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Abstract. Many imaging techniques depend on the fact that the waves used for
imaging are invariant for time reversal. The physical reason for this is that in
imaging one propagates the recorded waves backward in time to the place and time
when the waves interacted with the medium. In this chapter, the invariance for time
reversal is shown for Newton’s law, Maxwell’s equations, the Schrödinger equation
and the equations of fluid mechanics. The invariance for time reversal can be used
as a diagnostic tool to study the stability of the temporal evolution of systems. This
is used to study the relation between classical chaos and wave chaos, which also
has implications for quantum chaos. The main conclusion is that in classical chaos
perturbations in the system grow exponentially in time [exp (µt)], whereas for the
corresponding wave system perturbations grow at a much smaller rate algebraically
with time (

√
t).

1 Time-Reversal Invariance of the Laws of Nature

Most laws of nature are invariant for time reversal. The only exceptions are
the weak force that governs radioactive decay and equations that describe
statistical properties such as the heat equation. This means that when we let
the clock run backwards rather than forwards, the deterministic laws that
govern the macroscopic world do not change. Mathematically, time reversal
implies that the time t is replaced by −t. By making the substitution t→ −t
and by verifying whether the equation under consideration changes, one can
verify whether the physical law is unchanged under time reversal.

As a first example let us consider Newton’s third law which governs the
motion of bodies in classical mechanics:

m
d2r

dt2
= F (r) . (1)

In this expression F denotes the force that acts on a particle with mass m
at location r. Under the substitution t→ −t, Newton’s law does not change
because the second time derivative is insensitive to the multiplication with the
factor (−1)2 that follows from this substitution. Mathematically this can be
expressed by stating that Newton’s law transforms as md2r/dt2 = F (r) →
md2r/d (−t)2 = F(r), which is identical to the original law (1). This means
that when r(t) is a solution, then so is r(−t). Physically this means that
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when a particle follows a trajectory then when one reverses the velocity of
the particle at one point it will retrace its original trajectory.

Pressure waves in an acoustic medium satisfy the acoustic wave equation:

ρ∇ ·
(
1
ρ
∇p

)
− 1
c2
∂2p

∂t2
= 0 . (2)

Because of the invariance of the second time derivative under time reversal,
pressure waves in an acoustic medium are invariant for time reversal as well.
This means that when p(r, t) is a solution then the time-reversed wavefield
p(r,−t) is also a solution.

At this point you may think that the invariance for time reversal is due
to the occurrence of the second time derivative in the equations. This is not
necessarily the case. In classical electromagnetism the electric field E and the
magnetic field B obey in vacuum Maxwell’s equations, which contain only
the first time derivative:

∇ · E = 4πρ/ε0 , µ0∇× B − ε0
c

∂E

∂t
=
4π
c

J ,

∇ · B = 0 , ∇× E +
1
c

∂B

∂t
= 0 . (3)

In this expression ρ is the charge density, J is the electrical current density,
ε0 is the electrical permittivity and µ0 is the magnetic susceptibility. Under
time reversal (t → −t) Maxwell’s equations transform to

∇ · E = 4πρ/ε0 , µ0∇× (−B)− ε0
c

∂E

∂ (−t) =
4π
c
(−J) ,

∇ · (−B) = 0 , ∇× E +
1
c

∂ (−B)
∂ (−t) = 0 . (4)

Note that these expressions are identical to the original Maxwell’s equa-
tions (3) with the exception that the magnetic field B and the current J
have changed sign. This is due to the fact that when one changes the direc-
tion of time the velocity of the charges changes sign; hence the associated
current changes sign as well: J → −J . Since the electric current is the source
of the magnetic field, the magnetic field therefore also changes sign under
time reversal (B → −B). However, the Lorentz force F = q (E + v × B)
does not change sign because under time reversal both the magnetic field B
and the velocity v change sign. This means that under time reversal the mag-
netic field B is not invariant because it changes sign. However, the functional
form of the transformed equations (4) and the original equations (3) is iden-
tical and the imprint of the associated fields on charges is unaffected because
the Lorentz force does not change under time reversal. For this reason one
can state that the laws of classical electromagnetism are invariant under time
reversal.
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In quantum mechanics the wave-character of a particle is described by
Schrödinger’s equation:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ , (5)

where V (r) denotes a real potential. When t is replaced by −t and when one
takes the complex conjugate, this equation transforms to

