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S U M M A R Y
Cross-correlation of ambient seismic noise recorded by two seismic stations may result in
an estimate of the Green’s function between those two receivers. Several authors have re-
cently attempted to measure attenuation based on these interferometric, receiver–receiver
surface waves. By now, however, it is well established that the loss of coherence of the cross-
correlation as a function of space depends strongly on the excitation of the medium. In fact,
in a homogeneous dissipative medium, uniform excitation is required to correctly recover at-
tenuation. Applied to fundamental-mode ambient seismic surface waves, this implies that the
cross-correlation will decay at the local attenuation rate only if noise sources are distributed
uniformly on the Earth’s surface. In this study we show that this constraint can be relaxed
in case the observed loss of coherence is due to multiple scattering instead of dissipation
of energy. We describe the scattering medium as an effective medium whose phase velocity
and rate of attenuation are a function of the scatterer density and the average strength of the
scatterers. We find that the decay of the cross-correlation in the effective medium coincides
with the local attenuation of the effective medium in case the scattering medium is illuminated
uniformly from all angles. Consequently, uniform excitation is not a necessary condition for
the correct retrieval of scattering attenuation. We exemplify the implications of this finding
for studies using the spectrally whitened cross-correlation to infer subsurface attenuation.

Key words: Surface waves and free oscillations; Seismic attenuation; Theoretical seismol-
ogy; Wave scattering and diffraction.

1 I N T RO D U C T I O N

It is now generally accepted that the cross-correlation of recordings
made by two receivers is related to (and can in practice be treated as
an approximation of) the Green’s function at one of these receivers
position if there were an impulsive source at the other. The first
successful application to the solid Earth is due to Campillo & Paul
(2003) who used earthquake coda to obtain empirical Green’s func-
tions. Shapiro & Campillo (2004) showed that broad-band Rayleigh
waves emerge by simple cross-correlation of continuous recordings
of ambient seismic noise. The latter finding holds in media other
than the Earth: for example, helioseismology (Duvall et al. 1993),
underwater acoustics (Roux & Fink 2003), ultrasonics (Weaver &
Lobkis 2001, 2002), engineering (Snieder & Şafak 2006; Kohler
et al. 2007) and infrasound (Haney 2009). Most studies exploiting
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the Earth’s ambient seismic field use ambient seismic surface wave
energy: ocean gravity waves, the main source of ambient seismic
noise on Earth, excite surface waves much more effectively than
other seismic phases. The process of generating new responses by
cross-correlation of ambient seismic signal is often referred to as
‘passive seismic interferometry’.

Recently, several researchers have focused on estimating atten-
uation based on interferometric measurements of surface waves
(Prieto et al. 2009; Lawrence & Prieto 2011; Lin et al. 2011;
Weemstra et al. 2013). The methodology used in these data studies
is based on the derivation of the normalized spatial autocorrela-
tion (SPAC) by Aki (1957). He shows that the SPAC coincides
with a zeroth-order Bessel function of the first kind (henceforth
Bessel function) in case the medium is illuminated uniformly from
all angles. In his derivation Aki assumes a lossless, laterally in-
variant medium and uncorrelated noise sources. The relation be-
tween the SPAC on the one hand and seismic interferometry on
the other hand is shown by Yokoi & Margaryan (2008) and Tsai &
Moschetti (2010).
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Figure 1. Receivers x and y, along a line with azimuth θ = 0, are separated a distance rxy and equidistant from the origin. The cross-correlation is evaluated
for this configuration as function of rxy. The incoming waves are considered plane waves with the amplitude a function of the azimuth.

The Bessel function accounts for loss of coherence due to ge-
ometric spreading. In practice, however, ambient surface waves
attenuate more due to dissipation of energy and scattering. The in-
terferometric attenuation studies of Prieto et al. (2009), Lawrence
& Prieto (2011) and Weemstra et al. (2013) account for this ad-
ditional loss of coherence with distance by multiplying the Bessel
function with an exponentially decaying term. These authors con-
sider the ‘coherency’, which is defined as the spectrally whitened
ensemble (time) averaged cross-spectrum. These authors also av-
erage coherency measurements associated with equally separated,
but differently oriented receiver couples. Azimuthal averaging of
coherency measurements mitigates deviations from the employed
model, that is, the exponentially decaying Bessel function, in case
of non-uniform illumination patterns (Tsai 2011). Averaging co-
herency measurements over a multitude of receiver couples comes
at a cost however: one implicitly assumes uniform medium prop-
erties for the entire study region and hence only a 1-D attenuation
profile is obtained (Prieto et al. 2009; Weemstra et al. 2013). More-
over, violation of this assumption may result in apparent attenuation
(Menon et al. 2014).

