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ABSTRACT
In Part I of this paper, we defined a focusing wave field as the time reversal of an
observed point-source response. We showed that emitting a time-reversed field from a
closed boundary yields a focal spot that acts as an isotropic virtual source. However,
when emitting the field from an open boundary, the virtual source is highly directional
and significant artefacts occur related to multiple scattering. The aim of this paper is
to discuss a focusing wave field, which, when emitted into the medium from an open
boundary, yields an isotropic virtual source and does not give rise to artefacts. We
start the discussion from a horizontally layered medium and introduce the single-sided
focusing wave field in an intuitive way as an inverse filter. Next, we discuss single-
sided focusing in two-dimensional and three-dimensional inhomogeneous media and
support the discussion with mathematical derivations. The focusing functions needed
for single-sided focusing can be retrieved from the single-sided reflection response and
an estimate of the direct arrivals between the focal point and the accessible boundary.
The focal spot, obtained with this single-sided data-driven focusing method, acts
as an isotropic virtual source, similar to that obtained by emitting a time-reversed
point-source response from a closed boundary.

Key words: Virtual source, Green’s function retrieval, Multiples.

INTRODUCTION

In Part I of this paper, we reviewed the creation of virtual
sources via time-reversal acoustics and seismic interferometry.
These two methods, although distinct from a practical point of
view, are based on the same theory, i.e., a representation of the
homogeneous Green’s function. In both methods, wave fields
are focused onto a focal point, which subsequently acts as a
virtual source. We concluded that accurate isotropic virtual
sources can be created when the virtual-source position (i.e.,
the focal point) is illuminated from a boundary enclosing the
medium. This requirement is a consequence of the fact that

∗E-mail: c.p.a.wapenaar@tudelft.nl

the homogeneous Green’s function representation is a closed
boundary integral.

In many practical situations, the medium is accessible
from one side only. This implies that, in practice, the virtual
sources, created either with time-reversal acoustics or seismic
interferometry, are far from being isotropic. Moreover, when
the medium is inhomogeneous, artefacts occur as a result of
the erroneous treatment of multiple scattering. The aim of
Part II is to discuss how isotropic virtual sources, without
scattering-related artefacts, can be created in inhomogeneous
media in the situation that the medium is accessible from one
side only. We start with a discussion of virtual sources in a
horizontally layered medium, which explains the principle in
an intuitive way. After this, we discuss the principle of single-
sided focusing in 2D and 3D inhomogeneous media, following
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c1 = 1500 m/s ρ1 = 1000 kg/m3

c2 = 1950 m/s ρ2 = 4500 kg/m3

c3 = 2000 m/s ρ3 = 1400 kg/m3

c4 = 2300 m/s ρ4 = 1600 kg/m3

x3,A

x3(m)

x3,0

Figure 1 Horizontally layered medium with absorbing boundaries at
the top and bottom. The red dot at x3,A = 800 m indicates the source
for the wave field in Fig. 2.

the same steps as for the horizontally layered medium, sup-
ported by mathematical derivations.

D I S C U S S I O N O F V I R T U A L S O U R C E S IN A
HORIZONTALLY LAYERED M EDIUM

Time-reversal acoustics

We review the principle of time-reversal acoustics using an
example in a horizontally layered lossless medium. The rea-
son for considering this simplified situation is that the evo-
lution of the wave field through the medium can be fol-
lowed in detail. This is helpful to understand why single-sided
time-reversal acoustics fails to create isotropic virtual sources.
This example serves as an introduction to explain in an in-
tuitive way what is needed to create isotropic artefact-free
virtual sources in media that can be accessed from one side
only.

Consider the horizontally layered medium in Fig. 1,
which is derived from a vertical cross section of the inhomo-
geneous medium in Fig. 1(a) in Part I, at horizontal position
x1 = 0, as a function of depth x3. The propagation veloci-
ties and mass densities of the layers are denoted by ck and
ρk, respectively, for k = 1, 2, 3, 4. The boundaries at the top
(x3 = x3,0 = 0 m) and bottom (x3 = 1200 m) of the layered
medium are absorbing (i.e., the half-spaces above and below
these boundaries form a continuation of the first and last lay-
ers, respectively). Figure 2 shows the response to a source
at depth x3,A = 800 m (the red dot in Fig. 1). It is defined as
G(x3, x3,A, t) ∗ s(t), where G(x3, x3,A, t) is the Green’s function

Figure 2 Green’s function G(x3, x3,A, t) convolved with source
wavelet s(t).

for fixed source depth x3,A and variable receiver depth x3 and
time t. Moreover, s(t) is the source wavelet (here, a Ricker
wavelet with a central frequency of 30 Hz), and the asterisk ∗
denotes convolution. The responses observed by receivers at
the upper and lower boundaries (the blue dots in Fig. 1) are
shown in the top and bottom panels in Fig. 2.

Figures 3, 4, and 5 are the 1D equivalents of the ex-
periments discussed in Figs. 1, 3, and 4 in Part I. The top
panel in Fig. 3 shows the time-reversed direct arrival of the
Green’s function observed at x3,0 = 0, which we denote as
Gd(x3,0, x3,A, −t) ∗ s(−t). We denote the arrival time of the
direct arrival as td; hence, Gd(x3,0, x3,A,−t) is an impulse at
t = −td. This field is emitted into the medium by a source
at x3,0 = 0. The evolution of this field through the layered
medium is shown in the central panel in Fig. 3 as a function
of depth and time, like in a vertical seismic profile. In this
kind of display, it can be clearly seen how waves are reflected
at the interfaces. Also, the entire paths of multiple reflections
can be easily followed. The black line in the panel at the left
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Figure 3 Emission of the time-reversed direct arrival,
Gd(x3,0, x3,A, −t) ∗ s(−t), from the upper boundary into the
horizontally layered medium. The virtual source at x3,A = 800 m
radiates only downward. Moreover, the virtual-source response for
t > 0 is contaminated by the response to an undesired virtual source
at approximately 400 m, indicated by the red arrow.

shows a cross section as a function of depth (x3) for t = 0.
It shows a band-limited focal spot at x3,A = 800 m. This acts
as a downward radiating (i.e., anisotropic) virtual source for
the field at t > 0. In agreement with Part I, we denote this
virtual-source function as V1D(x3, x3,A) and we call the field
for t > 0 the virtual-source response. The red line in the panel
at the left shows a cross section of the temporal derivative
of the central panel, also evaluated at t = 0. This is denoted
as V̇1D(x3, x3,A). As explained in Part I, the two functions V1D

and V̇1D together form the virtual source in terms of initial
conditions at t = 0, which uniquely define the response for
t > 0 (here, the particular phase difference between the two
functions causes the virtual source to be a downward radiat-
ing source). Note that the virtual-source functions also exhibit
an artefact at a depth of approximately 400 m (similar to that
in Fig. 1(e) in Part I). It is clear that this artefact is caused
by the upgoing wave coming from the second interface, pass-
ing the t = 0 line at approximately 400 m (indicated by the
red arrow in Fig. 3). This artefact acts as an undesired up-
ward radiating virtual source, which contaminates the virtual-

Figure 4 Emission of the time reversed responses from the upper and
lower boundary into the horizontally layered medium. The virtual
source at x3,A = 800 m is purely isotropic and not contaminated by
artefacts.

source response for t > 0 (ideally, the virtual-source response
should be identical to the response to the actual source in
Fig. 2).

In an ideal time-reversal experiment, the time-reversed
field is emitted into the medium from all sides. For a hori-
zontally layered medium, this means that the field should be
emitted from the upper and lower boundaries. The top and
bottom panels in Fig. 4 show the time reversals of the top and
bottom panels in Fig. 2. These fields are emitted from both
sides into the medium. The central panel in Fig. 4 shows the
evolution of these fields through the medium (this is the 1D
version of the 2D time-reversal experiment shown in Fig. 3 in
Part I). It is shown how, for t < 0, downgoing and upgoing
waves reach the interfaces from above and below, together
giving rise to scattered waves in such a way that the field
focuses at t = 0. For example, the red arrow indicates an up-
going wave arriving at the second interface in such a way that
the upgoing wave above the second interface (the one indi-
cated by the red arrow in Fig. 3) is annihilated. According to
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Figure 5 Emission of the time-reversed response from the upper
boundary into the horizontally layered medium.

the theory discussed in Part I, the total wave field (for all t) is
proportional to Gh(x3, x3,A, t) ∗ s(−t), where Gh(x3, x3,A, t) is
the homogeneous Green’s function defined as

Gh(x3, x3,A, t) = G(x3, x3,A, t) + G(x3, x3,A, −t). (1)

The field and its temporal derivative, both evaluated at t = 0,
are shown by the black and red lines, respectively, in the
left panel in Fig. 4. These are the virtual-source functions
V1D(x3, x3,A) and V̇1D(x3, x3,A). Note that the latter function
vanishes for all x3. Together, these functions act as an isotropic
(equally downward and upward radiating) virtual source for
the field at t > 0 in the central panel of this figure. This virtual-
source response accurately resembles the response to the ac-
tual source in Fig. 2.

With the total field being given by Gh(x3, x3,A, t) ∗ s(−t),
the virtual-source functions follow from

V1D(x3, x3,A) = [
Gh(x3, x3,A, t) ∗ s(−t)

]
t=0, (2)

V̇1D(x3, x3,A) =
[ ∂

∂t
{Gh(x3, x3,A, t) ∗ s(−t)}

]
t=0

. (3)

According to the theory in Part I, this gives for a symmetric
source wavelet (like the Ricker wavelet used in this example)

V1D(x3, x3,A) = ρ̄c̄ s(r/c̄), (4)

V̇1D(x3, x3,A) = 0, (5)

where r = |x3 − x3,A|. Here, c̄ and ρ̄ are the propagation ve-
locity and the mass density of the layer that contains the
virtual source; hence, c̄ = c3 = 2000 m/s and ρ̄ = ρ3 = 1400
kg/m3. Equation (4) quantifies the black line in the left panel in
Fig. 4 (which exhibits a scaled Ricker wavelet), and equation
(5) confirms that the red line should indeed be zero (if it were
not zero, the virtual source would not be isotropic).