(−i) h̄ ∂ψ∗

∂ (−t) = − h̄2

2m
∇2ψ∗ + V ψ∗ . (6)

This equation is identical to (5) because the minus signs in the first term
cancel each other. This implies that when ψ(r, t) is a solution of Schrödinger’s
equation, then ψ∗(r,−t) is a solution as well. Since in quantum mechanics
only the absolute value |ψ|2 leads to observable effects, one can state that
the Schrödinger equation is invariant for time reversal.1

The time-reversal invariance of Maxwell’s equations is related to the fact
that the current and the magnetic field reverse sign under time reversal.
From this you may have concluded that time-reversal invariance only holds
for linear equations. To show that this is not true, we consider as a last
example a fluid that is exposed to a body force F . The equation of motion
is given by

ρ
∂v

∂t
+ ρv · ∇v = F . (7)

Under time reversal, t→ −t, the velocity changes sign because v = dr/dt→
dr/d (−t) = −v, so that this expression changes under time reversal to

ρ
∂ (−v)
∂ (−t) + ρ (−v) · ∇ (−v) = F . (8)

This expression is identical to the original expression (7) because the minus
signs cancel. This implies that when v(r, t) is a solution of the equation
of motion of the fluid, then −v(r,−t) is a solution as well. This has been
demonstrated in a beautiful experiment by Chaiken et al. [1], who mixed white
paint through black paint by rotating a cylinder in the paint. When the
cylinder was rotated in the reverse direction the paint “un-mixed” again and
the white paint contracted to a localized blob in the black paint.

It should be noted that when one adds dissipation to the equation, the
invariance for time reversal is lost. For example, when viscosity is added to
expression (7), this expression changes to ρ∂v/∂t+ρv·∇v = µ∇2v+F . Under
time reversal this expression transforms to ρ∂ (−v) /∂ (−t)+ρ (−v)·∇(−v)=
1 This is in fact a slight over-simplification. In quantum mechanics the expectation
value of Hermitian operators are the only observable quantities. One can show
that for such an operator the expectation value does not change when one takes
the complex conjugate of the wavefunction ψ.



4 Roel Snieder

µ∇2 (−v) + F , which is not identical to the original expression because the
viscous term µ∇2v changes sign. In general, dissipation implies a direction of
time because energy is lost from the system (with time). Therefore, invariance
for time reversal can only be expected in the absence of dissipation.

The results of this section imply that in the absence of dissipation the laws
of classical mechanics, acoustic wave propagation, classical electromagnetism,
quantum mechanics, and fluid mechanics are invariant under time reversal.
Yet in our daily life we clearly experience a “direction” of time. When a vase
falls on the floor we see it break and all the parts fly around, yet we never
see pieces of pottery suddenly assemble themselves to a vase which then flies
upward in the air. With the years our body ages, the phrase “growing older”
encapsulates a notion that time moves in one direction. The fact that the basic
natural laws are invariant for time reversal, but that we clearly experience
a direction of time, is called the paradox of the “arrow of time” [2]. Detailed
accounts of this issue are given by Coveny and Highfield [3] and by Price [4].

The invariance of the basic equations in physics for time reversal forms the
basis of many applications that are described in this book where waves are
re-emitted from receivers so that they propagate back to the original source.
A clear example is given by Derode et al. [5], who propagated acoustic waves
though a dense assemblage of scatterers to an array of receivers. The recorded
signals are digitized and then time-reversed in a computer after which they
are re-emitted from the receivers. These waves focus after a certain time at
the original source. This process of time-reversed propagation is very stable
to errors in re-emitted signal [6]. The stability of the back-propagation of
strongly scattered waves to the addition of random noise is explained by
Scales and Snieder [7].

