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ABSTRACT

We have analyzed the far-field approximation of the
Green’s function representation for seismic interferometry.
By writing each of the Green’s functions involved in the cor-
relation process as a superposition of a direct wave and a scat-
tered wave, the Green’s function representation is rewritten
as a superposition of four terms. When the scattered waves
are modeled with the Born approximation, it appears that a
three-term approximation of the Green’s function representa-
tion !omitting the term containing the crosscorrelation of the
scattered waves" yields a nearly exact retrieval, whereas the
full four-term expression leads to a significant nonphysical
event. This is because the Born approximation does not con-
serve energy and therefore is an insufficient model to explain
all aspects of seismic interferometry. We use the full four-
term expression of the Green’s function representation to de-
rive the generalized optical theorem. Unlike other recent der-
ivations, which use stationary phase analysis, our derivation
uses reciprocity theory. From the generalized optical theo-
rem, we derive the nonlinear scattering matrix of a point scat-
terer. This nonlinear model accounts for primary and multiple
scattering at the point scatterer and conforms with well-es-
tablished scattering theory of classical waves. The model is
essential to explain fully the results of seismic interferome-
try, even when it is applied to the response of a single point
scatterer. The nonlinear scattering matrix also has implica-
tions for modeling, inversion, and migration.

INTRODUCTION

The aim of this paper is to discuss links between the theory of seis-
mic interferometry, the generalized optical theorem, and the scatter-
ing matrix of a point scatterer. Seismic interferometry is the method-

ology by which new seismic responses are created by crosscorrelat-
ing existing responses from controlled transient sources or from ran-
dom noise sources. For a review, refer to Larose et al. !2006",
Schuster !2009", Snieder et al. !2009a", and references therein. The
history of the optical theorem starts in the late nineteenth century
when Rayleigh and others formulated the relation between the opti-
cal refraction index of a scattering medium and its forward scattering
amplitude. During World War II, Heisenberg !1943" derived a more
general theorem for the scattering matrix !i.e., the angle-dependent
scattering amplitude" from quantum mechanics, known as the gener-
alized optical theorem. For a review, refer to Newton !1976" and
Marston !2001".

Recently, researchers have recognized that the Green’s function
representation used in seismic interferometry resembles the general-
ized optical theorem !Snieder et al., 2008". We show that the general-
ized optical theorem can be obtained as a special case from the
Green’s function representation for interferometry. The derivation is
similar to that by Snieder et al. !2008" and Halliday and Curtis
!2009a" in the sense that we substitute far-field expressions for direct
and scattered waves in the Green’s function representation. Howev-
er, instead of using stationary phase analysis, we use reciprocity the-
ory to analyze this representation, term by term. By comparing the
final result with the original Green’s function representation, the
generalized optical theorem follows straightforwardly.

Next, we use the optical theorem to derive the scattering matrix of
a point scatterer. We obtain an expansion for which the different
terms account for primary and multiple scattering at the point scat-
terer !van Rossum and Nieuwenhuizen, 1999". We close the circle by
analyzing seismic interferometry for the response of a point scatter-
er. This analysis shows that even for the simple situation of a single
point scatterer, the Born approximation does not suffice; the nonlin-
ear scattering matrix is required to completely explain the seismic
interferometric result. We conclude with a brief discussion of the im-
plications of the nonlinear scattering aspect of point scatterers for
modeling, inversion, and migration.
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REVIEW OF GREEN’S FUNCTION
REPRESENTATION FOR SEISMIC

INTERFEROMETRY

We briefly review the derivation of the Green’s function represen-
tation for seismic interferometry. Our starting point is the acoustic
reciprocity theorem of the correlation type in the space-frequency
!x,!" domain for an arbitrary spatial domain D enclosed by bound-
ary #D with outward-pointing normal vector n! !n1,n2,n3" !Morse
and Feshbach, 1953; Bojarski, 1983; de Hoop, 1988; Fokkema and
van den Berg, 1993":

#
#D

1
"

!p̂A
*!#ip̂B"" !#ip̂A

*"p̂B"nid
2x!$

D
%ŝA

*p̂B" p̂A
*ŝB&d3x .

!1"

Here, p̂!x,!" denotes the acoustic pressure and ŝ!x,!" is a source
distribution; the asterisk denotes complex conjugation. The cir-
cumflex above a variable denotes the Fourier transform of the
corresponding time-dependent variable, according to p̂!x,!"!
' exp!"j!t"p!x,t"dt !j is the imaginary unit". Subscripts A and B
distinguish two independent acoustic states in one and the same arbi-
trary inhomogeneous lossless medium, with mass density "!x" and
propagation velocity c!x".

