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Obtaining smooth solutions to large, linear,
inverse problems

John C. VanDecar* and Roel Snieder+

ABSTRACT

It is not uncommon now for geophysical inverse
problems to be parameterized by 104 to 105 unknowns
associated with upwards of 106 to 107 data con
straints. The matrix problem defining the linearization
of such a system (e.g., ~m = b) is usually solved with
a least-squares criterion (m = (~t~ -) ~ tb). The size
of the matrix, however, discourages the direct solution
of the system and researchers often tum to iterative
techniques such as the method of conjugate gradients
to obtain an estimate of the least-squares solution.
These iterative methods take advantage of the sparse
ness of ~, which often has as few as 2-3 percent of its
elements nonzero, and do not require the calculation
(or storage) of the matrix ~t~. Although there are
usually many more data constraints than unknowns,
these problems are, in general, underdetermined and
therefore require some sort of regularization to obtain

a solution. When the regularization is simple damping,
the conjugate gradients method tends to converge in
relativelyfew iterations. However, when derivative-type
regularization is applied (first derivative constraints to
obtain the flattest model that fits the data; second deriv
ative to obtain the smoothest), the convergence of parts
ofthe solution may be drastically inhibited. In a series of
I-D examples and a synthetic 2-D crosshole tomography
example, we demonstrate this problem and also suggest
a method of accelerating the convergence through the
preconditioning of the conjugate gradient search direc
tions. We derive a I-D preconditioning operator for the
case of first derivative regularization using a WKBJ
approximation. We have found that preconditioning can
reduce the number of iterations necessary to obtain
satisfactory convergence by up to an order of magnitude.
The conclusions we present are also relevant to Baye
sian inversion, where a smoothness constraint is im
posed through an a priori covariance of the model.

INTRODUCTION

A common problem in geophysics is to find a model of
physical parameters m (e.g., density, elastic parameters)
that predicts a set of measurements d (e.g., gravity anoma
lies, the traveltimes of elastic waves), given a physical
theory relating the two:

Usually, however, the data are inconsistent (because of
measurement errors) and a wide range of models can explain
the data equally well. If very few parameters are necessary
to describe m, it is possible to perform a search of all realistic
combinations of the parameters and present all those models
that fit the measurements within a prescribed tolerance
(usually set by the estimated level of data variance). Ifmany

f(m) = d. (1)

parameters are necessary, as is normally the case with 2- or
3-D models, we usually wish to present a single "preferred
model," along with measures of our confidence in this model
and the degree of correlation between different parameters
(Backus and Gilbert, 1967, 1968, 1970; Parker, 1977;
Tarantola and Valette, 1982). The criteria we use to select
this preferred model are necessarily subjective because of
the ill-posed nature of the inverse problem.

If we have an a priori independent estimate of the model
parameters, we may wish to choose the model predicting the
measurements that is in some way closest to our initial
model estimate (e.g., Tarantola, 1987). Unless this a priori
model is well characterized (i.e., unless we have accurate
estimates of the a priori model probability distribution), such
criteria may result in models that contain more structure
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Smooth Solutions to Inverse Problems 819

Since it is likely that many different models m willpredict the
measurements d to within the desired accuracy, we need to
add auxiliary information (e.g., in the form of linear equa
tions) to equation (2) to obtain a single preferred solution.
Our system then becomes,

(8)

(6)

(7)