Figure 5 shows the evolution of the field through the
medium when the time-reversed response G(x3,0, x3,A, −t) ∗
s(−t) is emitted only from the upper boundary into the
medium (this is the 1D version of the single-sided 2D time-
reversal experiment shown in Fig. 4 in Part I). For t < 0, the
scattering occurring at the interfaces in Fig. 5 is very different
from that in Fig. 4 because the illumination from below is
missing. Hence, unlike in Fig. 4, the field does not converge to
a well-defined focus at t = 0. The left panel in Fig. 5, which
shows the field (black line) and its derivative (red line) eval-
uated at t = 0, exhibits artefacts apart from the focal spot
at x3,A = 800 m (the red arrows in the central panel indicate
the origin of some of these artefacts). These black and red
lines form again the virtual-source functions V1D(x3, x3,A) and
V̇1D(x3, x3,A). The field for t > 0 in the central panel in Fig. 5
clearly shows that the virtual source is anisotropic and that
its response is contaminated by artefacts, even more than in
Fig. 3.

Figure 6(a), (b), and (c) shows an overview of traces in-
volved in the time-reversal experiments that we discussed.
Figure 6(a) is the response observed at the surface, i.e.,
G(x3,0, x3,A, t) ∗ s(t). Figure 6(b) is the time-reversed direct ar-
rival of this response, i.e., Gd(x3,0, x3,A, −t) ∗ s(−t), whereas
Fig. 6(c) is the time reversal of the full response; hence,
G(x3,0, x3,A,−t) ∗ s(−t). In Figs. 3 and 5, we have shown
that emitting either one of these time-reversed responses from
the upper boundary into the medium yields anisotropic vir-
tual sources, the responses of which are contaminated by
scattering-related artefacts. Only when the time reversal of the
full response is emitted from the upper and lower boundaries
into the medium we obtain the desired isotropic artefact-free
virtual-source response (Fig. 4).

Figure 6(d), (e), and (f) shows an overview of traces that
will be discussed in the next section. We will show step by
step that the trace in Fig. 6(f), when emitted from the upper
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Figure 6 Traces involved in time-reversal acoustics and in single-
sided focusing. (a) Response at the surface G(x3,0, x3,A, t) ∗ s(t).
(b) Time-reversal of direct arrival, i.e., Gd(x3,0, x3,A, −t) ∗ s(−t).
(c) Time-reversal of full response, i.e., G(x3,0, x3,A,−t) ∗ s(−t). (d)
Transmission response T(x3,A, x3,0, t) ∗ s(t). (e) One-way focusing
function f +

1 (x3,0, x3,A, t) ∗ s(t), with f +
1 (x3,0, x3,A, t) being the in-

verse of T(x3,A, x3,0, t). (f) Focusing function { f +
1 (x3,0, x3,A, t) −

f −
1 (x3,0, x3,A, −t)} ∗ s(t), with f −

1 (x3,0, x3,A, t) being the reflection re-
sponse of f +

1 (x3,0, x3,A, t).

boundary into the medium, also leads to the desired isotropic
artefact-free virtual-source response. Note the difference be-
tween the traces in Fig. 6(c) and (f). They both have an event
at t = −td, but apart from this, the trace in Fig. 6(c) is purely
acausal, whereas that in Fig. 6(f) is purely causal: it consists
of a pulse at t = −td, followed by a causal “coda”.

Single-sided focusing functions

Here we discuss focusing as an inverse filtering process rather
than a time-reversal process. Inverse filtering has a rich his-
tory in seismic data processing, starting with the early 1D
inverse-filtering work of Robinson (1954) and Treitel and
Robinson (1964). For 2D and 3D situations, seismic focus-
ing of primary reflection data (seismic migration) has been
formulated as an inverse filtering (or spatial deconvolution)
process by Berkhout and van Wulfften Palthe (1979). Tanter,

Thomas and Fink (2000) used a similar inverse-filtering ap-
proach to design focusing wave fields as an alternative to time-
reversal acoustics. Snieder, Sheiman and Calvert (2006) and
Wapenaar, van der Neut and Ruigrok (2008) reformulated
seismic interferometry as 1D and 2D/3D inverse-filtering (de-
convolution) processes. Here we discuss a 1D inverse filter to
create a virtual source in a horizontally layered medium that
can be accessed from one side only. Later in this paper, we
extend this approach to the 2D and 3D situations.

Consider again the horizontally layered medium in Fig. 1.
We assume that the medium is accessible only at the upper
boundary (x3 = x3,0), from which we want to emit a signal
that focuses at x3 = x3,A. For the moment, we replace the
medium below x3,A by a homogeneous half-space, i.e., we
remove the third reflector at x3 = 900 m and assume that,
below this depth, the propagation velocity and mass den-
sity of the third layer (c3 and ρ3) are continued. We call this
new medium the truncated medium (also often indicated as
the reference medium). Note that, by its construction, the
truncated medium is identical to the actual medium above
x3 = x3,A, whereas it is homogeneous below this depth. We
define the transmission response of the truncated medium as
T(x3,A, x3,0, t). This response, convolved with a source wavelet
s(t), is shown in Fig. 6(d). Note that the direct arrival occurs at
t = td. We define a focusing function f +

1 (x3, x3,A, t) that is in-
cident on the truncated medium from the upper half-space and
focuses at x3 = x3,A. Superscript + denotes that it is a down-
ward propagating wave field, and the argument x3,A denotes
the focal depth. We denote downward or upward propagating
fields as “one-way” wave fields; hence, we call f +

1 (x3, x3,A, t)
a one-way focusing function. We define the focusing
condition as

δ(t) = T(x3,A, x3,0, t) ∗ f +
1 (x3,0, x3,A, t). (6)

This equation states that the one-way focusing function, when
emitted into the truncated medium from x3 = x3,0, propagates
to x3 = x3,A, where it collapses to a delta function. In terms
of signal processing, equation (6) states that f +

1 (x3,0, x3,A, t)
is the inverse of T(x3,A, x3,0, t). Figure 6(e) shows this focus-
ing function, convolved with the wavelet s(t). Note that the
first arrival occurs at t = −td and that the coda of this fo-
cusing function (in this case, a single pulse) is causal in the
sense that it comes after the first arrival at t = −td. This is
a general property of inverse transmission responses. It fol-
lows from two classical results, namely, (i) the transmission
response of a horizontally layered medium is a delayed (by td)
causal minimum-phase signal (Anstey and O’Doherty 1971;
Robinson and Treitel 1976) and (ii) the inverse of a
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Figure 7 Emission of the one-way focusing function f +
1 (x3,0, x3,A, t) ∗

s(t) into the truncated medium.

minimum-phase signal is causal and minimum phase
(Robinson 1954; Berkhout 1974).

Convolving both sides of equation (6) with wavelet s(t)
gives

s(t) = T(x3,A, x3,0, t) ∗ { f +
1 (x3,0, x3,A, t) ∗ s(t)}. (7)

The top panel in Fig. 7 shows the focusing function
f +
1 (x3,0, x3,A, t), convolved with wavelet s(t). This is emitted

into the truncated medium from x3 = x3,0. The central panel
in Fig. 7 shows the evolution of the field through the trun-
cated medium. The red arrow indicates the second event of
the focusing function arriving as a downgoing wave at the first
reflector, exactly at the time that an upgoing wave arrives at
this reflector from below. The amplitude of the incident down-
going wave is tuned such that there is no scattered downgoing
wave leaving the first reflector at this time. As a consequence,
only the first event of the focusing function reaches the focal
depth x3,A = 800 m. The field at this depth is shown in the
bottom panel in Fig. 7. According to equation (7), it consists
of the wavelet s(t). This focused field acts as a virtual source
for the downward propagating field in the half-space below

x3,A = 800 m, as shown in the central panel in Fig. 7. We
denote this temporal virtual-source function as �1D(t).

Note that the focusing experiment discussed here is
essentially different from that in the previous examples.
For clarity, we define two types of focusing conditions as
follows:
� Focusing in depth: At constant time (t = 0), the focus

V1D(x3, x3,A) is proportional to the spatial wavelet s(|x3 −
x3,A|/c̄), and V̇1D(x3, x3,A) is equal to zero (assuming the
wavelet s(t) is symmetric, see equations (4) and (5));

� Focusing in time: At constant depth (x3 = x3,A), the focus
�1D(t) is proportional to the temporal wavelet s(t) (see
equation (7)).

The time-reversal experiment in Fig. 4 is an example of
focusing in depth (at constant time), whereas Fig. 7 shows
focusing in time (at constant depth).

Although emitting f +
1 (x3,0, x3,A, t) ∗ s(t) into the trun-

cated medium leads to focusing in time, the panel on the left
in Fig. 7 shows that focusing in depth is not achieved. The
function V1D(x3, x3,A) (black line) exhibits artefacts at shallow
depths, and V̇1D(x3, x3,A) (red line) is not zero. Next, we dis-
cuss the steps that lead to focusing in depth using focusing
functions emitted from the upper boundary.