2 Wave Chaos and Particle Chaos

At the end of the 19th century, scientists saw the universe as a clockwork
that obeyed the laws of classical physics. If one would know the initial po-
sition and initial velocity of all the particles, one could predict the future
evolution of the universe with great accuracy. Quantum mechanics shattered
this mechanistic dream (or nightmare?) because chance or probability forms
and integral part of this theory. In the 20th century it became apparent that
very simple dynamical systems showed such a strong sensitive dependence
on perturbations in the initial conditions that the prediction of the temporal
evolution of such a system is practically impossible. A famous example is
the Lorenz system which accounts for the air flow in a simplified model for
the atmosphere [8]. In chaotic dynamical systems the perturbations in the
solutions grow exponentially with time [exp (µt)] so that errors in the initial
condition quickly lead to a very different solution. The factor µ is called the
Lyapunov exponent . A detailed and clear account of classical chaos is given
by Tabor [9].
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Suppose one has a system where the classical equations of motion lead
to chaotic behavior. How does the corresponding wave system then behave?
This question is highly relevant because quantum mechanics is the wave ex-
tension of classical mechanics, and one may wonder how the solution of the
Schrödinger equation behaves under a perturbation of the system that for the
classical system leads to chaos. This has led to the formulation of “quantum
chaos” [9]. It is not obvious that the wave system shows the same depen-
dence to perturbations of the system as the classical system, because waves
carry out a natural smoothing [10,11]. The finite extent of the wave field
ensures that a wave samples space in a more extended way than a particle.
This smoothing effect could render wave propagation much more stable for
perturbations of the system than particle propagation [12].

In this chapter the stability of wave propagation is not addressed with
solutions of the Schrödinger equation, but with a numerical simulation of
waves that are analogous to the acoustic waves used in the experiments of
Derode et al. [5]. The geometry of the system is shown in Fig. 1. A numerical
simulation of the experiment of Derode et al. [5] is well suited to study the
stability of the propagation of waves or particles to perturbations. The idea
is that waves (or particles) propagate from a source through the system and
are recorded at receivers. The system is then perturbed, and the waves (or
particles) are re-emitted backward in time from the receivers. Because of the
invariance of the system for time reversal, the waves (or particles) should
converge back onto the source at time t = 0. When the system is perturbed,
this focussing of waves (or particles) onto the original source position is de-
graded. This degradation of the focusing on the source position can be used
as a measure of the sensitivity of system to perturbations.

In the numerical experiment waves or particles are emitted from a source
and then propagate through an assemblage of isotropic point scatterers. In the
wave experiments the waves are recorded on 96 equidistant receivers on the

Fig. 1. Geometry of the numerical experiment with time-reversed propagation.
Dots: scatterers
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line marked “receivers.” For the particles a particle is detected when it crosses
the receiver line. For the time-reversed particle propagation the velocity of
the particle at the receiver location is reversed, and the particle is re-emitted
at time −t towards the scatterers. For the time-reversed propagation of the
waves the recorded wave field is numerically time-reversed and re-emitted
from the receivers. It should be noted that the particles do not interact with
each other, they are only scattered by the scatterers of the system.

In order to make a fair comparison, the isotropic point scatterers have the
same cross-section for the waves and the particle simulation. The numerical
values of the parameters are shown in Table 1. For these parameters the
system can be considered to be a strongly scattering system because the size
of the scatterer array (approximately 80mm) is much larger than the mean
free path (15.56mm). As discussed by Scales and Snieder [13] such strongly
scattered waves show aspects of diffusive behavior.

It should be noted that the equations of particle propagation in classical
mechanics are formally equivalent to the equation of kinematic ray-tracing
that governs the trajectories of rays. Therefore the comparison between wave
propagation and particle propagation not only has a bearing on the relation
between classical chaos and quantum chaos, it is also relevant for the relation
between ray-geometric solutions and full-wave solutions.

Table 1. Numerical values of parameters in numerical experiment

Symbol Property Value

σ Scattering cross-section 1.592mm
l Mean free path 15.56mm
λ Dominant wavelength 2.5mm

3 Instability of Particle Trajectories

In this section the stability properties of particle trajectories are treated.
A full derivation of the results presented in this section and the next can be
found in Snieder and Scales [14] and in Snieder [15]. It is shown in these
references that when a trajectory has the initial perturbation ∆ in the per-
turbation after n scattering events is on average given by

∆ out =
(
2πl
σ

)n

∆ in , (9)

where l is the mean free path and σ is the scattering cross-section. On av-
erage, a particle encounters a scatterer after each time interval l/v, where v
is the velocity of the particle. This means that after a time t the number of
encountered scatterers is on average given by

n =
vt

l
. (10)
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Using this in (9) one finds that the perturbation ∆ (t) in trajectories grows
exponentially with time:

∆ (t) = eµt∆(0) , (11)

where the Lyapunov coefficient µ is given by

µ =
v

l
ln

(
2πl
σ

)
. (12)

This implies that perturbations in the trajectories grow exponentially with
time, which is one of the characteristics of chaotic behavior.