(C-
1I2F)A = _d -

- KQ

for future reference.
The use of conjugate-gradients (CG) algorithms to solve

least-squares inverse problems has expanded rapidly over
the past decade in the field of geophysics (Nolet, 1985, 1987;
Scales, 1987; Spakman and Nolet, 1988; Nolet and Snieder,
1990; VanDecar, 1991; van der Hilst et al., 1991). When
faced with large sparse systems of linear equations, iterative
methods such as CG have the advantage of being able to
avoid the computation and storage of the normal equations
in equation (4), thereby allowing much larger problems to be
solved than would otherwise be computationally feasible
(other row-action algorithms such as the back-projection
methods, algebraic reconstruction technique (ART), and
simultaneous iterative reconstruction technique (SIRT) also
share this advantage). In geophysical tomography applica
tions, iterative methods such as CG have been found to
converge quickly when the regularization imposed is simple
damping (Nolet, 1987). If, however, we wish to apply a
criterion such as finding the flattest or smoothest model that
satisfies the data, then the convergence may be severely
inhibited. Since this "least structure" criterion would seem
desirable (Constable et al., 1987; VanDecar, 1991; Sam
bridge, 1990;Neele et al., 1993), in this paper we investigate
the effect of this criterion on solutions obtained via the CG
algorithm. As noted in Stork (1992), velocity-reflector depth
tradeoff in reflection seismology may also cause slow CG
convergence because of the large ratio of largest to smallest
eigenvalues in the resulting system.

and

allow us to compactly represent equations (4) and (5) as,

and

(3)

(2)~m=d.

than is necessary to explain the data. A second approach is
to obtain the model predicting the measurements that con
tains the "least amount of structure" or in some way is the
"least complicated" (Constable et al., 1987;Tarantola, 1987;
Sambridge, 1990; VanDecar, 1991). Constable et al. (1987)
appropriately termed the application of such constraints
"Occam's Inversion," in reference to the principle that "it is
vain to do with more what can be done with fewer." The
amount of structure a model contains is often defined by its
first or second derivative. If we choose the model with the
smallest overall first derivative (in practice, first differences),
then we obtain the "flattest" model that predicts the mea
surements, while with the second derivative (second differ
ences) we obtain the "smoothest."

Up until this point, we have stated nothing about how we
obtain this preferred model. If the physical relationship
between model and data can be linearized, then equation (1)
can be represented as a matrix product,

where Q is a derivative operator in the case of a "minimum
structure" inversion, or simply the identity matrix! in the
case of damping toward some prescribed value. The con
stant K controls the weight of these auxiliary constraints
relative to the data equations. On the right-hand side, Qmo
represents the degree to which the initial or reference model
mo satisfies the auxiliary constraints (note that mo = 0 if m
represents the total model, and not a perturbation).

If the data errors have zero mean and Gaussian distribu
tion, we can obtain the maximum likelihood solution to
equation (3) through the efficient method of least squares.
This leads to the normal equations,

where (:d represents the data covariance matrix. The solu
tion to equation (4) is then,

A comparison with equation (1.89) in Tarantola (1987) shows
that the constraint KQ corresponds to (:,;;1/2 in the formula
tion in Tarantola (1987), where (;m is the a priori model
covariance matrix. In our formulation, we place constraints
upon the total final model (mlOlal = m + mo) rather than on
perturbations from the reference model mo and therefore
have the difference of a negative sign from the formulation of
Tarantola (1987). The definitions,

(4)
THE CONJUGATE GRADIENTS ALGORITHM

For many geophysical problems, obtaining the least
squares solution to equation (3) as shown in equation (8) in a
direct fashion would require a prohibitive amount of com
puter memory and time. This is because of the fact that
although the matrix ~ is sparse (few of its elements are
nonzero), the matrix ~I1 is relatively dense, and matrix
matrix multiplication, even for sparse matrices, is expen
sive. Therefore, to take advantage of the sparseness of our
system, we will turn to a CG method of solution.

The CG method we use was originally developed for the
solution of large sparse systems by Hestenes and Stiefel
(1952), Golub and Van Loan (1989) and Scales (1987) provide
reviews of its derivation and use. In one form or another at
present, the CG method is used widely to solve large
geophysical inverse problems. The LSQR algorithm, devel-
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820 VanDecar and Snieder

oped by Paige and Saunders (1982), is a popular derivative of
the method (Nolet, 1987; van der Sluis and van der Vorst,
1987). The Hestenes and Stiefel (1952) CG algorithm repre
sents an acceleration of the well-known method of steepest
descent (Golub and Van Loan, 1989). Rather than iteratively
searching for a solution in purely the gradient directions, the
CG method searches in the subspace spanned by the current
residual direction and all previous directions. In ill-condi
tioned systems (where the ratio of the largest to smallest
eigenvalues is large), the method of steepest descent may
converge very slowly, while the CG method must converge
to the least-squares solution in at most n iterations, n being
the number of unknowns. Remarkably, this acceleration is
obtained with little extra effort.