The first step aims at suppressing the artefacts in
V1D(x3, x3,A). Consider again the downgoing focusing func-
tion in Fig. 7 which, for variable depth x3, is denoted as
f +
1 (x3, x3,A, t). Before reaching the focus, a part of this fo-

cusing function is reflected upward. The upward reflected re-
sponse is called f −

1 (x3, x3,A, t). The two functions together
constitute the two-way focusing function

f1(x3, x3,A, t) = f +
1 (x3, x3,A, t) + f −

1 (x3, x3,A, t). (8)

We take the upgoing response at the upper boundary and
revert it in time, giving f −

1 (x3,0, x3,A,−t). Due to the time re-
versal, this is again a downgoing field. We subtract it from
the downgoing focusing function f +

1 (x3,0, x3,A, t), which gives
f +
1 (x3,0, x3,A, t) − f −

1 (x3,0, x3,A, −t). This function, convolved
with s(t), is shown in the top panel in Fig. 8. It is emitted
from x3 = x3,0 into the truncated medium (which is identical
to the actual medium above the focal depth x3,A and homoge-
neous below this depth). The central panel in Fig. 8 shows the
evolution of the field { f +

1 (x3, x3,A, t) − f −
1 (x3, x3,A, −t)} ∗ s(t)

through the truncated medium. The red dashed lines indi-
cate the direct waves. In the time interval between these lines,
the upgoing response to the downgoing field is given by
{ f −

1 (x3, x3,A, t) − f +
1 (x3, x3,A, −t)} ∗ s(t). Here, the first term

is the response to f +
1 (x3,0, x3,A, t) ∗ s(t) and the second term

is the response to − f −
1 (x3,0, x3,A,−t) ∗ s(t). The superposition
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Figure 8 Emission of the focusing function { f +
1 (x3,0, x3,A, t) −

f −
1 (x3,0, x3,A, −t)} ∗ s(t) into the truncated medium.

of the downgoing and upgoing fields between the red dashed
lines consists of four terms that, using equation (8), can be sim-
plified to { f1(x3, x3,A, t) − f1(x3, x3,A, −t)} ∗ s(t). Assuming a
symmetric wavelet s(t), this field is anti-symmetric in time;
hence, at t = 0, it is zero. This is confirmed by the left panel in
Fig. 8, in which V1D(x3, x3,A) (the black line) is again the field of
the central panel, evaluated at t = 0. It contains the focal spot
around x3,A = 800 m, but the artefacts that are present at shal-
lower depths in V1D(x3, x3,A) in Fig. 7 are absent in Fig. 8. The
function V̇1D(x3, x3,A) (the red line) is not zero (the artefacts at
shallow depths are even stronger than those in Fig. 7). Hence,
the focusing experiment in Fig. 8 partly accomplishes focusing
in depth (for V1D but not for V̇1D). Note that the bottom panel
in Fig. 8, which displays the field at the focal depth x3,A = 800
m, shows that focusing in time no longer occurs. At the end of
this section, we discuss the final step towards pure single-sided
focusing in depth, but first, we investigate what happens when
we emit { f +

1 (x3,0, x3,A, t) − f −
1 (x3,0, x3,A,−t)} ∗ s(t) into the

actual medium instead of the truncated medium (see Fig. 9).
By comparing the central panel carefully with that in Fig. 2, it
appears that the response right of the rightmost red dashed

Figure 9 Idem, into the actual medium.

lines is equal to the Green’s function G(x3, x3,A, t), convolved
with the source wavelet s(t). In Fig. 7, it was already shown
that the focal point at x3,A = 800 m, created by the focus-
ing function f +

1 (x3,0, x3,A, t) ∗ s(t), acts as a virtual source
for downgoing waves. In Fig. 9, the virtual source at x3,A

emits the same downgoing wave into the actual medium,
which explains a part of the Green’s function G(x3, x3,A, t)
right of the red dashed lines. The additional part of the fo-
cusing function in Fig. 9, i.e., − f −

1 (x3,0, x3,A, −t) ∗ s(t), gen-
erates additional events that (see right of the red dashed
lines) behave as if they were radiated by a source for up-
going waves at x3,A. Hence, the responses to f +

1 (x3,0, x3,A, t) ∗
s(t) and − f −

1 (x3,0, x3,A, −t) ∗ s(t) together form (see right of
the red dashed lines) the isotropic virtual-source response
G(x3, x3,A, t) ∗ s(t). The bottom panel in Fig. 9 shows again
the field at the focal depth, i.e., G(x3,A, x3,A, t) ∗ s(t).

The focusing approach illustrated in Fig. 9 is due to Rose
(2001, 2002). He showed that the focusing function at the
upper boundary can be retrieved from the 1D reflection re-
sponse measured at this boundary by solving the Marchenko
equation in an iterative way. He called this method
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Figure 10 Superposition of Fig. 9 and its time reversal.

“single-sided autofocusing” because it requires no informa-
tion about the medium other than its single-sided reflection
response. Instead of focusing at a specific depth, his method
focuses at “one-way travel time” td. The method is initiated
with a pulse at t = −td, after which the coda of the focusing
function (the top panel in Fig. 9) is retrieved with the iterative
Marchenko scheme. Velocity information is only required if
one wants to convert the one-way travel time (at which a focus
occurs) to depth. For this purpose, a smooth velocity model
suffices.

We now discuss the final step to achieve single-sided fo-
cusing in depth. This step aims at letting V̇1D(x3, x3,A) van-
ish. This function is defined as the temporal derivative of
the field, evaluated at t = 0. Recall that the field in Figs. 8
and 9 in the region between the red dashed lines and above
x3,A is given by the anti-symmetric function { f1(x3, x3,A, t) −
f1(x3, x3,A,−t)} ∗ s(t). Hence, if we take the field at all (x3, t) in
Fig. 9 and add its time reversal to it, the field and its derivative
vanish in this region (see Fig. 10). Outside this region, the same
operation transforms the Green’s function G(x3, x3,A, t) ∗ s(t)
into the homogeneous Green’s function Gh(x3, x3,A, t) ∗ s(t).
The bottom panel in Fig. 10 shows Gh(x3,A, x3,A, t) ∗ s(t). This
approach is due to Broggini and Snieder (2012).

Note that the result in Fig. 10 is identical to the time-
reversal result in Fig. 4. However, whereas Fig. 4 was obtained
by emitting the time-reversed responses from the upper and
lower boundaries into the medium (the first of them shown in
Fig. 6(c)), Fig. 10 was obtained by emitting a focusing function
(Fig. 6(f)) only from the upper boundary into the medium and
symmetrising the result by adding its time reversal. In the next
section, we discuss the same steps for single-sided focusing
in 2D and 3D media, this time supported by mathematical
derivations.

S INGLE-S IDED FOCUSING IN TWO- A ND
THREE-DIMENSIONAL M EDIA

Focusing conditions in two- and three-dimensional media

In the 1D situation, we distinguished between (i) focusing in
depth (at constant time) and (ii) focusing in time (at constant
depth). For focusing in 2D and 3D inhomogeneous media,
the additional coordinates to be considered, for both types of
focusing, are the horizontal coordinates x1 and x2 (the latter
only in the 3D case). Hence, from here onward, “focusing in
depth” actually means “focusing in space” (at constant time),
whereas “focusing in time” actually stands for “focusing in
time and horizontal position” (at constant depth).

Focusing in depth (2D or 3D) at constant time is the
type of focusing discussed in Part I. We defined the focal
spot as the field of a focusing experiment evaluated at t = 0
and denoted this as V(x, xA), with x = (x1, x2, x3) being the
variable spatial coordinate vector and xA = (x1,A, x2,A, x3,A)
denoting the position of the focal point. Ideally, the focal
spot V(x, xA) would be a spatial delta function δ(x − xA) at
t = 0, but this is never achieved in practice. The temporal
derivative of the focused field, evaluated at t = 0, was denoted
as V̇(x, xA). The focused field and its derivative act as a virtual
source in terms of initial conditions at t = 0 for the field at
t > 0. For an ideal time-reversal experiment, assuming that
the wavelet s(t) is symmetric, we found

V3D(x, xA) = − ρ̄

2πr
ṡ(r/c̄), (9)

V2D(x, xA) = − ρ̄

π

∫ ∞

r/c̄

ṡ(t)√
t2 − r2/c̄2

dt, (10)

and V̇(x, xA) = 0 for both cases, where r = |x − xA| and ṡ(t)
denotes the temporal derivative of s(t).

Focusing in time (2D or 3D) at constant depth is a gen-
eralisation of the type of focusing illustrated in the 1D ex-
periment in Fig. 7. The focal spot is defined as the field of
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a focusing experiment evaluated at the focal depth x3 = x3,A.
It is denoted as �(xH, xH,A, t), with xH = (x1, x2) being the
variable horizontal coordinate vector and xH,A = (x1,A, x2,A)
denoting the horizontal position of the focal point. Ideally,
the focal spot �(xH, xH,A, t) would be a product of spatial and
temporal delta functions, i.e., δ(xH − xH,A)δ(t) at x3 = x3,A. In
practice, the ideal focal spot is never achieved, as we will see
in the next section. The focused field acts as a virtual source
in terms of a boundary condition at x3 = x3,A for the field at
x3 > x3,A.

