Table 4. Errors in the traveltime for a ray with an 
epicentral distance of 39.2” where PREM is the 
reference model and where the slowness perturba- 
tion is independent in the upper and lower mantle. 
The errors are defined as in Table 2. 

L Dist. Trcf True-rcf Error 1st Emr2nd E m r  in1 
100 39.2 444.7 1.0616 0.1666 0.0514 0.0197 
200 39.2 444.7 1.3109 0.1028 0.0165 0.0061 
300 39.2 444.7 1.1690 0.0881 O.M)70 0.0031 
400 39.2 444.7 0.6871 0.0765 0.0051 0.0042 
500 39.2 444.7 0.1433 0.0635 0.0007 0.0014 

slowness discontinuity at a depth of 670 km rather than the continuous slowness perturbation. For these correlation lengths the 
error in the ray deflection is about 20 per cent of the maximum ray deflection. 

The errors in the traveltime for the discontinuous slowness model are shown in Table 4 for a ray with an epicentral 
distance of 39.2” for various values of the correlation length. The numerical integration of the slowness along the perturbed ray 
was performed along the dashed interval L,  in Fig. 11. The second-order traveltime perturbation was computed with (61), 
including the contribution of the boundary term at the discontinuities. A comparison with Table 2 reveals that the error in the 
first- and second-order traveltimes are roughly the same for the continuous and the discontinuous slowness models. The entries 
‘Error-int’ in the Tables 2 and 4 show that the traveltime computed by numerical integration along the perturbed ray has the 
same accuracy for the continuous and the discontinuous slowness models. (The error is about 20 times smaller than the error in 
the first-order traveltime.) This example shows that plane discontinuities in the slowness model can be incorporated in the ray 
perturbation theory. 

13 DISCUSSION 

The ray perturbation method presented here provides an efficient method for computing the change in ray positions and 
traveltimes when the slowness model is perturbed. The theory can be applied when the slowness perturbation is sufficiently 
smooth. The conditions (67) and (68) provide simple criteria for the applicability of the theory. The equation for the ray 
perturbation can be applied both to  initial value ray tracing and for two-point ray tracing. Initial value ray tracing is used in the 
computation of paraxial rays (e.g. Cerveliy, Klimgs & PSenEik 1984). The paraxial rays obtained can be used for the 
computation of amplitudes (e.g. Farra & Madariaga 1987). The main application of two-point ray tracing is non-linear 
traveltime tomography, where the theory can be used to update the rays with the slowness model during an inversion. 

The ray perturbation equation (50) was derived from Lagrangian perturbation theory formulated in ray coordinates. One 
can show that for non-rotating unit vectors (52 = 0) expression (50) is equivalent to  the perturbation equations derived by Farra 
& Madariaga (1987) using a Hamiltonian formalism. This can most easily be seen by using the explicit form of their 
Hamiltonian perturbation equations given by Nowack & Lutter (1988). [The derivation of this result involves a non-trivial 
differentiation of the geometric term h ,  in the Hamiltonian of Farra & Madariaga (1987).] One can incorporate unit vectors qi 
that rotate around the reference ray in the theory of Farra & Madariaga (1987) by adding a term S2Ei,piq, to  their Hamiltonian 
(4) (Farra, personal communication). Alternatively, one can derive equation (50) by projecting the Hamiltonian perturbation 
equations for a Cartesian coordinate system (Chapman 1985; Virieux 1991) on the ray coordinate system (a,, ij2) using the 
transformation equations shown in Section 4. Equation (50) is not equivalent to the perturbation equation (18) derived by 
Moore (1991). This discrepancy is due to the fact that Moore (1991) did not properly handle the change in the ray length due 
to the slowness perturbation. Note finally that the differential equation (50) closely resembles equation (C22) of Moser el af. 
(1992) for linearized ray bending where the slowness is fixed and where one seeks the perturbation that one needs to make to a 
reference curve to deform it towards the true ray. 

In contrast to the perturbation schemes for ray perturbation presented by Farra et al. (1989), Virieux (1991) and Moore 
(1991), the theory presented here employs ray coordinates. Using ray coordinates reduces the number of unknowns at  the 
expense of some additional bookkeeping. However, a major advantage of using ray coordinates is that when the ray 
perturbation is perpendicular to  the unperturbed ray one can obtain in a natural fashion an expression for the travel that is 
correct to second order in the slowness perturbation from the first-order ray deflection (see 20b). This property is lost when 
one uses Cartesian coordinates for the ray perturbation and one has a component in the ray perturbation parallel to the 
reference ray because this invalidates the condition (15). The fact that for the second-order traveltime perturbation one only 
needs the first-order ray deflection relies on an extension of Fermat’s theorem, which states that the traveltime is stationary in 
the ray perturbation, provided the endpoints of the ray are perturbed along the wavefront of the reference ray (condition 15). 
This condition is trivially satisfied when applied to  two-point ray tracing. For paraxial rays it can be satisfied provided one 
ensures that the ray perturbation is perpendicular to the reference ray. With the ray coordinates used here this condition is 
trivially satisfied. The rotation rate 52 of the employed ray coordinates gives an additional degree of freedom in the formulation 
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of ray perturbation problem. This may be  convenient for the generalization of the  theory to weakly anisotropic media where it 
is crucial t o  incorporate the  polarization of the waves in the theory. 