The conjugate gradient algorithm for solving problems as
defined by equation (7) is simply:

k=O; mo = initial solution estimate; ro = ~t(b - ~mo),

while rk ¥ 0

k = k + 1,
if k = 1

at a regular series of points Xi, i = 1, n, constrained by data
at various points along the x-axis m(xj) = dj,j = 1, m. Our
goal is to find the line going through the cluster of data that
contains the least amount of structure. If we choose, for
instance, that the equations represented by .p constrain the
first differences of the I-D model m (i.e., we have chosen
gradient damping as the form of regularization), we then
have

-1 0 0 0 0 0
0 -1 1 0 0 0 0
0 o -1 1 0 0 0

1
D=- (10)- .1

0 0 0 0 -1 1 0
0 0 0 0 0 -1 1

PI = ro, (9a)

1<:=0.03

(a) 2 iterations

----without preconditioning
- - - 1/2with, 1/2withoutprecondnioning
-------- with preconditioning
--true least-squares solution

end

else

pk=rk-I +13kPk-1

end

(9b)

[Compare this with algorithm 10.2.1 in Golub and Van Loan
(1989), which is appropriate for square matrices]. Notice that
only matrix-vector and vector-vector products are per
formed, and that at each iteration we simply minimize the
residual r by moving a distance a in search direction p. We
are guaranteed to reduce this residual at each step unless we
have reached the least-squares solution. In practice, as a
result of both computer round-off errors and the limited
amount of time available, we do not perform n iterations.
Then the CG algorithm can be thought of as a truly iterative
method (Golub and Van Loan, 1989).

l-DEXAMPLE

To illustrate the type of convergence problems encoun
tered when applying derivative regularization, we will first
consider the simple I-D example diagrammed in Figures 1
and 2. Our problem consists of fitting a model line m sampled

Xi

FIG. 1. One-dimensional example of the convergence of
CG inversion with a low level of first-difference regulariza
tion (K = 0.03) at (a) iteration 2, (b) iteration 4, and (c)
iteration 8. The solid line represents the true least-squares
solution. The long dashed lines are the CG solution without
preconditioning, while the shorter dashed lines are the
solutions with half or with all iterations preconditioned, as
indicated.
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Smooth Solutions to Inverse Problems 821

8070

a l( = 3.00

• l( = 0.30

• l( = 0.03

6050403020

•

10

points are completely satisfied until a neighboring element is
disturbed. This can be observed clearly in the CG algorithm
given above since only multiplications with ~ and ~ t occur
at each iteration. It is an inherent feature of gradient-type
algorithms that information can take many iterations to
propagate over multiple model elements when local con
straints are imposed. Since the data equations are given the
largest weight in this problem, they are fit first at the expense
of large gradients being introduced into the model.

Figures 2a-2c represent the same set of iterations when a
higher level of regularization has been chosen (appropriate
for large data variance). Now the regularization severely
inhibits the data fitting, resulting in a low amount of struc
ture, as defined by the first difference constraints, but severe
biases exist throughout the entire curve. In neither of these
circumstances does the CG algorithm produce satisfactory
results in 8 (n/10) iterations; in fact, it requires closer to n/2
iterations to obtain reasonable solutions. To understand
these effects better, it is instructive to examine the eigen
value-eigenvector decomposition of the problems (Wiggins,
1972).

The eigenvalue distributions of these two examples, plot
ted in Figure 3, vary significantly from one another. In the
two cases with regularization weights (K) of 0.03 and 3.00,
however, significant features obtained with later iterations
are associated with small eigenvalues of the associated SVD
solution. This is illustrated in Figure 4. While in general it is
thought that the inclusion of information related to small
eigenvalues is undesirable since these represent aspects of
the model poorly constrained by the equations, our mixture
of data and regularization constraints must change this
argument. This is explained by the regularization constraints
being associated with zero variance. Unlike the situation
when normally applying an singular value decomposition
(SVD) (Wiggins, 1972) analysis (when all constraints have
some data variance associated with them), in this type of
problem small eigenvalues associated with the regularization
equations will not be swamped by noise because these
equations are not subject to a measurement error. While it is
still true that the changes in the model caused by the
inclusion of these eigenvalues have small effect on the
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- - - -without preconditioning
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(b) 4 iterations