Focusing in time

Similar as for the 1D example discussed in Fig. 7, we start by
introducing a truncated medium (also often called a reference
medium), which is identical to the actual medium above the
depth level x3 = x3,A of the focal point xA and homogeneous
at and below this depth level. We also assume that the actual
medium is homogeneous at and above the upper boundary
x3 = x3,0 = 0. For the inhomogeneous medium in Fig. 1(a) in
Part I, the truncated medium is shown in Fig. 11(a). We de-
note the upper boundary at x3 = 0 as ∂D0, whereas we denote
the depth level x3 = x3,A of the focal point as ∂DA. Similar
as in the 1D example, we define a one-way focusing function
f +
1 (x, xA, t), which, for x on ∂D0, is defined as the inverse of

the transmission response between ∂D0 and xA. Hence, when
f +
1 (x, xA, t) is emitted from the upper boundary into the trun-

cated medium, it focuses at xA. This is illustrated in Fig. 11.
Figure 11(b) shows f +

1 (x, xA, t) ∗ s(t) as a function of x (on
∂D0) and t (here, s(t) is again a Ricker wavelet with a central
frequency of 30 Hz). This focusing function consists of an
event at −td(xA, x), followed by a coda, which, in this case,
consists of a single event. Here, td(xA, x) denotes a travel-time
curve, indicating the direct arrival of the transmission response
between x (on ∂D0) and xA. Hence, similar as in the 1D ex-
ample in Fig. 7, the first event of the focusing function occurs
at minus the direct arrival time of the transmission response.
The rays in Fig. 11(a) illustrate the propagation of the focusing
function through the medium. The outer red rays represent the
propagation of the first event of f +

1 (x, xA, t) ∗ s(t) to the focal
point at xA. The upgoing blue rays represent the reflected fo-
cusing function f −

1 (x, xA, t) ∗ s(t). These upgoing rays would
cause new downgoing rays at the first interface if they were
not met by additional downgoing rays (the inner red rays
in the first layer), coming from the coda of f +

1 (x, xA, t) ∗ s(t).
These downgoing rays are tuned such that no downgoing rays
are leaving the first interface; hence, the outer red rays are the
only ones reaching the focal plane ∂DA (a similar mechanism

xA

c (m

(a)

(b)

(c)

(d)

/s)

x3 (m)

x1 (m)

∂ 0

∂ A

t (s)

x1 (m)

−td(xA,x)

x1 (m)

t (s)

t (s)

x1 (m)

Figure 11 (a) Emission of the one-way focusing function into the trun-
cated medium. (b) The downgoing focusing function f +

1 (x, xA, t) ∗
s(t) for all x at the upper boundary ∂D0. (c) Idem, for all x at the
focal plane ∂DA. This is a focus in time and horizontal position (at
constant depth). (d) The upgoing focusing function f −

1 (x, xA, t) ∗ s(t)
for all x at the upper boundary ∂D0.
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for the 1D focusing function was explained in the discussion
of Fig. 7). Figure 11(c) shows the focused field that would be
observed when receivers would be present at the focal plane
∂DA, i.e., it shows f +

1 (x, xA, t) ∗ s(t) as a function of x on ∂DA

and t. We define the focal spot as the vertical derivative of
this function, evaluated at x3 = x3,A; hence

�(xH, xH,A, t) = [
∂3 f +

1 (x, xA, t) ∗ s(t)
]

x3=x3,A
. (11)

The vertical derivative is taken here to be consistent with our
earlier definition of the focusing function (Wapenaar et al.

2014) (it facilitates its use in the reciprocity theorems in
the theoretical derivations in the Appendix and it causes the
wavenumber spectrum of the focal spot to be flat for the prop-
agating wavefield). Figure 11(c) shows that the focal spot is
a band-limited version of a delta function at xH = xH,A and
t = 0. The band limitation is due to the band-limited wavelet
s(t) and the negligence of evanescent waves (Berkhout and
van Wulfften Palthe 1979; Thomson, Kitchenside and Fletcher
2016). Finally, Fig. 11(d) shows the reflected focusing func-
tion f −

1 (x, xA, t) ∗ s(t) for x on ∂D0.
There are several ways to obtain the focusing function

in practice. When the medium is known, its transmission re-
sponse can be modelled and subsequently inverted. We call
this a model-driven approach. Alternatively, to avoid inver-
sion of the transmission response, the focusing function can be
modelled directly, following a recursive Kirchhoff–Helmholtz
wavefield extrapolation approach (Wapenaar 1993; Becker
et al. 2016), starting with the focused field at ∂DA and recur-
sively moving upward. This gives f +

1 (x, xA, t) and f −
1 (x, xA, t)

for all x above ∂DA. This is also a model-driven approach.
With our recent work on the 2D and 3D Marchenko meth-
ods, we have shown that these functions can also be de-
rived from reflection measurements at the upper boundary
(Wapenaar et al. 2013; Slob et al. 2014; van der Neut et al.

2015c). This data-driven approach (which was actually used
to obtain Fig. 11(b) and 11(d)) is briefly reviewed in a later
section. Before we come to this, we discuss the steps that are
needed to go from focusing in time to focusing in depth.

From focusing in time to focusing in depth

In the 1D examples, we discussed step by step how the
focusing-in-time experiment (Fig. 7) was turned into a
focusing-in-depth experiment (Fig. 10). Here, we discuss sim-
ilar steps for the 2D and 3D situations. To this end, we first
define Green’s functions and focusing functions in a more for-
mal way and discuss their mutual relations (which are derived

in the Appendix). Based on these relations, we discuss the
steps needed to go from focusing in time to focusing in depth.

We introduce a Green’s function G(x, xR, t) in the actual
medium for a source at xR just above the upper boundary
∂D0 (hence, xR = (xH,R, x3,0 − ε), with ε → 0). This Green’s
function obeys wave equation (A-5) in Appendix A in Part I
(with xA replaced by xR). We decompose this Green’s function
into downgoing and upgoing components according to

G(x, xR, t) = G+(x, xR, t) + G−(x, xR, t). (12)

Because the half-space at and above ∂D0 is homogeneous, the
downgoing field at ∂D0 consists only of the direct field just
below the point source, which is given by

[
∂3G+(x, xR, t)

]
x3=x3,0

= − 1
2

ρ(xR)δ(xH − xH,R)δ̇(t). (13)

See equation (A-5) in the Appendix. The upgoing field at ∂D0

is proportional to the reflection response of the half-space
below ∂D0, according to

[∂3G−(x, xR, t)]x3=x3,0
=

[
1
2

ρ(x)Ṙ(xR, x, t)
]

x3=x3,0

. (14)

See equation (A-6) in the Appendix.
The one-way focusing functions, informally introduced in

the previous section, form the downgoing and upgoing parts
of the two-way focusing function f1(x, xA, t) according to

f1(x, xA, t) = f +
1 (x, xA, t) + f −

1 (x, xA, t). (15)

At the focal plane ∂DA, the downgoing part of the focusing
function ideally obeys the following relation:

[
∂3 f +

1 (x, xA, t)
]

x3=x3,A
= − 1

2
ρ(xA)δ(xH − xH,A)δ̇(t). (16)

The factor − 1
2

ρ(xA) and the differentiation of the delta func-
tion (denoted by the dot) are included for consistency with
equation (13). To avoid instability caused by the evanescent
field, the spatial delta function should be interpreted in a band-
limited sense (the effect of this band limitation is shown in
Fig. 11(c)). Recall that the focusing function is defined in the
truncated medium, which is identical to the actual medium
above the focal plane ∂DA but homogeneous below this plane.
As a consequence, the upgoing part of the focusing function
and its derivative vanish at and below ∂DA. Hence, next to
equation (16), we have
[
∂3 f −

1 (x, xA, t)
]

x3=x3,A
= 0. (17)

Unlike the Green’s function, the focusing function obeys a
wave equation without a delta function on the right-hand
side. Hence, the focal point xA is not a sink; below the focal
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depth, the focusing function f +
1 (x, xA, t) continues propagat-

ing downward.
In the Appendix, we derive the following relations

between the Green’s functions and the focusing functions

G−(xA, xR, t) + f −
1 (xR, xA, t)

=
∫

∂D0

d2x
∫ t

−∞
R(xR, x, t − t′) f +

1 (x, xA, t′)dt′ (18)

and

G+(xA, xR, t) − f +
1 (xR, xA, −t)

= −
∫

∂D0

d2x
∫ t

−∞
R(xR, x, t − t′) f −

1 (x, xA, −t′)dt′. (19)

The upper integration boundary t′ = t of the time inte-
grals accounts for the causality of the reflection response
R(xR, x, t − t′). Adding these equations and using source–
receiver reciprocity for the Green’s function gives

G(xR, xA, t) − f2(xA, xR, −t)

=
∫

∂D0

d2x
∫ t

−∞
R(xR, x, t − t′) f2(xA, x, t′)dt′, (20)

with

f2(xA, x, t) = f +
1 (x, xA, t) − f −

1 (x, xA, −t). (21)

We previously introduced f2(xA, x, t) as a focusing function
that has its focal plane at ∂D0 (Wapenaar et al. 2014). Here,
we merely use f2 as a compact notation for the combination
of the one-way focusing functions f +

1 and f −
1 , as defined in

equation (21).
The right-hand side of equation (20) represents the ap-

plication of the reflection response R(xR, x, t) at the upper
boundary ∂D0 to the function f2(xA, x, t) for x at ∂D0. Ac-
cording to equation (21), this function consists of the down-
going focusing function f +

1 (x, xA, t) for all x at ∂D0 (Fig.
11(b)) and the time reversal of the reflected focusing function
f −
1 (x, xA, t) (Fig. 11(d)), which, because of the time reversal,

is also a downgoing field at ∂D0. This total downgoing field
at ∂D0, convolved with a symmetric wavelet s(t), is shown in
Fig. 12(a). It consists of an event at −td(xA, x) (just above the
red dashed line), followed by a coda. The left-hand side of
equation (20) is the reflection response of the medium to the
downgoing field f2(xA, x, t). It consists of the time reversal
of − f2(xA, xR, t) (which is an upgoing field) and the Green’s
function G(xR, xA, t), which is the response to a virtual source
at the position of the focal point, xA, observed at xR at the
upper boundary ∂D0. Because the half-space above ∂D0 is
homogeneous, this Green’s function is also an upgoing field

at ∂D0. The total upgoing field at ∂D0 convolved with the sym-
metric wavelet s(t), i.e., the left-hand side of equation (20), is
shown in Fig. 12(b).

Figure 13 shows the evolution of this field through the
medium. This figure was obtained by emitting f2(xA, x, t) ∗
s(t) from the boundary ∂D0 into a model of the medium. The
snapshots for t < 0 show a field converging to the focal point
at xA. The snapshot at t = 0 shows the virtual-source func-
tion (or focal spot) V2D(x, xA). Finally, the snapshots for t > 0
show a field propagating away from the virtual source at xA.
Similar as in the 1D experiment in Fig. 9, we observe that the
virtual-source function V2D(x, xA) in Fig. 13(c) is nicely con-
centrated around the focal point xA. Hence, similar as in Fig. 9,
we have made a step towards focusing in depth. However, the
snapshots at t = −0.03 and t = +0.03 seconds (Fig. 13(b) and
(d)) show considerable artefacts at shallower depths. These
artefacts appear to have opposite signs. Hence, V̇2D(x, xA),
which is roughly proportional to the difference of the snap-
shots at t = +0.03 and t = −0.03 seconds, does not vanish.