If we choose point sources ŝA!x,!"!# !x"xA" and ŝB!x,!"
!# !x"xB", the corresponding acoustic pressure fields in states A
and B are Green’s functions; hence, p̂A!x,!"! Ĝ!x,xA,!" and
p̂B!x,!"! Ĝ!x,xB,!", respectively !see Table 1". Substituting into
equation 1, assuming xA and xB are both situated in D, and using
source-receiver reciprocity gives

#
#D

1
"!x"

!Ĝ*!x,xA,!"#iĜ!x,xB,!"

" !#iĜ*!x,xA,!""Ĝ!x,xB,!""nid
2x! Ĝ!xB,xA,!"

" Ĝ*!xB,xA,!"!2jI%Ĝ!xB,xA,!"&, !2"

where I denotes the imaginary part.
This exact Green’s function representation is the basis for seismic

interferometry !van Manen et al., 2005; Wapenaar et al., 2005". The
right-hand side of equation 2 is the Fourier transform of G!xB,xA,t"
"G!xB,xA,"t", which is the Green’s function of a source at xA and a
receiver at xB, minus its time-reversed version. The products under
the integral on the left-hand side correspond to crosscorrelations in
the time domain. The left-hand side can be simplified further for a
distribution of uncorrelated noise sources on #D, but this is beyond
the scope of our paper. Note that in previous work we use a slightly
differently defined Green’s function, leading to a representation of

the real part instead of the imaginary part. Representations for the
real or imaginary part are equivalent !Wapenaar and Fokkema,
2006". Here we choose for the form of equation 2 to make the link
with the generalized optical theorem more transparent. Equation 2 is
also used in the literature on optical holography !Porter, 1970" and
inverse scattering !Oristaglio, 1989"; see Thorbecke and Wapenaar
!2007" for a further discussion.

For the special case of coinciding sources in both states, i.e., for
xA!xB!x0, equation 2 formulates energy conservation according
to

#
#D

1
"!x"

I%Ĝ!x,x0,!"#iĜ*!x,x0,!"&nid
2x!

"I%Ĝ!x0,x0,!"& . !3"

See Snieder et al. !2009b" for a further discussion.

FAR-FIELD APPROXIMATION

We consider a scattering domain with compact support around the
origin, embedded in an otherwise homogeneous medium with mass
density "̄ and propagation velocity c̄ !Figure 1". We write for the
Green’s function

Ĝ!x,xA,!"! Ĝ̄!x,xA,!"# Ĝs!x,xA,!", !4"

where Ĝ̄!x,xA,!" and Ĝs!x,xA,!" are the direct and scattered wave-
fields, respectively. The direct wavefield in the embedding is given
by

Ĝ̄!x,xA,!"!
"̄

4$

exp%" jk(x"xA(&
(x"xA(

, !5"

with k!! / c̄.Assuming xA and x are far from the scattering domain,
the scattered wavefield can be written as

Ĝs!x,xA,!"! Ĝ̄!x,0,!"%̂ !k,"kA"Ĝ̄!0,xA,!", !6"

where %̂ !k,"kA" is the complex-valued scattering matrix for an in-
cident wave in the "kA direction, scattered in the k direction, with

Table 1. Acoustic states used for the derivation of
representation 2.

State A State B

Wavefields p̂A!x,!"! Ĝ!x,xA,!" p̂B!x,!"! Ĝ!x,xB,!"
Medium parameters "!x", c!x" "!x", c!x"
Source functions ŝA!x,!"!# !x"xA" ŝB!x,!"!# !x"xB"

A

A

xx

k!k

Figure 1. Configuration for far-field expressions — a scattering do-
main with compact support around the origin, embedded in an other-
wise homogeneous medium.
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kA!kxA / (xA( and k!kx / (x( !Figure 1". Note that the scattering
matrix %̂ !k,"kA" accounts for primary and multiple scattering in
the scattering domain. Source-receiver reciprocity of the Green’s
function, i.e., Ĝs!x,xA,!"! Ĝs!xA,x,!", implies %̂ !k,"kA"!