When the growth in the perturbation of a trajectory is comparable to the
cross-section σ of the scatterers, a particle may suddenly miss a scatterer that
it encountered on its unperturbed trajectory. Under this condition the particle
will follow a fundamentally different trajectory. The associated critical length
scale for the perturbation of the scatterer positions is derived by Snieder and
Scales [14] and is given by

δpart
c =

( σ

2πl

)n σ

2
. (13)

Using (10) and (12) one finds that this critical length scale decreases expo-
nentially with time:

δpart
c =

σ

2
e−µt . (14)

Equation (13) states that the critical length scale is proportional to the cross-
section σ multiplied by the dimensionless number (σ/2πl)n. Since for the
employed parameter setting the mean-free path l is much larger than the
scattering cross-section σ (see Table 1), the critical length scale decreases
dramatically as a function of the number of scatterers encountered (see Ta-
ble 2). Note that even for a limited number of scatterer encounters n the
critical length scale becomes much smaller than any of the characteristic
dimensions of the system (which are all of the order of millimeters).

4 Instability of Wave Propagation

The wave field that propagates through a system of isotropic scatterers can
be computed in a relatively simple way using the method of Groenenboom
and Snieder [10], which is described in great detail by Snieder [15]. The wave
field recorded at a receiver in the middle of the receiver array is shown in
Fig. 2. The wave field consists of a long extended wave train of multiply
scattered waves. This is a result of the fact that the mean free path is much
less than the propagation distance of the waves (see Table 1).
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Table 2. Critical error δc for different numbers of scattering encounters. Also
indicated is the employed machine precision

n δc(mm)

1 0.0129
2 2.11× 10−4

3 3.43× 10−6

4 5.60× 10−8

5 9.11 × 10−10

6 1.48 × 10−11

7 2.41 × 10−13

8 3.93 × 10−15

Machine precision 0.22 × 10−15

9 6.41 × 10−17

Fig. 2. Wave field at a receiver located in the middle of the receiver array

The recorded waves can be separated into the ballistic wave and the coda2.
The ballistic wave is the wave that travels more or less along the line of sight
from the source to the receiver. This wave is only affected by multiple forward
scattering and consists of the early part of the wave train in Fig. 2. The detour
of the multiple-scattered waves compared to the un-scattered direct wave is
by definition less than a fraction of the wavelength. This means that the
waves that comprise the ballistic wave are scattered within the first Fresnel
zone. (The concept of the Fresnel zone and its implications are described in
great detail by Kravtsov [16].) The coda consists of the multiply scattered
waves later in the signal. These waves have been scattered in all directions.
2 The term “coda” comes from music, where it denotes the closing part of a piece
of music.
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A critical length scale can be defined for the average perturbation of
the locations of the scatterers that leads to a perturbed wave field that is
uncorrelated with the unperturbed wave field. The physics of wave propa-
gation for the coda waves and the ballistic wave is fundamentally different
because the ballistic wave is mostly sensitive to the average structure of the
medium within the first Fresnel zone [10,15]. For this reason, the critical
length scale is different for the ballistic wave and for the coda waves. As
shown by Snieder [15] the critical length scale for the coda waves is given by

δcoda
c =

λ

4
√
2n

, (15)

while the critical length scale for the ballistic wave is given by

δball
c =

√
λL√

12 (n+ 1)
. (16)

In these expressions λ is the wavelength and L is the source–receiver separa-
tion as shown in Fig. 1.

For the coda waves the critical length scale is given by the wavelength
divided by the square-root of the number of scatterers encountered. Note
that in contrast to the critical length scale (13) for the particles the critical
length scale for the coda waves does not depend on the scattering cross-
section. The reason for this is that for the coda waves the wavelength is the
relevant length scale that determines the interference between the multiply
scattered waves. For the ballistic wave the critical length scale is proportional
to

√
λL. This quantity gives the width of the Fresnel zone in a homogeneous

medium [16]. Since the ballistic wave is only sensitive to the properties of the
medium averaged over the Fresnel zone, the ballistic wave is only affected
when scatterers are moved out of the Fresnel zone when they are displaced.
For this reason the width