The final step towards pure single-sided focusing in
depth aims at letting V̇2D(x, xA) vanish. This is achieved in a
similar way as in the 1D experiment, where we superposed
Fig. 9 and its time reversal to obtain Fig. 10 (Broggini and
Snieder 2012). Here, we superpose one by one the snapshots
at negative times (Fig. 13(c), (b), and (a)) to the snapshots
at the corresponding positive times (Fig. 13(c), (d), and (e)),
yielding the snapshots in Fig. 14(a), (b), and (c). The snapshot
at t = 0 (see Fig. 14(a)) represents the virtual-source function
V2D(x, xA). It is quantified by equation (10) and illustrated in
Fig. 6(b) in Part I. Given that the artefacts in the snapshots at
t = −0.03 and t = +0.03 seconds (Fig. 13(b) and (d)) have
opposite signs, the superposition of these snapshots makes
these artefacts cancel each other (Fig. 14(b)). Moreover, the
wavefront just above the virtual source at xA in Fig. 13(b),
added to the wavefront just below the virtual source in Fig.
13(d), approximates the response to an isotropic virtual
source (Fig. 14(b)). A similar reasoning holds for the other
snapshots in Fig. 14 and for those at negative times (not shown
in Fig. 14). The result is the homogeneous Green’s function
Gh(x, xA, t) ∗ s(t) = {G(x, xA, t) + G(x, xA, −t)} ∗ s(t), for
which V̇2D(x, xA) indeed vanishes. The retrieval of the ho-
mogeneous Green’s function can be mathematically justified
as follows. At the upper boundary, the incident field is
f2(xA, x, t) ∗ s(t) = { f +

1 (x, xA, t) − f −
1 (x, xA, −t)} ∗ s(t) (Fig.

12(a)) and its response is {G(xR, xA, t) − f2(xA, xR,−t)} ∗ s(t)
(Fig. 12(b)). Hence, setting x = xR, the total field at
∂D0 is { f +

1 (xR, xA, t) − f −
1 (xR, xA, −t) + G(xR, xA, t) −

f +
1 (xR, xA,−t) + f −

1 (xR, xA, t)} ∗ s(t). Adding to this its
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t (s)
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Figure 12 (a) The downgoing field f2(xA, x, t) ∗ s(t) =
{ f +

1 (x, xA, t) − f −
1 (x, xA, −t)} ∗ s(t) for all x at the upper

boundary ∂D0. (b) The reflection response to f2(xA, x, t) ∗
s(t) at the upper boundary ∂D0. According to equation (20),
this consists of the time reversal of f2(xA, xR, t) ∗ s(t) (of
which the coda resides above the red dashed line) and the
Green’s function G(xR, xA, t) ∗ s(t) (residing entirely below
the red dashed line).

time reversal, using the assumption that s(t) is a sym-
metric wavelet, all the focusing functions cancel each
other. What remains is the homogeneous Green’s function
Gh(xR, xA, t) ∗ s(t) = {G(xR, xA, t) + G(xR, xA, −t)} ∗ s(t).

It is striking that the result in Fig. 14 is nearly identical
to that in Fig. 3 in Part I. However, whereas the result in
Fig. 3 in Part I was obtained by emitting a time-reversed
Green’s function from an enclosing boundary into the
medium, Fig. 14 has been obtained by emitting a fo-
cusing function only from the upper boundary into the
medium (Fig. 13) and superposing its time reversal to
this.

It should be noted that, for this numerical example, the
focusing function was available at the upper boundary from
x1 = −3000 m to x1 = +3000 m (see Figs. 11 and 12), which
was necessary to obtain the almost perfect isotropic virtual

source in Fig. 14. In practice, the focusing function will
usually be available at a smaller part of the upper boundary,
meaning that the retrieved virtual source will not be perfectly
isotropic. In particular, it will not radiate at large angles;
however, it will equally radiate downgoing and upgoing
waves. From here onward, the term “isotropic virtual source”
stands for a virtual source that radiates downgoing and
upgoing waves with approximately constant amplitudes
under a significant range of angles.

In the next section, we show (i) that the focusing functions
can be retrieved from the reflection response at the upper
boundary and (ii) that a virtual-source response like the one
in Fig. 14 can be retrieved from the focusing functions and
the reflection response at the upper boundary (instead of by
emitting the focusing function, physically or numerically, into
a medium).
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Figure 13 Emission of the focusing function f2(xA, x, t) ∗ s(t) from
the upper boundary into the actual medium.
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Figure 14 One-by-one superposition of the snapshots in Fig. 13 at
negative times to those at the corresponding positive times. The snap-
shot at t = 0 is a focus in depth (at constant time).
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DATA-DRIVEN SI N GLE- S I DE D FOC USING
IN TWO- A ND THREE-DIMENSIONAL
M E D I A

The Marchenko method: data-driven retrieval of the
focusing function

Consider the left-hand side of equation (20), i.e., the re-
sponse G(xR, xA, t) − f2(xA, xR, −t). This function, convolved
with a wavelet, is shown in Fig. 12(b). The red dashed
line in this figure denotes the travel time of the direct ar-
rival, i.e., td(xA, xR) (fixed xA, variable xR), minus a small
value ε, approximately equal to half the duration of the
symmetric wavelet s(t). Hence, the Green’s function con-
volved with the wavelet, i.e., G(xR, xA, t) ∗ s(t), resides en-
tirely in the region t > tε

d(xA, xR) = td(xA, xR) − ε, i.e., below
the red dashed line. Since f2(xA, xR, t) consists of an event at
−td(xA, xR), followed by a coda, the time reversal of the coda
of f2(xA, xR, t) ∗ s(t) resides in the region t < tε

d(xA, xR), i.e.,
above the red dashed line in Fig. 12(b). In other words, the
red dashed line in Fig. 12(b) separates the Green’s function
G(xR, xA, t) ∗ s(t) from the coda of the time-reversed focusing
function f2(xA, xR,−t) ∗ s(t). Only the time-reversed direct
arrival of the focusing function overlaps the direct arrival of
the Green’s function (the event directly below the red dashed
line in Fig. 12(b)).

Note that this separation between the Green’s function
and the coda of the focusing function does not hold under
all circumstances. For example, in case of strongly scattering
media, diffraction curves may cause additional overlap of the
Green and focusing functions (Vasconcelos et al. 2014, 2015;
van der Neut et al. 2015b). At large source–receiver offsets,
refracted waves in the Green’s function may interfere with the
focusing function (Wapenaar et al. 2014). In elastic media,
there is an additional overlap as a result of forward-converted
waves (Wapenaar and Slob 2014). In the following, we will
assume that the overlap is restricted to the direct arrivals (as
in Fig. 12(b)), which is a reasonable assumption in acous-
tic media with smooth lateral variations, considering limited
source–receiver offsets.

We define a window function w(xA, xR, t) =
H(tε

d(xA, xR) − t) (where H(t) is the Heaviside function),
which passes the time reversal of the coda of the focusing
function and suppresses the entire Green’s function. In other
words, when applied to Fig. 12(b), this window function
passes everything above the red dashed line. We write the
focusing function as

f2(xA, x, t) = D(xA, x, t) + M(xA, x, t), (22)

where D is the direct arrival of the focusing function and M

is the coda (M standing for multiple). Substituting this into
equation (20) and applying the window function w(xA, xR, t)
to both sides yields (Wapenaar et al. 2013)

− M(xA, xR, −t) = w(xA, xR, t)
∫

∂D0

d2x
∫ t

−∞
R(xR, x, t − t′)

× {D(xA, x, t′) + M(xA, x, t′)}dt′. (23)

This is the 3D version of the single-sided 1D Marchenko equa-
tion (Marchenko 1955; Burridge 1980; Lamb 1980; Ge 1987;
Chadan and Sabatier 1989). Assuming that the reflection re-
sponse R(xR, x, t) is known from measurements at the upper
boundary and assuming that an estimate of the direct arrival
D(xA, x, t) of the focusing function is available, this equation
can be solved for the coda M(xA, x, t) of the focusing function.
This can be done in an iterative way (Wapenaar et al. 2014)
or by direct inversion (van der Neut et al. 2015a). Here, we
discuss the iterative method. To this end, we rewrite equation
(23) as follows:

−Mk+1(xA, xR,−t) =w(xA, xR, t)
∫

∂D0

d2x
∫ t

−∞
R(xR, x, t−t′)

×{D(xA, x, t′) + Mk(xA, x, t′)}dt′, (24)

with M0(xA, x, t) = 0. The direct arrival D(xA, x, t) is defined
as the inverse of the direct arrival of the transmission re-
sponse between the upper boundary ∂D0 and the focal plane
∂DA, but it is often approximated as the time reversal of the
direct arrival of the Green’s function between these depth lev-
els. Once M(xA, x, t) has been resolved, the focusing function
f2(xA, x, t) follows from equation (22).