%̂ !kA,"k".
To facilitate the link with the generalized optical theorem

!Glauber and Schomaker, 1953; Newton, 1976", equation 6 can be
written alternatively as

Ĝs!x,xA,!"!
4$

"̄
Ĝ̄!x,0,!"f!k,"kA"Ĝ̄!0,xA,!", !7"

with f ! ! "̄ /4$"%̂ . The factor 4$ / "̄ in equation 7 compensates for

"̄ /4$ in Ĝ̄!x,0,!".
Substituting equation 4 and similar expressions for the other

Green’s functions into the left-hand side of equation 2 gives

L!ĜA,ĜB"!L!Ĝ̄A,Ĝ̄B"#L!Ĝ̄A,ĜB
s "#L!ĜA

s ,Ĝ̄B"

#L!ĜA
s ,ĜB

s ", !8"

where ĜA stands for Ĝ!x,xA,!", etc., and L!ĜA,ĜB" stands for

L!ĜA,ĜB"!
1

"̄
#

#D
!Ĝ*!x,xA,!"#iĜ!x,xB,!"

" !#iĜ*!x,xA,!""Ĝ!x,xB,!""nid
2x, !9"

etc. In the time domain, these expressions become

L!GA,GB"!L!ḠA,ḠB"#L!ḠA,GB
s "#L!GA

s ,ḠB"

#L!GA
s ,GB

s ", !10"

with

L!GA,GB"!
1

"̄
#

#D
!G!x,xA," t"!#iG!x,xB,t"

"#iG!x,xA," t"!G!x,xB,t""nid
2x, !11"

etc., where the asterisk denotes temporal convolution.
Before we analyze equation 8 further, we illustrate the different

terms in equation 10 with a numerical example.

NUMERICAL EXAMPLE 1: POINT SCATTERER
IN BORN APPROXIMATION

Figure 2 shows the configuration for a 2D numerical experiment;
720 sources are distributed equally along a circle with a radius of
500 m and its center at the origin. The receiver coordinates are xA

! !0,"150" and xB! !200, 0". The propagation velocity of the ho-
mogeneous embedding is c̄!1500 m /s, and the mass density "̄
!1000 kg /m3. The star at the origin denotes a point scatterer.

Using source-receiver reciprocity, we write for the Green’s func-
tions

Ĝ!xA,x,!"! Ĝ̄!xA,x,!"# Ĝs!xA,x,!", !12"

with

Ĝs!xA,x,!"! Ĝ̄!xA,0,!"%̂ !!"Ĝ̄!0,x,!" !13"

!and similar expressions for the other Green’s functions", where
%̂ !!" is the angle-independent scattering matrix. The scatterer is
modeled as a contrast in compressibility, according to &'!x"
!&'0# !x" with &'0 ( 0, whereas the density is kept constant. In
the Born approximation, the scattering matrix is thus given by
%̂ !!"!!2&'0. In the numerical example, we choose &'0!6
)10"9 m3 Pa"1.

The evaluation of the first term in the right-hand side of equation
10, L!ḠA,ḠB", is illustrated in Figure 3. Figure 3a shows the inte-
grand. Each trace is the result of a crosscorrelation of direct waves
Ḡ!xA,x,t" and Ḡ!xB,x,t" for one specific source position x at the sur-
face #D. The source coordinate is represented by the angle * !con-
forming with its definition in Figure 2". The Green’s functions have
been convolved with a Ricker wavelet with a central frequency of
50 Hz. Figure 3b shows the result of the integration over the sources.
The main contributions come from the Fresnel zones around the sta-
tionary points a and b in Figures 2 and 3a. The two events in Figure
3b correspond to the direct wave Ḡ!xB,xA,t" and its time-reversed
version "Ḡ!xB,xA,"t". The arrival times are $tAB, with tAB! (xB

"xA( / c̄!0.167 s.
Figure 4a represents the integrand of L!ḠA,GB

s ", i.e., the second
term in the right-hand side of equation 10. The first stationary point,
denoted by c, occurs at * !"90°. For this source, the Green’s func-
tions Ḡ!xA,x,t" and Gs!xB,x,t" have the path from x to xA in common.
Hence, in the crosscorrelation process, the traveltime from x to xA is
subtracted from that of the scattered Green’s function Gs!xB,x,t".
The remaining traveltime is tA# tB! !(xA(# (xB(" / c̄!0.233 s,
the traveltime of the arrival in the scattered Green’s function
Gs!xB,xA,t". Hence, the arrival at 0.233 s in Figure 4b represents
Gs!xB,xA,t". The second stationary point in Figure 4a, denoted by d,
occurs at * !#90°. For this source, the traveltime of the correla-
tion result is tB"tA! !(xB(" (xA(" / c̄!0.033 s. The arrival at
0.033 s in Figure 4b has no physical meaning.