(a) 2 iterations

(c) 8 iterations
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for model elements with spacing a. We have chosen our data
sampling so as to provide a varying level of underdetermined
behavior, with the far left-hand portion of the curve sampled
at every element, and a large spacing between data sampling
on the right-hand side. In total, there are 13 data points
(shown as open circles in each Figure) and 80 model samples
(shown on the x-axis). With a high degree of regularization
(large K), this results in a flat line at the mean of the points,
and with low regularization (small K) we obtain a line going
nearly through each point, connected by straight lines. The
proper level of regularization depends on the accuracy of the
data, determining how much structure is warranted. If we
had chosen a second-difference regularization instead, a
large K would produce a linear regression (since a straight
line has zero second derivative).

The curves with long-dashed lines in Figures la-Ic
(labeled "without preconditioning") show the result of 2, 4,
and 8 CG iterations for a low level of regularization (corre
sponding to low data variance). The solid line in each figure
represents the true least-squares solution. The early itera
tions reflect the fact that the first difference information
requires one iteration to propagate over each model element.
This is because the regularization equations between data

Xi eigenvalue number

FIG. 2. Same as Figure 1 except now for a high level of
first-difference regularization (K = 3.00).

FIG. 3. Normalized eigenvalue spectra for 1-D examples
shown in Figures 1 and 2, along with spectrum from the same
problem but with an intermediate regularization (K = 0.30).

D
ow

nl
oa

de
d 

02
/0

4/
14

 to
 1

38
.6

7.
11

.7
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



822 VanDecar and Snieder

overall residual, their exclusion produces models with
greater structure rather than the desired flat or smooth
solution (Wiggins, 1972). Such systems are therefore not
amenable to SVD analysis with a simple eigenvalue trunca
tion.

Another way of looking at this problem is to realize that
through the addition of the regularization constraints JtQ
we have created a new system ~t~ that is of full rank.
Therefore, at least to numerical precision, (~t~) -I exists
and should be our goal (to obtain a model with the absolute
least amount of structure necessary to explain the data)
rather than some generalized inverse of ~t~, such as an
eigenvalue truncation would produce. The inverse (~t ~)-I

can already be considered a generalized inverse of the matrix
Ftc-IF.__d _

THE PRECONDITIONING OPERATOR

operator ~ to obtain an improved direction z (i.e., z = ~p).

The preconditioned CG algorithm is then:

k= 0; mo = initial solution estimate; ro = ~t(b - ~mo),

while rk "" 0

zk = ~r

k = k + 1
if k = 1

PI = zo,

else

Pk = Zk - I + ~kPk - I

end

The search directions P defined in equations (9a) and (9b)
of the CG algorithm are constructed without the use of any
a priori knowledge of regular structure within matrix ~

(recall that ~ represents a set of data equations ~i 1/2!,

supplemented by regularization equations KI)). Often, how
ever, a portion or all of ~ will contain regular patterns that
could potentially guide us in our selection of optimum search
directions. Consider inserting this additional information
through a preconditioning of the search direction by an

end

(a) K= 0.03
----13 largest eigenvalues
- - - 60 largest eigenvalues
-------- 70 largest eigenvalues
--true least-squaressolution (all 80)

[Compare this with algorithm 10.3.1 of Golub and Van Loan
(1989) which is appropriate for square matrices]. The optimum
preconditioning,

(b) K= 3.00
----60 largest eigenvalues
- - - 70 largest eigenvalues
-------- 75 largest eigenvalues
--true least-squares solution (all 80)

Generalizing to continuous functions, we find

would, of course, produce the least-squares solution to
equation (3) in a single iteration. Since we are unable to form
this inverse directly, we will use our knowledge of the
regular structure of (!'t ~il!, + K 2.QtQ) to form a simple and
computationally inexpensive approximation to the inverse
(!'tGi l!' + K2.QtQ)-I. We now derive a preconditioning
operator ~ for derivative damping in one dimension appro
priate to the example shown in the previous section.