Instead of solving equation (20) for the coda of f2, which,
according to equation (21), consists of a superposition of f +

1

and the time reversal of − f −
1 , one can instead solve equations

(18) and (19) for the individual coda’s of f +
1 and f −

1 (Slob
et al. 2014; Wapenaar et al. 2014). To this end, we write
these focusing functions as

f +
1 (x, xA, t) = D(x, xA, t) + M+(x, xA, t), (25)

f −
1 (x, xA, t) = M−(x, xA, t). (26)

Substituting these expressions into equations (18) and (19),
applying the window function w(xA, xR, t) to both sides of
these equations, and rewriting the resulting equations as an
iterative scheme, we yield the following equations:

M−
k (xR, xA, t) = w(xA, xR, t)

∫
∂D0

d2x
∫ t

−∞
R(xR, x, t − t′)

×{D(x, xA, t′) + M+
k (x, xA, t′)}dt′, (27)
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and

M+
k+1(xR, xA, −t) = w(xA, xR, t)

∫
∂D0

d2x
∫ t

−∞
R(xR, x, t − t′)

× M−
k (x, xA, −t′)}dt′, (28)

with M+
0 (x, xA, t) = 0. Once M+(x, xA, t) and M−(x, xA, t)

have been resolved, the focusing functions f +
1 (x, xA, t) and

f −
1 (x, xA, t) follow from equations (25) and (26). The focusing

functions that are shown in Fig. 11(b) and (d) were obtained
with the latter scheme. To this end, we modelled the reflection
response R(xR, x, t) of the model shown in Fig. 1(a) in Part I
for 600 sources and 600 receivers at the upper boundary, with
a horizontal spacing of 10 m. We used a Ricker wavelet with a
central frequency of 30 Hz. The direct arrival D(x, xA, t) was
modelled in the same medium, for xA = (0, 800) m, and for x
at the 600 source positions at the upper boundary. The focus-
ing functions were obtained after seven iterations of equations
(27) and (28).

In practice, there are many factors that complicate the
retrieval of the focusing functions (van der Neut et al. 2015c;
Ravasi et al. 2016). The measured reflection response con-
tains surface-related multiples and a source wavelet. These
surface-related multiples must be eliminated and the response
must be deconvolved for the source wavelet to obtain the im-
pulsive reflection response R(xR, x, t). Both tasks, in princi-
ple, are accomplished by surface-related multiple elimination
(Verschuur, Berkhout and Wapenaar 1992; Dragoset et al.

2010; van Groenestijn and Verschuur 2010); however, in
practice, amplitude and phase errors and remnants of surface-
related multiples may still be present in R(xR, x, t). Anelastic
losses form another complicating factor. Slob (2016) discusses
a method that accounts for anelastic losses under the assump-
tion that the medium is accessible from two sides. When the
medium is accessible from one side only, a time-dependent
gain can be applied to the reflection response to compensate
for the losses. This assumes that the loss factor is known and
constant throughout the medium. These complications can
be partly addressed by making the scheme adaptive (van der
Neut et al. 2015c). Noise, finite acquisition arrays, missing
small offsets, and imperfect spatial sampling (particularly in
3D) are other complicating issues. The implementation of the
retrieval of the focusing functions for practical situations is
the subject of current research.

Data-driven source and receiver redatuming

Once the focusing functions are found, they can be used in
equations (18) and (19) to obtain the decomposed Green’s

functions G−(xA, xR, t) and G+(xA, xR, t) or in equation
(20) to obtain the Green’s function G(xR, xA, t). We discuss
equation (20) in more detail. We can interpret the right-hand
side of this expression in two different ways. In an earlier
section, we interpreted the focusing function f2(xA, x, t) at
the right-hand side as a downgoing incident field at ∂D0 (Fig.
12(a)). In this interpretation, the integral in equation (20)
evaluates the reflection response to this incident field. The
left-hand side states that this reflection response consists of
the time-reversed focusing function − f2(xA, xR, −t) and the
Green’s function G(xR, xA, t), i.e., the response to a virtual
source at xA, observed by a receiver at xR, just above the
boundary ∂D0 (Fig. 12(b)).

Instead of interpreting the right-hand side of equation
(20) as an operator R acting on f2, we can alternatively inter-
pret it as an operator f2 acting on R. For the sake of discussion,
we slightly reformulate equation (20) and transform it to the
frequency (ω) domain using the temporal Fourier transform
defined by equation (A-13) in Part I. This gives

G(xR, xA, ω) =
∫

∂D0

R(xR, xS, ω) f2(xA, xS, ω)d2xS

+{ f2(xA, xR, ω)}∗, (29)

in which we replaced x by xS to express that this is the
source coordinate of the reflection response R(xR, xS, ω).
Superscript ∗ denotes complex conjugation. The focusing func-
tion f2(xA, xS, ω) acts as an operator that redatums the sources
of the reflection response R(xR, xS, ω) from xS at the bound-
ary ∂D0 to a virtual-source position xA in the subsurface. By
adding the complex conjugate of the focusing function to the
result, we obtain the virtual-source response G(xR, xA, ω).

Receiver redatuming can be carried out in a similar way.
For this, we need a slightly different representation because the
input for receiver redatuming is G(xR, xA, ω), with its source
in the subsurface (unlike the input R(xR, xS, ω) for source
redatuming, which has its source and receiver both at the sur-
face). To this end, consider equation (A-27) in the Appendix,
interchange xA with xB, and replace x at ∂D0 by xR at ∂D

′
0

(which is situated just above ∂D0), hence

Gh(xB, xA, ω) = −�
∫

∂D
′
0

4
ωρ(xR)

{∂3,R f2(xB, xR, ω)}

× G(xR, xA, ω)d2xR, (30)

where � denotes the imaginary part and ∂3,R stands for dif-
ferentiation with respect to x3,R. Here, the focusing function
∂3,R f2(xB, xR, ω) acts as an operator that redatums the re-
ceivers of the Green’s function, i.e., G(xR, xA, ω), from xR
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at the boundary ∂D
′
0 to a virtual-receiver position xB in the

subsurface. Note that ∂3,R f2(xB, xR, ω) can be obtained from
f2(xB, xR, ω) via equation (A-29). The redatuming result is
Gh(xB, xA, ω), i.e., the homogeneous Green’s function be-
tween a virtual source at xA and a virtual receiver at xB in
the subsurface. It is defined as

Gh(xB, xA, ω) = G(xB, xA, ω) + G∗(xB, xA, ω)

= 2�{G(xB, xA, ω)}, (31)

where � denotes the real part.
The two redatuming steps can be captured by one equa-

tion by substituting equation (29) into equation (30); hence

Gh(xB, xA, ω) = −�
∫

∂D
′
0

∫
∂D0

4
ωρ(xR)

{∂3,R f2(xB, xR, ω)}

× R(xR, xS, ω) f2(xA, xS, ω)d2xSd2xR

−�
∫

∂D
′
0

4
ωρ(xR)

{∂3,R f2(xB, xR, ω)}

× { f2(xA, xR, ω)}∗d2xR. (32)

The double integral has the same form as standard primary
redatuming schemes (Berkhout 1982; Berryhill 1984), but
equation (32) takes multiple scattering into account. The dou-
ble integral can also be seen as an alternative for source–
receiver interferometry, which also takes multiple scattering
into account (Halliday and Curtis 2010). However, whereas
source–receiver interferometry is formulated in terms of closed
boundary integrals, equation (32) contains open boundary in-
tegrals only.

We apply equation (32) to the Fourier transform of
the modelled reflection response R(xR, xS, t) of the medium
shown in Fig. 1 of Part I. First, the focusing functions are re-
trieved from this reflection response using the iterative scheme
described by equations (27) and (28) for fixed xA = (0, 800)
m and variable xB. Applying these focusing functions to the
reflection response, as described by equation (32), and trans-
forming the result back from the frequency domain to the time
domain gives the homogeneous Green’s function Gh(xB, xA, t)
for fixed xA and variable xB, as a function of time t. Figure 15
shows snapshots of this homogeneous Green’s function for
t = 0.004 seconds, t = 0.15 seconds, and t = 0.30 seconds.
Note the similarity with Fig. 14. However, whereas Fig. 14
was obtained by emitting a focusing function from the upper
boundary into the known medium (and adding to this its time
reversal), Fig. 15 was obtained from the reflection response at
the upper boundary and the direct arrivals between all sub-
surface points and the upper boundary. In this example, the

x3 (m)

x1 (m)

xA

0.004 s

x3 (m)

x1 (m)

xA

0.15 s

x3 (m)

x1 (m)

xA

0.30 s

(a)

(b)

(c)

Figure 15 Homogeneous Green’s function Gh(xB, xA, t), retrieved
from reflection response at the upper boundary.

direct arrivals were modelled in the true medium. In practice,
they will be modelled in a macro velocity model, meaning that
the travel times and amplitudes will not be exact. This will of
course affect the quality of the virtual source and hence the
accuracy of the wavefront shapes and amplitudes of the re-
trieved homogeneous Green’s function. Errors will be in the
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same order as those in the direct arrivals. However, we want
to emphasise that the treatment of multiple reflections is sta-
ble with respect to errors in the direct arrivals. This is because
the internal multiples in the retrieved homogeneous Green’s
function Gh(xB, xA, t) come directly from the reflection re-
sponse R(xR, xS, t), without the need to estimate the reflecting
boundaries in an intermediate step. Current research concerns
data-driven estimation of the amplitudes of the direct arrivals
and hence of the homogeneous Green’s function (Brackenhoff
2016).

TWO HOMOGENEOUS GREEN’S FUNCTION
REPRESENTATIONS

We started Part I of this paper with a review of time-reversal
acoustics, which is essentially based on the following repre-
sentation of the homogeneous Green’s function (Oristaglio
1989; Porter 1970)

Gh(xB, xA, ω) =
∮

∂D

−1
jωρ(x)

{
∂i G(xB, x, ω)G∗(x, xA, ω)

− G(xB, x, ω)∂i G
∗(x, xA, ω)

}
ni d

2x (33)

(Part I, Appendix A, equation (A-20)), where ∂D is a closed
boundary, enclosing xA and xB.

Equation (30) is a simplified version of the follow-
ing single-sided representation of the homogeneous Green’s
function:

Gh(xB, xA, ω) =
∫

∂D0

2
ωρ(x)

(∂3Gh(xB, x, ω)�{ f1(x, xA, ω)}

− Gh(xB, x, ω)�{∂3 f1(x, xA, ω)})d2x (34)

(Part II, Appendix, equation (A-21)), where ∂D0 is a horizontal
open boundary, above xA and xB. The underlying assumption
for equation (30) is that the medium at and above ∂D0 is ho-
mogeneous. Equation (34) also holds when the actual medium
at and above ∂D0 is inhomogeneous.