Figure 5a represents the integrand of the third term in the right-
hand side of equation 10, L!GA

s ,ḠB".At the stationary point, denoted
by e, the Green’s functions Gs!xA,x,t" and Ḡ!xB,x,t" have the path

!

o90"

oo 1800

o90

1x
3x

c

a

f e

b

d

A

B

x

x

#D

Figure 2. Single point scatterer in a homogeneous embedding. The
receivers are at xA and xB. The numerical integration is carried out
along the sources at surface #D. The main contributions come from
stationary points a, b, c, and e.
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from x to xB in common. The traveltime of the correlation result is
"!tA# tB"!"0.233 s. The arrival at this traveltime in Figure 5b
represents the time-reversed scattered Green’s function "Gs!xB,xA,
"t". The stationary point denoted by f contributes to the nonphysi-
cal arrival at 0.033 s in Figure 5b. Note that this arrival is opposite in
sign compared with the arrival at 0.033 s in Figure 4b.

We now superpose the results of L!ḠA,ḠB", L!ḠA,GB
s ", and

L!GA
s ,ḠB". Figure 6 shows the sum of the results in Figures 3–5.

In this and subsequent displays, the amplitudes of L!ḠA,ḠB"
! Ḡ!xB,xA,t"" Ḡ!xB,xA,"t" !Figure 3" are divided by a factor of 20
to avoid clipping. The events in Figure 6b are Ḡ!xB,xA,t"" Ḡ!xB,xA,
"t"#Gs!xB,xA,t""Gs!xB,xA,"t". Note that the nonphysical ar-
rivals at 0.033 s cancel each other. Hence, the result in Figure 6b rep-
resents the complete Green’s function between xA and xB, minus its
time-reversed version, i.e., G!xB,xA,t""G!xB,xA,"t". Figure 7
shows the result of Figure 6b, together with the directly modeled
Green’s function between xA and xB. The match is nearly perfect.

Finally, we evaluate the last term on the right-hand side of equa-
tion 10, L!GA

s ,GB
s ". The scattered Green’s functions Gs!xA,x,t" and

Gs!xB,x,t" have the path from x to the point scatterer in common for
all x. Hence, the traveltime of the correlation result is equal to tB

" tA! !(xB(" (xA(" / c̄!0.033 s for all x !Figure 8a". The integra-
tion result is shown in Figure 8b. Following equation 10, we add this
to the other three terms and compare it again with the modeled
Green’s function !Figure 9". Note the artifact at 0.033 s; the arrival
time of this event has no physical meaning. The amplitude is propor-
tional to the energy scattered by the point scatterer.

BORN APPROXIMATION AND BEYOND

From the numerical example, it appears that taking only three of
the four terms of equation 10 into account leads to a better retrieval
of the Green’s function !Figure 7" than when all terms are taken into
account, as prescribed by the theory !Figure 9". In most practical sit-
uations, it is not possible to apply the crosscorrelation term by term;
when the full responses are crosscorrelated, the fourth term is in-
cluded automatically.Apart from this practical issue, a more intrigu-
ing question is how it is possible that the three-term approximation
leads to a better result than the full four-term expression.

The answer is that we use the Born approximation to model the
point scatterer. The Born approximation does not conserve energy
!Born and Wolf, 1965; Rodberg and Thaler, 1967; Butkov, 1968", so
equation 3 and the more general equation 2 are violated. The Born
approximation involves only first-order scattering; so to apply equa-
tion 2 consistently, we should only consider terms up to first-order
scattering !Wapenaar et al., 2005; Halliday and Curtis, 2009b". The
first three terms on the right-hand side of equation 10 obey this con-
dition, but the fourth term, L!GA

s ,GB
s ", describes the crosscorrelation

of two scattered Green’s functions. Therefore, this term is propor-
tional to second-order scattering and should be omitted to remain
consistent with the Born approximation. Apparently, we should go
beyond first-order Born modeling if we want a consistent result

b
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Figure 3. !a" The integrand of L!ḠA,ḠB". !b" The sum of all traces in
!a". These events represent the direct wave Ḡ!xB,xA,t" and its time-
reversed version "Ḡ!xB,xA,"t".
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Figure 4. !a" The integrand of L!ḠA,GB
s ". !b" The sum of all traces in