The matrix .Q is defined in equation (10) for equidistant
model elements with spacing A. For !' we will make the
approximation that (!'tGi I!') = diag (!'t~i I!'), and define
(with no implicit summation),

hl == (!'tGil!'k (12)
oooooo

o 0·--- o o

\ / ..... .; Xi ':lo.ooo' -- \ .... ; ~ \. -

-,/

'-
-,

\
\

" \\. '-

-,

/\
~ I.. - - /' I' ", I. -, - -

and therefore equation (11) can be approximated by

z(x) = (h 2(x) - K 2V2)-Ip(x),

or

(13)

(14)

FIG. 4. Partial solutions to the examples shown in Figures
1 and 2 found by performing an SVD with eigenvalue
truncations at the number of eigenvalues indicated.

(15)

The WKBJ Green's function to equation (15) is (Bender and
Orszag, 1978),
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Smooth Solutions to Inverse Problems 823

and from the definition of the Green's function z(x) = JG(x,
x')p(x') dx' we have,

z(x) ~ i f [Yh(XI)h(X')

x (exp - f h~') d' ) P(X+X" (17)

Now, reverting to a discretized system, we let J dx' ~ Ij.l
and x~ i

where we have dropped the arbitrary multiplicative constant
(K/2).

We can see immediately that this operator contains the
general features that we desire. In regions of high data
density (hi large), the function is sharply peaked, becoming
closer to a delta function as hi increases. In that case, z is
parallel to p, except for a scale factor to normalize each
column of ~. Conversely in areas of low data density (hi
small) the exponential function falls off slowly, averaging out
rough structure in the search direction, and thereby impos
ing our a priori knowledge of what type of solution is
"preferred" by the regularization constraint I). In the case
of the existence of a model element with zero data coverage,
our formulation breaks down, since the WKBJ solution used
breaks down for hi close to zero. Therefore, we must impose
a special condition. We have chosen to simply set a base
level for hi (e.g., MIN(h i) = 0.1) to satisfy this condition.
Instead of deriving the approximate analytic solution in
equation (18), another way of computing the preconditioned
search direction z would be to derive an approximate inverse
of equation (11) through an incomplete LU decomposition
(Meijerink and van der Vorst, 1977) or other numerical
approximation (H. A. van der Vorst, personal communica
tion, 1993). The application of equation (18)is less expensive
than might appear at first sight. This is because if we
calculate the operator from position i outward independently
in the positive and negative directions, then the sum in the
exponent may be computed recursively at each step.

The result of the application of the preconditioning oper
ator derived above to the 1-D example previously considered
is shown in Figures 1 and 2. In each figure, the precondi
tioned solutions are represented by curves with shorter
dashed lines, showing both all iterations with precondition
ing applied and also the case where only the first half of the
iterations were performed with preconditioning. It is clear
that for both the case of low regularization (Figure 1) and
high regularization (Figure 2), the solutions that took advan
tage of our a priori knowledge of the normal equations

We now turn to a more realistic application of the precon
ditioning operator, a 2-D crosshole geometry. Figure 5
represents the velocity field that we use to generate the
synthetic data. The model consists of a series of square
blocks (100 x 60) with sources and receivers as shown and
raypaths connecting a random 50 percent of the possible
source-receiver pairs. To isolate the effect of the inversion
procedure, we will consider only a single linear iteration of
the traveltime inversion problem, using the true raypaths
through the structure (Figure 6) to simulate the type of ray
coverage obtained in realistic situations. We used the short
est path method of Moser (1991) to obtain the raypaths
shown in Figure 6. The parameterization, ray geometry and
velocity perturbations used in this example are realistic for a
crosshole experiment (Bregman et. al, 1989). Figure 7 shows
the weighting factor (hi) used in the preconditioning opera
tion, indicating the regions of low path coverage where the
operator will have the strongest effect. To implement the
operator in two dimensions at each iteration we simply apply
the I-D operator of equation (18) independently in each
direction.