Equations (33) and (34) have a similar structure and
accomplish the same task, namely, retrieving the response
to an isotropic virtual source at xA, observed by a receiver
at xB. Since the left-hand sides of both expressions are the
same, the associated virtual-source functions are the same;
they have been extensively discussed in Part I. In the classical
homogeneous Green’s function representation, i.e., equation
(33), a time-reversed Green’s function (which, in the frequency
domain, is represented by the complex-conjugated Green’s
function) is emitted from the enclosing boundary ∂D into
the medium. In the single-sided homogeneous Green’s func-
tion representation, i.e., equation (34), a focusing function is

emitted from the open boundary ∂D0 into the medium. The
different character of time-reversed Green’s functions and fo-
cusing functions has been illustrated, for the 1D case, in Fig.
6(c) and (f).

In the previous section, we have discussed redatuming,
accounting for multiple reflections, as an application of the
single-sided homogeneous Green’s function representation.
Based on the analogy with the classical representation, other
applications of the single-sided representation come to mind,
such as holographic imaging, inverse scattering, time-reversal
acoustics, source imaging, and interferometric Green’s func-
tion retrieval. In these methodologies, the medium is often
accessible from one side only; hence, the single-sided ho-
mogeneous Green’s function representation, i.e., equation
(34), forms an attractive starting point for improving these
methodologies.

CONCLUSIONS

By approaching focusing as an inverse filtering process rather
than a time-reversal process, we have derived a focusing func-
tion suited for single-sided focusing in 2D and 3D inhomoge-
neous lossless media. The focal spot at t = 0, obtained with
this focusing function, acts as an isotropic virtual source for
the field at t > 0, similar to the virtual source obtained by
emitting a time-reversed point-source response from a closed
boundary into the medium (as discussed in Part I). The fo-
cusing function can be retrieved from the single-sided reflec-
tion response and an estimate of the direct arrivals between
the focal point and the surface. A macro velocity model of
the medium suffices to define these direct arrivals. Hence,
the single-sided focusing approach needs the same input as
standard seismic redatuming or imaging. However, unlike
these standard methods, the discussed single-sided focusing
approach yields the full response (including correct multiple
scattering) between virtual sources and virtual receivers any-
where in the subsurface. This forms the ideal starting point
for improved holographic imaging, time-reversal acoustics,
seismic interferometry etc., for situations in which multiple
scattering plays a significant role and the medium of interest
is accessible from one side only.
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APPENDIX A: S INGLE-S IDED GREEN’S
FUNCTION REPRESENTATIONS

Reciprocity theorems

The starting point for the derivation of the single-sided Green’s
function representations is formed by the reciprocity theorems
of the convolution type and of the correlation type, both in the
frequency (ω) domain. These theorems have been introduced
in Appendix A of Part I. Here, we reformulate them by sub-
stituting vi = −( jωρ)−1∂i p. Hence, these theorems become∫

D

{pAqB − qApB}d3x

= −
∮

∂D

1
jωρ

{pA∂i pB − (∂i pA)pB}ni d
2x (A-1)

and∫
D

{p∗
AqB + q∗

ApB}d3x

= −
∮

∂D

1
jωρ

{p∗
A∂i pB − (∂i p∗

A)pB}ni d
2x, (A-2)

respectively. Here, p = p(x, ω) is the acoustic pressure, q =
q(x, ω) is a source distribution of volume injection rate den-
sity, and ρ = ρ(x) is the mass density. Subscripts A and B

denote two independent acoustic states. D is an arbitrary spa-
tial domain, enclosed by boundary ∂D with outward pointing
normal n = (n1, n2, n3). The medium, which is assumed to be
lossless, is the same in both states inside ∂D. Outside ∂D, the
medium parameters may be different in the two states.

For the derivation of the single-sided Green’s function
representations, we redefine D as the domain enclosed by two
horizontal boundaries ∂D0 and ∂DA and a cylindrical bound-
ary ∂Dcyl. Here, ∂D0 is the accessible boundary of the medium
where the measurements take place. For simplicity, we will
assume that is a horizontal boundary defined by x3 = x3,0.
Furthermore, ∂DA is a horizontal boundary at the depth of xA;
hence, it is defined by x3 = x3,A. Finally, ∂Dcyl is a cylindrical
boundary with a vertical axis through xA and infinite radius.
This cylindrical boundary exists between ∂D0 and ∂DA and
closes the boundary ∂D. In the next sections, we substitute fo-
cusing functions for state A and Green’s functions for state B.
The contribution of the boundary integral over ∂Dcyl in equa-
tions (A-1) and (A-2) thus vanishes but for another reason
than Sommerfeld’s radiation condition. The argumentation
is as follows (Wapenaar and Berkhout 1989). The integrand
contains products of functions, in which each decay with 1/r

for r → ∞, where r is the distance from xA; hence, the inte-
grand decays with 1/r2 for r → ∞. The surface area of the
cylindrical boundary is proportional to r ; hence, the integral
decays with 1/r for r → ∞ and thus vanishes. This implies
that we can restrict the integration to the boundaries ∂D0 and
∂DA. Note that n = (0, 0, −1) on ∂D0 and n = (0, 0,+1) on
∂DA.

Single-sided representations of the Green’s functions between
the surface and xA

We derive equations (18) and (19), which are the single-sided
representations of the Green’s functions between xR at the
surface and xA in the subsurface. We assume that the medium
at and above ∂D0 is homogeneous. A similar derivation for
the situation in which ∂D0 is a free surface is presented by
Singh et al. (2017). For state B, we consider the Fourier
transform of the Green’s function introduced in equation
(12); hence, G(x, xR, ω) = G+(x, xR, ω) + G−(x, xR, ω),
with xR defined just above ∂D0, i.e., xR = (xH,R, x3,0 − ε).
G(x, xR, ω) obeys the temporal Fourier transform of wave
equation (A-5) in Appendix A in Part I. We define the
spatial Fourier transform of G(x, xR, ω) as G̃(kH, x3, xR, ω) =∫ ∞

−∞
∫ ∞

−∞ G(xH, x3, xR, ω) exp{ jkH · xH}d2xH, with kH =
(k1, k2). For finite ε, the downgoing part of this Green’s
function below xR and above ∂D0 reads in the wavenumber–
frequency (kH, ω) domain (Aki and Richards 1980; Fokkema
and van den Berg 1993)

G̃+(kH, x3, xR, ω) = jωρ exp{ jkH · xH,R}

× exp{− jk3(x3 − (x3,0 − ε))}
2 jk3

, (A-3)
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where k3 = √
ω2/c2 − kH · kH and with ρ and c being the mass

density and propagation velocity of the homogeneous upper
half-space. Note that ∂3G̃+ = − jk3G̃+; hence

[∂3G̃+(kH, x3, xR, ω)]x3=x3,0

= − 1
2

jωρ exp{ jkH · xH,R} exp{− jk3ε}. (A-4)

Taking ε → 0 and transforming the result back to the space–
frequency domain gives

[
∂3G+(x, xR, ω)

]
x3=x3,0

= − 1
2

jωρ(xR)δ(xH − xH,R). (A-5)

The inverse temporal Fourier transform of this expression
gives equation (13).

We relate the upgoing part of the Green’s function at ∂D0

to the reflection response R(xR, x, ω) of the inhomogeneous
medium below ∂D0 as follows:

[∂3G−(x, xR, ω)]x3=x3,0
=

[
1
2

jωρ(x)R(xR, x, ω)
]

x3=x3,0

. (A-6)

The inverse temporal Fourier transform of this expression
gives equation (14).

For state A, we consider the temporal Fourier transform
of the focusing function introduced in equation (15); hence,
f1(x, xA, ω) = f +

1 (x, xA, ω) + f −
1 (x, xA, ω). Recall that this fo-

cusing function is defined in a source-free truncated medium,
which is identical to the actual medium above the focal plane
∂DA but homogeneous below this plane. The focusing condi-
tions at the focal plane are the Fourier transforms of equations
(16) and (17); hence

[
∂3 f +

1 (x, xA, ω)
]

x3=x3,A
= − 1

2
jωρ(xA)δ(xH − xH,A), (A-7)

[
∂3 f −

1 (x, xA, ω)
]

x3=x3,A
= 0. (A-8)

With these choices, the domain D is source free in both states
(the focusing functions have no sources, and the source of the
Green’s function is chosen just above ∂D0, i.e., outside D).
Hence, we can set the left-hand sides of equations (A-1) and
(A-2) to be equal to zero. As discussed earlier, the boundary
integrals on the right-hand sides are taken along the boundary
∂D = ∂D0 ∪ ∂DA, with n3 = −1 on ∂D0 and n3 = +1 on ∂DA.
Equations (A-5)–(A-8) define conditions for downgoing and
upgoing waves at ∂D0 and ∂DA; hence, we need to apply
decomposition to the fields at the right-hand sides of equations
(A-1) and (A-2). More specifically, equations (A-5) and (A-6)
define conditions for the derivative of the field in state B at
∂D0, whereas equations (A-7) and (A-8) are conditions for
the derivative of the field in state A at ∂DA. Taking all these

into account, following a similar derivation as in Appendix B
in Wapenaar and Berkhout (1989), we reformulate equations
(A-1) and (A-2) as

0 =
∫

∂D0

2
jωρ

{
p+

A∂3 p−
B + p−

A∂3 p+
B

}
d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)
p−

B + (
∂3 p−

A

)
p+

B

}
d2x, (A-9)

0 =
∫

∂D0

2
jωρ

{(
p+

A

)∗
∂3 p+

B + (
p−

A

)∗
∂3 p−

B

}
d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)∗
p+

B + (
∂3 p−

A

)∗
p−

B

}
d2x. (A-10)