!a". The event at 0.233 s represents the scattered Green’s function
Gs!xB,xA,t"; the event at 0.033 s has no physical meaning.
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Figure 5. !a" The integrand of L!GA
s ,ḠB". !b" The sum of all traces in

!a". The event at "0.233 s represents the time-reversed scattered
Green’s function "Gs!xB,xA,"t"; the event at 0.033 s has no physi-
cal meaning.
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Figure 6. !a" Superposition of Figures 3a, 4a, and 5a. !b" The sum of
all traces in !a". This represents the complete Green’s function be-
tween xA and xB, minus its time-reversed version, i.e., G!xB,xA,t"
"G!xB,xA,"t". In this and subsequent displays, the amplitudes of
the direct waves, Ḡ!xB,xA,t""Ḡ!xB,xA,"t", are divided by 20 to
avoid clipping.
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when all four terms of equation 8 or 10 are taken into account. Al-
though they do not mention this aspect explicitly, van Manen et al.
!2006" recognize this and use a nonlinear point-scatterer model in
their interferometric modeling method.

Snieder et al. !2008" analyze the four terms in the right-hand side
of equation 8 by the method of stationary phase for a situation of an
arbitrary scattering domain with compact support around the origin.
They show that the nonphysical events resulting from the last three
terms cancel each other on account of the generalized optical theo-
rem !Glauber and Schomaker, 1953" and thus confirm the consisten-
cy of equation 2. Halliday and Curtis !2009a" turn the argument
around: Because the Green’s function representation 2 is correct, the
nonphysical events on the right-hand side of equation 8 must cancel
each other and, hence, the generalized optical theorem follows from
equation 2. They use this approach to derive a generalized optical
theorem for surface waves in layered elastic media.

In the next section, we follow the second route, except that instead
of using the method of stationary phase to analyze the integrals, we
use the correlation reciprocity theorem !equation 1" to evaluate the
different terms on the right-hand side of equation 8. This approach is
more straightforward but does not circumvent the approximations
inherent to the stationary phase method.

DERIVATION OF GENERALIZED OPTICAL
THEOREM FROM GREEN’S FUNCTION

REPRESENTATION

We derive the generalized optical theorem from Green’s function
representation 2 for the configuration of Figure 1, with Ĝ!x,xA,!"
defined by equations 4, 5, and 7. For the boundary #D, we choose a
sphere with its center at the origin, encompassing xA and xB. We ana-
lyze the four terms on the right-hand side of equation 8, constituting
the integral in equation 2.

The first term on the right-hand side of equation 8 has the same
form as L!ĜA,ĜB" but with the full Green’s functions replaced by
Green’s functions in the homogeneous embedding. These Green’s
functions and the medium parameters of the embedding are summa-
rized in Table 2. Substitution into equation 1 gives, analogous to
equation 2,

L!Ĝ̄A,Ĝ̄B"! Ĝ̄!xB,xA,!"" Ĝ̄*!xB,xA,!"

!2jI%Ĝ̄!xB,xA,!"& . !14"

For the analysis of the second term on the right-hand side of equation

8, i.e., L! Ĝ̄A,ĜB
s ", we again use equation 1.

First, observe that Ĝ̄A is the response of a point source at xA in the
homogeneous embedding. Hence, for ŝA and p̂A, we have ŝA!x,!"
!# !x"xA" and p̂A!x,!"! Ĝ̄!x,xA,!", respectively !see Table 3,
state A". Note that p̂B!x,!"! Ĝs!x,xB,!" is the scattered response of
the actual medium. However, we can only use equation 1 when p̂A

–0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
t (s)

Figure 7. Three-term approximation of equation 10 !i.e., the result of
Figure 6b, here denoted by the solid line", compared with the directly
modeled Green’s function between xA and xB !denoted by the plus
signs".
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Figure 8. !a" The integrand of L!GA
s ,GB

s ". !b" The sum of all traces in
!a".

–0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
t (s)

Figure 9. All four terms of equation 10 !i.e., the result of Figure 7,
with the event of Figure 8b added to it", compared with the directly
modeled Green’s function between xA and xB !denoted by the plus
signs".

Table 2. Acoustic states used for the evaluation of L„ Ĝ̄A,Ĝ̄B….