√
λL of the Fresnel zone is the relevant scale length

for the ballistic wave.
Using (10) the critical length scale for the coda waves can be rewritten as

δcoda
c =

λ

4
√
2vt/l

. (17)

Note that the time dependence of this quantity is given by 1/
√
t, which

indicates an algebraic decay of the critical length scale with time. In contrast
to this, the time dependence of the critical length scale (14) for the particle
scattering decays as exp (−µt), which denotes an exponential decay with time.
Since the algebraic decay of (17) implies a much slower decay with time than
the exponential decay of the critical length scale of the particles, the wave
propagation is much more robust for perturbations of the system than the
particle propagation. Snieder and Scales [14] conjecture that this is due to
the fact that the scattered waves travel along all possible trajectories between
scatterers and continue to do so when the system is perturbed, whereas the



10 Roel Snieder

particles may travel along a fundamentally different path when the scatterer
locations are perturbed.

The difference in the time dependence for the wave system and the particle
system (algebraic versus exponential) has also been noted for the periodically
kicked rotator. In this system a particle (or wave) moves along a ring and is
exposed after each time interval T to a kick in a fixed direction. Classically
this system displays chaotic behavior and the initial perturbation of the par-
ticle along the ring grows exponentially with time. As shown by Ballantine
and Zibin [17] the corresponding quantum system is sensitive to a critical
perturbation in the initial angle that varies with time as 1/

√
t, which is the

same time dependence as in (17). It is striking that two different systems
give rise to the same time dependence of the critical length scale for both the
particles and the waves.

5 Numerical Examples

In this section numerical examples are used to illustrate the analytical re-
sults of Sects. 3 and 4. Let us first consider the time-reversed propagation
of particles. When a particle is re-emitted at time −t from the receiver line
after its velocity is reversed (v → −v) it should return to the original source
position at time t = 0. This is illustrated in Fig. 3, where the location of the
time-reversed particles is shown at time t = 0. In the top panel the location of
the particles that are scattered less than or equal to 6 times is shown. In this
figure several thousand particles are located at the original source position
at x = z = 0. The middle panel shows the locations of the particles after
time-reversed propagation for the particles that are scattered between 7 and
9 times. Although the particles cluster near the original source position at
x = z = 0, it can be seen that the particles do not completely converge to
this point. The bottom panel shows the location of the time-reversed parti-
cles that are scattered 10 or more times. In this case the particles are not
concentrated near the original source location at all.

In the numerical simulation of Fig. 3 no explicit errors have been imposed.
This implies that the only error is the round-off error of the numerical calcula-
tions. The behavior of the time-reversed particles in Fig. 3 can be understood
by considering Table 2, where the critical length scale is shown as a function
of the number of encountered scatterers. Also shown is the numerical preci-
sion of the machine employed to carry out the calculations. When round-off
errors are the only source of error, particles that are scattered 6 times or less
will refocus on the source after time reversal because the numerical errors are
much smaller than the critical length scale (see Table 2). Conversely, the par-
ticles that are scattered 10 times or more have according to Table 2 a critical
length scale that is much smaller than the round-off error. These particles do
not return to the original source position after time reversal. The numerical
simulations of Fig. 3 therefore agree well with the results of Table 2.
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Fig. 3. Locations of the particles (small dots) at t = 0 after time-reversed propa-
gation for particles that had 6 or less scatterer encounters (top), between 7 and 9
scatterer encounters (middle) and 10 or more scatterer encounters (bottom). In the
top panel several thousand particles are located at the source position at x = z = 0.
The original source position is indicated by a star in Fig. 1

In the next examples the particles are time-reversed after the scatterer
locations have been randomly perturbed. The distance of the time-reversed
particles to the source location is a measure of the error in the time-reversed
propagation through the perturbed system. This error in converted to a num-
ber that measures the quality of the time-reversed propagation by the func-
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tion exp (−error/D), where “error” is the mean distance of the time-reversed
particles from the original source location and D is the typical length scale
of the experiment. When all the particles refocus on the source, the error is
zero and the exponential is equal to unity, while the function exp (−error/D)
is much smaller than unity when the particles do not propagate back to the
source.