Figure 8 shows the true least-squares solution to our inverse
problem where once again we have chosen first-difference
regularization. The "true" least-squares solution is found by
performing 6000 CG iterations. Overall, this solution repro
duces many of the important features from the synthetic model
without producing much in the way of "phantom" structures
not necessitated by the data. We willnow examinehow partial
reconstructions of the model compare to the true solution,
evaluating the result obtained by starting with three different
initial models (note that the true solution to our problem is
independent of starting model). Figures 9a-9c show what
would be the projected borehole velocity logs at the positions
indicated on Figure 8, as a function of the number of CG
iterations (the solid line in each figure represents the true
least-squares solution).The three differentsolutionsshown are
computed with homogeneous starting models of 4.6, 5.0, and
5.4 km/s. Notice that at 10and 50iterations, the curves contain
a large amount of structure that is clearly not necessary to
explainthe data (infact the finalsmooth curve explainsthe data
significantly better). Also, it is clear that depending on which
starting velocity was used, our interpretations of these curves
would vary dramatically, and simple a posteriori smoothingof
the curves would not bring them into agreement. At 100
iterations, the smoothness constraints are certainly coming
more into play, yet there remain significant biases between the
curves, and any quantitative analysis of these values would not
be reliable. It is not until 500 CG iterations of this system
(Figure9d) that these biases are effectivelyremoved, and even
then a low-frequency component yet to be resolved remains

(Text continueson p. 827)

CROSSHOLE TOMOGRAPHY EXAMPLE

through preconditioning the search directions converge
more rapidly to the least-squares solution. In the case oflow
regularization, switching halfway to iterations without pre
conditioning performs better than the case with all iterations
preconditioned, since at some point we wish to allow a
degree of roughness into our model (because of our low a
priori data variance estimates predicting that this level of
roughness is required by the measurements).

(18)

(16)

I ( .l
Zi "" 2: --= exp - -

j Yhih j K

and obtain,

K K

1 IX h(t)
G(x, x') "" 2-~=== exp - - dt

hex) hex') x' K
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824 VanDecar and Snieder

P velocity (km/s)
Synthetic crosshole model

500150 200 250 300 350 400 450
distance (rn)

10050
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FIG. 5. Synthetic crosshole model used for 2-D example. Open circles and triangles represent downhole
source and geophone locations. There is no vertical exaggeration.

Raypath distribution
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150 200 250 300 350 400 450 500
distance (rn)

FIG. 6. Raypaths through synthetic model shown in Figure 5. A random 50 percent of the possible
source-receiver combinations were used to simulate the type of coverage found in real data studies (Bregman
et al., 1989). The rays were calculated using the shortest path method of Moser (1991).
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FIG. 7. The weighting function hi used in equation (18) for preconditioning of CG search directions.
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FIG. 8. The least-squares solution to the crosshole problem (solution after 6000 CG iterations). "Potential
borehole" locations shown as black lines at 114, 112, and 3/4 distance across model.
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FIG. 9. Velocity as a function of depth at potential borehole locations shown in Figure 8 for CG inversions
without preconditioning. The solid line is the least-squares solution shown in Figure 8. The dashed lines
represent partial CG solutions at (a) iteration 10, (b) iteration 50, (c) iteration 100, and (d) iteration 500, using
three different homogeneous starting models. The short- , medium-, and long-dashed curves represent starting
models of 4.6,5.0, and 5.4 km/s, respectively. All starting models were within the range of perturbations of
the synthetic model (from 4.6-5.4 km/s).
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Smooth Solutions to Inverse Problems 827

(although this component is probably much less critical to our
analysis).

Figure 10 illustrates how these biases can be substantially
reduced in many fewer iterations with the use of a precon
ditioning operator. In this example, we have applied precon
ditioning to the first 25 CG iterations and not to the second
25. The models we obtain are much less dependent on initial

values, with the exception of the outskirts of the model
where there is no data coverage (areas we presumedly would
not interpret in any case). The cost of the preconditioning
depends heavily on the regularization level imposed (as this
controls the relative widths of the convolution operators,
and therefore directly the number of additional multiplica
tions involved in the operation). However, in this example a
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FIG. 9. continued
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828 VanDecar and Snleder

preconditioned iteration took approximately three times as
long as a normal CG iteration.