State A State B

Wavefields p̂A!x,!"! Ĝ̄!x,xA,!" p̂B!x,!"! Ĝ̄!x,xB,!"
Medium parameters "̄, c̄ "̄, c̄
Source functions ŝA!x,!"!# !x"xA" ŝB!x,!"!# !x"xB"
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and p̂B are defined in the same medium. Therefore, we rewrite p̂B as
the response of an equivalent source distribution in the homoge-

neous embedding. Thus, p̂B!x,!"! Ĝ̄!x,0,!"s̆B!k,!" where, ac-

cording to equation 7, s̆B!k,!"! !4$ / "̄"f!k,"kB"Ĝ̄!0,xB,!". Note

that Ĝ̄!x,0,!"s̆B!k,!" can be interpreted as the far-field response in
the homogeneous embedding of a source distribution ŝB!x,!" with
compact support around the origin, assuming that s̆B!k,!" is the 3D
spatial Fourier transform of ŝB!x,!" !Fraunhofer approximation".
Hence, the equivalent source distribution ŝB!x,!" generating
p̂B!x,!" in the homogeneous embedding is defined as the inverse

Fourier transform of s̆B!k,!", i.e., ŝB!x,!"! !4$ / "̄"Ĝ̄!0,xB,!"
)!1 /2$"3' exp!"jk ·x"f!k,"kB"d3k !see Table 3, state B".

We have now defined all of the terms appearing on the right-hand
side of equation 1. Because ŝB!x,!" has compact support, the prod-
uct p̂

A
*ŝB is evaluated for small x only. This justifies the approxima-

tion p̂A!x,!"! Ĝ̄!x,xA,!"!exp! jkA ·x"Ĝ̄!0,xA,!" !see Table 3,
state A". Making the appropriate substitutions on the right-hand side
of equation 1, interchanging the integrals over k and x, using
' exp!"j!k#kA" ·x"d3x! !2$"3# !k#kA" and the sifting-proper-
ty of the delta function, gives

L!Ĝ̄A,ĜB
s "! Ĝs!xB,xA,!"

"
4$

"̄
Ĝ̄*!0,xA,!"Ĝ̄!0,xB,!"f!"kA,"kB" .

!15"

In a similar way, we find the third term on the right-hand side of
equation 8:

L!ĜA
s ,Ĝ̄B"!"Ĝs,*!xB,xA,!"

#
4$

"̄
Ĝ̄*!0,xA,!"Ĝ̄!0,xB,!"f*!"kB,"kA" .

!16"

For the analysis of the fourth term in the right-hand side of
equation 8, we substitute equation 7 and a similar express-
ion for Ĝs!x,xB,!" into the right-hand side of equation 9. Using

ni#iĜ!x,0,!"!"jkĜ!x,0,!" and !4$ / "̄"2( Ĝ̄!x,0,!"(2d2x!d2x /
(x(2!d+ , this gives

L!ĜA
s ,ĜB

s "!"
2jk

"̄
Ĝ̄*!0,xA,!"Ĝ̄!0,xB,!"

)# f*!k,"kA"f!k,"kB"d+ !17"

Substituting equations 14–17 into the right-hand side of equation 8
gives

#
#D

1

"̄!x"
!Ĝ*!x,xA,!"#iĜ!x,xB,!"

" !#iĜ*!x,xA,!""Ĝ!x,xB,!""nid
2x

!2jI%Ĝ!xB,xA,!"&"
8$ j

"̄
Ĝ̄*!0,xA,!"Ĝ̄!0,xB,!"

)) 1
2j

%f!"kA,"kB"" f*!"kB,"kA"&

#
k

4$
# f*!k,"kA"f!k,"kB"d+* . !18"

In comparison with equation 2, the right-hand side contains an extra
term that must equal zero !or equation 2 is violated". Hence,

"1
2j

%f!kA,kB"" f*!kB,kA"&!
k

4$
# f*!k,kA"f!k,kB"d+ .

!19"

Note that we have renamed "kA and "kB as kA and kB, respectively.
Equation 19 is known as the generalized optical theorem !Heisen-

berg, 1943; Glauber and Schomaker, 1953; Newton, 1976; Marston,
2001". The first minus sign on the left-hand side is usually absent; it
stems from our definition of the temporal Fourier transform. The op-
tical theorem follows by taking kA!kB!k0; hence,

"I%f!k0,k0"&!
k

4$
#(f!k,k0"(2d+ . !20"

For an isotropic scatterer, this reduces to

"I!f"!k(f (2, !21"

with f ! f!!".