The downgoing and upgoing fields are pressure normalised;
hence, p+

A + p−
A = pA and p+

B + p−
B = pB. Equation (A-9) is

exact, whereas in equation (A-10), evanescent wave compo-
nents on ∂D0 and ∂DA are neglected. Substituting p±

A(x, ω) =
f ±
1 (x, xA, ω) and p±

B (x, ω) = G±(x, xR, ω) into equations (A-9)
and (A-10), using conditions (A-5)–(A-8), we obtain

G−(xA, xR, ω) + f −
1 (xR, xA, ω)

=
∫

∂D0

R(xR, x, ω) f +
1 (x, xA, ω)d2x (A-11)

and

G+(xA, xR, ω) − {
f +
1 (xR, xA, ω)

}∗

= −
∫

∂D0

R(xR, x, ω)
{

f −
1 (x, xA, ω)

}∗
d2x, (A-12)

respectively. Adding these equations and using source–
receiver reciprocity for the Green’s function gives

G(xR, xA, ω) − { f2(xA, xR, ω)}∗

=
∫

∂D0

R(xR, x, ω) f2(xA, x, ω)d2x, (A-13)

with

f2(xA, x, ω) = f +
1 (x, xA, ω) − {

f −
1 (x, xA, ω)

}∗
. (A-14)

These are the single-sided representations of the Green’s func-
tions between xR at the surface and xA in the subsurface.
Applying an inverse temporal Fourier transform to these ex-
pressions gives equations (18)–(21).

Single-sided representation of the homogeneous Green’s
function between xA and xB

We derive a single-sided representation of the homo-
geneous Green’s function Gh(xB, xA, ω) = G(xB, xA, ω) +
G∗(xB, xA, ω) = 2�{G(xB, xA, ω)}, where � denotes the real
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part, with xA and xB both below ∂D0. This can be done in
different ways. In recent work (Wapenaar, Thorbecke and
van der Neut 2016), we have used the classical homogeneous
Green’s function representation of equation (33) (Porter 1970;
Oristaglio 1989) as the starting point. We replaced the closed
boundary by two horizontal boundaries (one above and one
below xA and xB) and added an auxiliary function to the
Green’s function in state A, such that this modified Green’s
function and its vertical derivative vanished on the lower
boundary (Cauchy boundary condition). As a consequence,
the integral along the lower boundary vanished. By taking the
real part of the remaining integral along the upper boundary,
we thus obtained a single-sided homogeneous Green’s func-
tion representation. Here, we follow a different approach,
more in line with the derivation of the single-sided represen-
tations of the Green’s functions between the surface and xA

(equations (A-11)–(A-13)). We consider again equations (A-1)
and (A-2), with ∂D = ∂D0 ∪ ∂DA, where ∂DA is again chosen
at the depth of xA. For the moment, we will not assume that
the actual medium above ∂D0 is homogeneous (we will make
this assumption at a later stage). For state A, we take the
same focusing function as in the previous analysis in a trun-
cated medium, which is identical to the actual medium in D

but homogeneous above ∂D0 and below ∂DA. The focusing
conditions at the focal plane ∂DA are again defined by equa-
tions (A-7) and (A-8). For state B, we take the Green’s func-
tion G(x, xB, ω) = G+(x, xB, ω) + G−(x, xB, ω). Its source at
xB may lie above or below ∂DA. Unlike in the previous anal-
ysis, we do not define conditions at ∂D0. Hence, in equations
(A-1) and (A-2), we decompose this time only the fields at the
focal plane ∂DA to accommodate for the focusing conditions
(A-7) and (A-8). Hence

∫
D

{pAqB − qApB}d3x

=
∫

∂D0

1
jωρ

{pA∂3 pB − (∂3 pA)pB}d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)
p−

B + (
∂3 p−

A

)
p+

B

}
d2x, (A-15)

∫
D

{
p∗

AqB + q∗
ApB

}
d3x

=
∫

∂D0

1
jωρ

{
p∗

A∂3 pB − (∂3 p∗
A) pB

}
d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)∗
p+

B + (
∂3 p−

A

)∗
p−

B

}
d2x. (A-16)

Equation (A-15) is exact, whereas in equation (A-16),
evanescent wave components on ∂DA are neglected. Sub-
stituting p±

A(x, ω) = f ±
1 (x, xA, ω), qA(x, ω) = 0, p±

B (x, ω) =
G±(x, xB, ω), and qB(x, ω) = δ(x − xB) into equations (A-15)
and (A-16), using equations (A-7) and (A-8), gives

G−(xA, xB, ω) + H(x3,A − x3,B) f1(xB, xA, ω)

=
∫

∂D0

1
jωρ(x)

( f1(x, xA, ω)∂3G(x, xB, ω)

−{∂3 f1(x, xA, ω)}G(x, xB, ω))d2x (A-17)

and

G+(xA, xB, ω) − H(x3,A − x3,B) f ∗
1 (xB, xA, ω)

= −
∫

∂D0

1
jωρ(x)

( f ∗
1 (x, xA, ω)∂3G(x, xB, ω)

−{∂3 f ∗
1 (x, xA, ω)}G(x, xB, ω))d2x, (A-18)

respectively, where H(x3) is the Heaviside function. This
Heaviside function is equal to 1 when xB lies above ∂DA (since,
in this case, the singularity of the delta function δ(x − xB) lies
inside D), whereas it is equal to 0 when xB lies below ∂DA.
Summing these two equations yields

G(xA, xB, ω) + H(x3,A − x3,B)2 j�{ f1(xB, xA, ω)} (A-19)

=
∫

∂D0

2
ωρ(x)

(�{ f1(x, xA, ω)}∂3G(x, xB, ω)

−�{∂3 f1(x, xA, ω)}G(x, xB, ω))d2x,

where � denotes the imaginary part. Taking the real part of
both sides of this equation gives

Gh(xA, xB, ω)

=
∫

∂D0

2
ωρ(x)

(�{ f1(x, xA, ω)}∂3Gh(x, xB, ω)

−�{∂3 f1(x, xA, ω)}Gh(x, xB, ω))d2x. (A-20)

This is the single-sided representation of the homogeneous
Green’s function. Using source–receiver reciprocity of the
Green’s functions gives

Gh(xB, xA, ω)

=
∫

∂D0

2
ωρ(x)

(∂3Gh(xB, x, ω)�{ f1(x, xA, ω)}

− Gh(xB, x, ω)�{∂3 f1(x, xA, ω)})d2x. (A-21)

Note the analogy with the classical representation of the ho-
mogeneous Green’s function formulated by equation (33).

We derive a simplified version of equation (A-21) by mak-
ing, from here onward, again the assumption that the actual
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medium at and above ∂D0 is homogeneous. For this situation,
the Green’s function G(x, xB, ω) is upgoing at ∂D0; hence,
G(x, xB, ω) = G−(x, xB, ω). To accommodate this, we apply
decomposition to the wave fields at ∂D0 in equations (A-15)
and (A-16) according to

∫
D

{pAqB − qApB}d3x

=
∫

∂D0

−2
jωρ

{(
∂3 p+

A

)
p−

B + (
∂3 p−

A

)
p+

B

}
d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)
p−

B + (
∂3 p−

A

)
p+

B

}
d2x, (A-22)

∫
D

{
p∗

AqB + q∗
ApB

}
d3x

=
∫

∂D0

−2
jωρ

{(
∂3 p+

A

)∗
p+

B + (
∂3 p−

A

)∗
p−

B

}
d2x

+
∫

∂DA

2
jωρ

{(
∂3 p+

A

)∗
p+

B + (
∂3 p−

A

)∗
p−

B

}
d2x. (A-23)

Making the same substitutions as those mentioned below

equations (A-15) and (A-16), using equations (A-7) and (A-8)
and the additional condition that p+

B (x, ω) = G+(x, xB, ω) = 0
for x at ∂D0, gives

G−(xA, xB, ω) + H(x3,A − x3,B) f1(xB, xA, ω)

= −
∫

∂D0

2
jωρ(x)

{
∂3 f +

1 (x, xA, ω)
}

G−(x, xB, ω)d2x (A-24)

and

G+(xA, xB, ω) − H(x3,A − x3,B) f ∗
1 (xB, xA, ω)

=
∫

∂D0

2
jωρ(x)

{
∂3 f −

1 (x, xA, ω)
}∗

G−(x, xB, ω)d2x. (A-25)

Summing these two equations yields

G(xA, xB, ω) + H(x3,A − x3,B)2 j�{ f1(xB, xA, ω)}

= −
∫

∂D0

2
jωρ(x)

{∂3 f2(xA, x, ω)}G(x, xB, ω)d2x, (A-26)

with f2(xA, x, ω) defined in equation (A-14) and where we
used G(x, xB, ω) = G−(x, xB, ω) for x at ∂D0. Taking the real
part of both sides of equation (A-26) gives

Gh(xA, xB, ω)

= −�
∫

∂D0

4
ωρ(x)

{∂3 f2(xA, x, ω)}G(x, xB, ω)d2x. (A-27)

Since at and above ∂D0 the medium is homogeneous,
the derivative of f2(xA, x, ω) can be obtained via the
wavenumber–frequency domain. To this end, we write, anal-
ogous to equation (A-14),

f̃ 2(xA, kH, x3, ω) = f̃ +
1 (kH, x3, xA, ω)

− { f̃ −
1 (−kH, x3, xA, ω)}∗. (A-28)

Using ∂3 f̃ +
1 = − jk3 f̃ +

1 and ∂3 f̃ −
1 = + jk3 f̃ −

1 (with k3 defined
below equation (A-3)), we find for real-valued k3 (i.e., for
non-evanescent waves),

∂3 f̃ 2(xA, kH, x3, ω) = − jk3 f̃ 2(xA, kH, x3, ω). (A-29)
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