The extra cost of preconditioning, however, also depends
on the number of data equations versus number of model
elements. It is clear from equation (11) that the precondi
tioning operation depends on only the number of model
elements (since ~ acts only upon the gradient operator g
which is oflength n) while the inversion itself depends on the
number of data equations m. The preconditioning, therefore,
becomes relatively more efficient as the number of data
equations rises. It is oflittle use to give quantitative numbers
as to the efficiencyof the preconditioning operation, because
of the high dependence on application. In all the tests we
have run to date, however, the accelerated convergence
obtained though the use of this operator has produced
comparable results by a factor of at least three and often 10
or more times the rate obtained without preconditioning.
Depending upon memory versus time constraints, the pre
conditioning matrix ~ may be either precalculated and
stored, or its elements calculated recursively at each itera
tion (as we have chosen to do).

In large-scale tomographic applications the number of data
equations can reach a factor of 102 to 103 greater than the
number of model parameters (Spakman, 1991), leading to the
situation where only a few tens of iterations are computa
tionally feasible. In such situations, using a preconditioned
CG iteration would require virtually no additional cost over
a standard CG algorithm. In such large inverse problems
(where 0(10 5) model elements are used) CG methods such
as the Hestene and Stiefel's (1952) algorithm (VanDecar,
1991) or the LSQR algorithm of Paige and Saunders (1982)

(Zielhuis, 1992) have been found to require 0(10 2) to 0(10 3)

iterations to converge under derivative regularization. The
benefits of applying a preconditioning algorithm to such
problems are expected to be high.

CONCLUSIONS

We have shown that the use of CG algorithms to solve
least-squares inverse problems under derivative regulariza
tion can result in the need to perform many more iterations
than in the case of simple damping. For some of the inverse
problems being performed today, a large number of itera
tions are neither computationally feasible nor desirable.
Performing too few iterations, however, may result in mod
els that contain unwarranted structure. To attack this prob
lem, we have developed a method of preconditioning the CG
search directions that takes advantage of a priori knowlege
of the structure of the regularization equations. This approx
imate operator depends only on the number of model ele
ments and not on the number of data (often order of
magnitudes greater) making it feasible to implement in even
the largest of studies. The operation can be implemented
recursively thereby increasing its efficiency dramatically.

In both l-D and 2-D examples we have demonstrated the
problems incurred in using CG inversion with derivative
regularization and shown how this problem can be mitigated
through the use of a preconditioning operation. Inversion
using the "multi-grid" approach (inverting first with a coarse
parameterization and then finer) or preconditioning with
approximate numerical inverses (Meijerink and van der
Vorst, 1977) may also be effective in addressing this prob-

Column at 375 m

P velocity (km/s)
C\J-.tCDCOOC\J-.tCDCO
-.t-.t-.t-.tLOLOLOLOLO

Column at 250m

P velocity (km/s)
C\J-.tCDCOOC\J-.tCDCO
-.t-.t-.t-.tLOLOLOLOLO

Column at 125m
oO..L-__~--'_L....I-----'

C')

o
LO
C\J

o
o
C\J

o
LO

P velocity (km/s)
C\J-.t CD co 0 C\J-.t CD co
-.t-.t-.t-.tLOLOLOLOLO

o+-...L.-...L.-.........,/-T-L-.JL--I-;

8

FIG. 10. Same as Figure 9, except now with 25 preconditioned CG iterations followed by 25 iterations
without preconditioning. Compare with Figure 9b, which was the result of 50 iterations without
preconditioning.
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lem. From our examples, it was clear that our interpretation
of models resulting from insufficient CG iterations was
highly dependent on the choice of starting model (although
the solution was not), and simple a posteriori smoothing of
the curves would not bring them into agreeement.

As discussed above, the regularization equations can be
related to an a priori model covariance matrix as described
by Tarantola (1987). Tarantola (1987) derives the form of this
constraint for the case of an exponential covariance operator
in 3-D to be approximately
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