Table 3. Acoustic states used for evaluating L„ Ĝ̄A,ĜB
s ….

State A State B

Wavefields p̂A!x,!"! Ĝ̄!x,xA,!"!exp! jkA ·x"Ĝ̄!0,xA,!" p̂B!x,!"! Ĝs!x,xB,!"! Ĝ̄!x,0,!"s̆B!k,!"
Medium parameters "̄, c̄ "̄, c̄
Source functions ŝA!x,!"!# !x"xA"

ŝB!x,!"! ! 1
2$ "3

' exp!" jk ·x"s̆B!k,!"d3k,

s̆B!k,!"!
4$

"̄
f!k,"kB"Ĝ̄!0,xB,!"
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DERIVATION OF SCATTERING MATRIX OF A
POINT SCATTERER FROM OPTICAL THEOREM

We use the optical theorem to derive an explicit expression for the
full scattering matrix of a nonlinear point scatterer. Here, “nonlin-
ear” refers to the fact that the scattered field is nonlinear in terms of
the parameter contrast !but it is linear in terms of the incident wave-
field". The field scattered by a point scatterer at x!0 is given by

Ĝs!x,xA,!"! Ĝ̄!x,0,!"%̂ !!"Ĝ̄!0,xA,!", !22"

with %̂ !!"! !4$ / "̄"f!!". We rewrite the optical theorem for an iso-
tropic scatterer !equation 21" as

"I!%̂ "!
k"̄

4$
(%̂ (2. !23"

For a compressibility contrast, we had for the first-order Born ap-
proximation %̂ 1!!2&'0, with &'0 ( 0. We use equation 23 to de-
rive the imaginary part of the second-order Born approximation %̂ 2:

%̂ 2!!"! %̂ 1!!"" j
k"̄

4$
%̂ 1

2!!" . !24"

Compare this with the following expression of van Rossum and
Nieuwenhuizen !1999"

%̂ 2!!"! %̂ 1!!"# %̂ 1!!"Ĝ̄reg!0,0,!"%̂ 1!!", !25"

where Ĝ̄reg!0,0,!" is a regularized version of the return Green’s

function Ĝ̄!0,0,!". The real part of Ĝ̄!0,0,!" diverges, but van Ros-
sum and Nieuwenhuizen !1999" argue that “in reality these diver-
gences are cut off by the physical size of the scatterer, so they play no
role for weak scattering.” Therefore, they only keep the imaginary
part; thus !using equation 5",

Ĝ̄reg!0,0,!"! lim
(x(→0

jI%Ĝ̄!x,0,!"&!"j
"̄

4$
lim

(x(→0

sin!k(x("
(x(

!"j
k"̄

4$
. !26"

With this expression for the regularized Green’s function, our sec-
ond-order Born approximation derived from the optical theorem
!equation 24" is identical with equation 25. Analogous to an expres-
sion for nonlinear 1D scattering derived by Snieder !1999", we ac-
count for higher-order scattering at the point scatterer as

%̂ !!"! %̂ 1# %̂ 1Ĝ̄0
reg%̂ 1# %̂ 1Ĝ̄0

reg%̂ 1Ĝ̄0
reg%̂ 1# ¯ , !27"

where Ĝ̄0
reg stands for Ĝ̄reg!0,0,!". This expansion for primary and

multiple scattering is illustrated in Figure 10. Each term corresponds
to a causal operation in the time domain, so the expansion is causal as
well.

Equation 27 converges for ( %̂ 1Ĝ̄0
reg(! ! "̄&'0 /4$ c̄"!3 , 1, i.e.,

for small contrasts and finite frequencies. It can be written in closed
form as

%̂ !
%̂ 1

1" %̂ 1Ĝ̄0
reg

for (%̂ 1Ĝ̄0
reg(!

"̄&'0

4$ c̄
!3,1. !28"

This expression for the scattering matrix %̂ , with Ĝ̄0
reg defined by

equation 26, obeys the optical theorem !equation 23". Van Rossum
and Nieuwenhuizen !1999" discuss equation 28 further for the situa-

tion when Ĝ̄0
reg is the regularized return Green’s function for a scatter-

er with finite size.