The quality of the time-reversed propagation that is defined in this way
is shown in Fig. 4 as a function of the root-mean-square value of the pertur-
bation of the scatterer positions before the reversed propagation. The curves
are shown for different numbers, n, of encountered scatterers. Note that the
logarithmic scale along the horizontal axis spans 13 orders of magnitude!
The critical length scale of (13) is indicated by the vertical arrows. Each of
the curves shows a characteristic decay when the error in the scatterer loca-
tion exceeds a certain critical value. The point at which the quality of the
time-reversed propagation degrades agrees well with the critical length scale
indicated by the vertical arrows.

The waves that are time-reversed refocus at time t = 0 at the original
source position through a process of constructive interference. When the sys-
tem is perturbed before time reversal the height of the interference peak
decreases. Thus the ratio of the interference peak at the original source loca-
tion x = z = 0 of the perturbed system to the same corresponding quantity
of the unperturbed system is a measure of the accuracy of the time-reversed
propagation. When this quantity is equal to unity, the time-reversed prop-

Fig. 4. Imaging quality defined as exp(−error/D) as a function of the perturbation
of the initial position of the time-reversed particle. The analytical estimates of the
the critical perturbation are indicated by vertical arrows
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agation is optimal, whereas a small value of this quantity denotes degraded
time-reversed propagation.

The quality of the time-reversed propagation of the waves that is defined
in this way is shown in Fig. 5 both for the ballistic wave (dashed line) and
for coda waves that are scattered approximately 10, 20 or 30 times (the solid
lines of the left). Details of this numerical experiment are given by Snieder
and Scales [14]. The analytical estimates of the critical length scales as given
in (15) and (16) are shown by the vertical errors. Note that the critical length
scales agree well with the numerical simulations.

The solid lines in the middle denote the quality of the time-reversed prop-
agation when the source for the time-reversed propagation is perturbed for
the ballistic wave and coda waves in three time intervals. In this case only the
wave path from the source to the first scatterer changes; hence the critical
length scale is given by λ/4, and this length scale does not depend on the
time interval that is used for the time-reversed propagation [14].

The ballistic wave is much more robust for perturbations of the system
than the coda waves. This is due to the fact that the critical length scale for
the ballistic wave is given according to (16) given by the width of Fresnel
zone, whereas the critical length scale of the coda waves is given according
to (15) proportional to the wavelength. Since the width of the Fresnel zone
is much larger than the wavelength (with a factor

√
L/λ), the critical length

Fig. 5. Quality of time-reversed propagation of waves measured as the ratio of the
peak height of the imaged section for the experiment with perturbed conditions
compared to the peak height for the unperturbed imaged section. The dashed line
represents the ballistic wave with perturbed scatterers. The dotted lines are for the
three coda intervals for perturbed scatterers, with the latest coda interval on the
left. The critical length scales from the theory are shown by vertical arrows
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scale of the ballistic wave is much larger than the critical length scale for the
coda waves. In addition, the number of scatterers encountered is much larger
for the coda waves than for the ballistic waves. With the factor 1/

√
n in (15)

this gives a further reduction of the critical length scale for the coda waves
compared to the same quantity for the ballistic wave.

6 Discussion

The most striking feature in a comparison of Figs. 4 and 5 is the scale
along the horizontal axis. For the particles the critical scale length ranges
between 10−15mm and 10−3mm for particles that are scattered 8 or 2 times
respectively. For the waves the critical length scale ranges between 10−1mm
and 4mm for the coda waves that are scattered 30 times and the ballistic
wave respectively. This indicates that wave propagation is vastly more robust
than the propagation of particles. Mathematically this is related to the fact
that the critical length scale decays exponentially with time [exp (−µt)] for
the particles, while for the waves the critical length scales decay algebraically
with time (1/

√
t). Physically there are two reasons that explain this differ-

ence. The particles are point-like objects with no scale, whereas the waves
are associated with a wavelength. The wave field “feels” its environment on
a scale that only depends on the wavelength; hence the wavelength deter-
mines a natural scale for the sensitivity of scattered waves for perturbations
of the scatterer locations. In addition, the waves travel along all possible scat-
tering paths, whereas the particles each travel along a unique path. When
the scatterer locations are perturbed, the waves still travel along all possible
scattering paths, whereas a particle may suddenly follow a fundamentally dif-
ferent trajectory. Both effects should form an essential element in accounting
for the differences between classical chaos and wave chaos.
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