The shooting algorithm used in Sections 9 and 12 was designed to b e  efficient and was optimized. T h e  computations for the 
ray perturbation were  obtaiped from (75) by using a simple and  straightforward discretization of this equation. Without making 
any attempts to optimize t h e  algorithm, the computations for the ray perturbation require two t o  three orders less CPU time 
than t h e  employed shooting method of Sambridge & Kennett  (1990). One can also compute the ray deflection and  the 
traveltime perturbation from a Green's function (see 53 and 62). By computing this Green's function once and storing the 
result i n  tabulated form o n e  may speed up the  computations with several orders of magnitude. This may make  it possible to 
apply t h e  theory t o  mantle tomography where over a million rays are being used (e.g. Spakman 1990). 

R .  Snieder and M .  Sambridge 
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A P P E N D I X  A 
The relation between the expressions (40a,b) and the Frenet equations 

In the  notation of Aki & Richards (1980) the Frenet equations for the unit vectors perpendicular to the ray are given by 

$=-Ki"+6, &=-m. 
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In this expression fi is the unit vector perpendicular to the reference ray in the osculating plane of the ray. The unit vector 6 is 
perpendicular to both ii and rO. Since the two bases (fit, tiz) and (ii, 6) are both perpendicular to the reference ray, they are 
related through a rotation: 

8, = cos (~ii + sin ( ~ 6 ,  
4, = -sin $6 + cos $6, 
where the angle of rotation may depend on the position along the reference ray [(P=(P(s,J]. Differentiation of (A2) with 
respect to so gives with (Al) 

A comparison with (43) shows that 

Q = T + l j ;  (A4) 

the rate of rotation of the ti-vectors (Q) is the rate of rotation of the vectors in the Frenet equation ( T )  plus the relative rate of 
rotation between the two coordinate systems (6). The Frenet equations constitute a special choice for the coordinate system 
(ti,, ti2) where these unit vectors are aligned with the osculating plane of the reference ray. 

The curvature K follows by comparing (A3a,b) with (40a,b), this gives 

1 

UO 
cos (PK =-(ti, * VU,,), 

-1 
sin (Pix = - (ti, - VU,). 

Un 

Using (A2a,b) it follows from this expression that 

1 1 

UO UO 
K = - [(cos $4, - sin @ti2) - Vu,] = - (6 * VuO). 

APPENDIX B 

A proof that the perturbed ray (97) satisfies Snell's law to first order 

Referring to Fig. 7, the angle between the perturbed ray and the reference ray in the upper half-space satisfies 

hence 

i, = io - 0, = io- arctan [&(I -1) tan i,]. 

This means that 

uo sin i, = u, sin i, - EU, 

Likewise, one has for the lower half-space 

and 

i, = io + 6,  = i, + arctan E 2 tan i , ( i o  0) 

so that 

uo(l - E )  sin i, = uo(l- E )  
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Comparing this with (B3) proves that Snell’s law is satisfied to first order: 

uo sin i ,  = u,Q- E )  sin i2 + o(E’). 

APPENDIX C 

Derivation of the second-order traveltime perturbation for the two-layer medium 

Let T ( x )  denote the traveltime of a ray which intersects the slowness discontinuity in the point ( x ,  0) (see Fig. 9). This quantity 
is given by 

For the ray the traveltime is stationary; the condition d T / d x  = 0 gives 

D’ 
( - 2 E  + E2)(X - X ) ’ 2  + [(l - E)’(X - X)’ -x ’ ]  - = 0. 

4 

The point of intersection of the ray with the slowness discontinuity can be expanded in a perturbation series 

x = x , + E X 1 + & ~ x 2 + . . .  . (C3) 

Inserting this in (C2), and equating the contribution of O(E”) and O ( E ‘ )  gives 

0’ 
(2ro - X ) X -  = 0, 

4 
n 2  U 

( X ( )  - X)’X:, + [ ( X ( )  - X)’ + x , X ]  - = 0. 
4 

These equations have the solution 

x ,  = X l 2 ,  

x s:, 
x 1 =  with S; = X 2  + 0’. 

4 D2 

In order to obtain a second-order perturbation expansion for the traveltime, insert (C3) with the solutions (CSa,b) in (Cl). The 
second-order deflection terms x2  cancel in the resulting expression. This is analogous to the situation in Section 2, where the 
second-order terms r2 in expression (13c) for the traveltime cancel. It is for this reason that the solution x2 is not computed in 
the equations (C4) and (C5). The resulting perturbation expansion of the traveltime is given by 

& &’X’ 
T = T o - -  &--- T + q E 3 ) ,  

2 8 D2 ‘~ 
with To = u,So. 

A comparison with equation (99) reveals that the second-order traveltime perturbation computed from the ray 
perturbation theory applied to discontinuous slowness perturbations leads to the correct second-order traveltime perturbation. 