NUMERICAL EXAMPLE 2: NONLINEAR
POINT SCATTERER

We repeat the numerical experiments, this time using a nonlinear
scatterer model. Because we consider a 2D configuration, equations
23 and 28 need to be replaced by their 2D counterparts

"I!%̂ "!sgn!!"
"̄

4
(%̂ (2 !29"

and

%̂ !
%̂ 1

1# j%̂ 1 sgn!!"
"̄

4

for
"̄&'0

4
!2,1, !30"

respectively, with %̂ 1!!"!!2&'0. Figure 11 shows the result of
the first three terms of equation 10, i.e., L!ḠA,ḠB"#L!ḠA,GB

s "
#L!GA

s ,ḠB". Note that the nonphysical arrivals at tB" tA!0.033 s
resulting from L!ḠA,GB

s " and L!GA
s ,ḠB" do not cancel. Unlike in Fig-

ures 4 and 5, where these events showed a zero-phase behavior, here
they are not zero phase as a result of the complex-valued scattering
matrix %̂ . Hence, they do not cancel completely but leave a residue
proportional to %̂ " %̂ *.

The arrival time of this residue has no physical meaning, but its
amplitude has. According to equation 29, it is proportional to the en-
ergy scattered by the point scatterer !Carney et al., 2004; Vasconce-
los et al., 2009; Curtis and Halliday, 2010". By adding the fourth
term of equation 10, L!GA

s ,GB
s ", resulting from the crosscorrelation

of the scattered Green’s functions, the residual event at tB" tA

!0.033 s is canceled, as shown in Figure 12.

DISCUSSION

Our theory and examples clearly show that seismic interferometry
applied to scattered wavefields cannot be explained with the first-or-

Figure 10. Diagram of the nonlinear scattering matrix !after Snieder,
1999". The single line denotes the regularized return Green’s func-
tion Ĝ̄reg!0,0,!". The open circle denotes the linearized scattering
matrix %̂ 1!!", and the black circle stands for the nonlinear scattering
matrix %̂ !!".
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der Born approximation. Even for a single point scatterer, interfer-
ometry includes the crosscorrelation of two scattered responses,
which is proportional to second- !and higher" order scattering. This
nonlinear term can be handled consistently only when the contribut-
ing responses contain the proper nonlinear scattering effects.

Although the example we discuss is simple, it shows the relevance
of taking nonlinear scattering at point scatterers into account. This
does not only apply to applications in seismic interferometry. For ex-
ample, Groenenboom and Snieder !1995" analyze the transmission
of waves through a distribution of point scatterers. With numerical
modeling experiments, they show it is essential that not only multi-
ple scattering between the scatterers be taken into account but also
that each scatterer be treated nonlinearly. Hence, accounting for the
local nonlinearity of scatterers is essential in modeling !Groenen-
boom and Snieder, 1995", nonlinear inversion !Weglein et al., 2003",
and interferometry of responses of scattering media !van Manen et
al., 2006".

Also for the analysis of seismic migration, which is usually con-
sidered a linear process, the nonlinearity of point scatterers may be
relevant. The resolution properties of seismic migration for a specif-
ic acquisition configuration are often expressed in terms of the point-
spread function !or spatial resolution function", which is defined as

the migration result of the response of a single point scatterer !Miller
et al., 1987; Schuster and Hu, 2000; Gelius et al., 2002; Lecomte,
2008". Moreover, the point-spread function is sometimes used in mi-
gration deconvolution to improve spatial resolution !Hu et al., 2001;
Yu et al., 2006". In both approaches, the linearized point scatterer
model could be replaced by the nonlinear model of equation 28 to
obtain a more accurate point-spread function. A caveat for the appli-
cation in migration deconvolution is that the amplitude as well as the
phase of the nonlinear model depend on the local contrast parameter.

CONCLUSIONS

Starting with the Green’s function representation for seismic in-
terferometry, we have derived the generalized optical theorem and,
subsequently, the nonlinear scattering matrix of a point scatterer. We
have closed the loop by analyzing seismic interferometry for the re-
sponse of a point scatterer. None of the theories discussed is new, but
some of the derivations are new and the relations between the theo-
ries are insightful. One main conclusion is that the Born approxima-
tion is an insufficient model to explain all aspects of seismic interfer-
ometry, even for a single point scatterer. This conclusion makes
sense if one bears in mind that the Born approximation does not con-
serve energy, whereas the interferometric Green’s function repre-
sentation is a generalization of the energy conservation law. Last but
not least, we have indicated the relevance of the nonlinear scattering
matrix of a point scatterer for modeling, inversion, and migration.
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