A study by Tsai (2011) suggests that assuming the azimuthally av-
eraged coherency to decay exponentially is contingent upon another
assumption, that is that noise sources be uniformly distributed. In
fact, his results indicate that different attenuation models should be
used for different distributions of sources. Even for radial symmetric
distributions of sources, the required model still strongly depends
on whether sources are predominantly situated in the far field or in
the near field. In his analysis, however, Tsai (2011) confines himself
to intrinsic attenuation.

The purpose of this study is to contrast the effect of the two
different possible mechanisms of attenuation on the decay of the
coherency. That is, we consider the ensemble averaged cross-
correlation in a homogeneous dissipative medium (no scattering)
and in a lossless scattering medium (no dissipation of energy); an-
alytical treatments are provided in Sections 2 and 3, respectively.
In both cases, we restrict ourselves to the two-dimensional (2-D)
solution of the wave equation. Interestingly, we find that the model
proposed by Prieto et al. (2009) correctly explains the decay of the
ensemble averaged cross-correlation in case of a lossless scatter-
ing medium illuminated uniformly from all angles. In Section 4
we validate numerically the so determined analytical expressions
and, additionally, compare the behaviour of the ensemble averaged

cross-correlation in a scattering and dissipative medium for two
other illumination patterns. Finally, in Section 5, we present an
example that puts our results in perspective.

2 AT T E N UAT I O N O F T H E A M B I E N T
S E I S M I C F I E L D I N A D I S S I PAT I V E
M E D I U M

In this section we analyse the behaviour of the coherency in a homo-
geneous dissipative medium. For more complex dissipative media
we refer to Liu & Ben-Zion (2013). We employ the same formalism
as Cox (1973) to describe the cross-spectrum in a 2-D wavefield due
to an arbitrary distribution of far-field noise sources. Cross-spectra
will be computed in the frequency domain, that is, by multiplica-
tion of the reference spectrum with the complex conjugate of the
second spectrum. For a single angular frequency ω, the propagation
of a plane wave through a dissipative medium can be described
by a complex wavenumber k̃. Physically, the complex wavenum-
ber accounts for dissipation of energy and describes the resulting
attenuation. The velocity of the wave is related to the real part of
this wavenumber by c(ω) = ω/�[k̃]. The attenuation coefficient,
denoted α, coincides with the imaginary part of k̃. The wavelength
of the attenuated wave is λ ≡ 2πc/ω.

Similar to Cox (1973), we describe the 2-D noise field by a
superposition of plane waves from all azimuths (see also Harmon
et al. 2010; Tsai 2011); we thus consider sources sufficiently far
away compared to the wavelength considered. We evaluate the cross-
spectrum along a line centred at the origin and with θ = 0 (Fig. 1).
Receivers are defined in pairs along this line: a receiver x in the
direction θ = π and a receiver y in the direction θ = 0 and, also by
definition, both receivers in a pair are equidistant from the origin and
separated by a distance rxy. We consider the incoming signal u(θ ) at
the origin, with θ the azimuth from which the signal arrives. We then
express phase and amplitude of an incoming signal with respect to
that signal’s phase and amplitude at the origin. Consequently, we can
write the displacements recorded by receivers x and y immediately
in terms of rxy. This is different from formulations where the phase
is considered with respect to the source (e.g. Tsai 2011; Boschi
et al. 2013); in fact, a relocation of the origin would require u(θ )
to change accordingly in our case. In line with our assumption of
a homogeneous dissipative medium, phase shifting with respect to
the origin implies that we assume k̃ to be constant over the 2-D
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space. Integrating the signal arriving from different directions over
the azimuth the displacements recorded by x and y are given by,

ux (rxy, k̃) =
∫ 2π

0
u(θ )eik̃ cos(θ) rxy/2dθ (1)

and

uy(rxy, k̃) =
∫ 2π

0
u(θ )e−i k̃ cos(θ) rxy/2dθ, (2)

respectively.
We now assume signal from different directions to be uncorre-

lated, that is, the statistics of the ambient noise field are such that
〈u(θ )u∗(θ ′)〉 = |u(θ )|2δ(θ − θ ′); the asterisk denotes complex con-
jugation. This azimuthal decoherence is in practice exploited by
averaging over a sufficiently long time (e.g. Groos & Ritter 2009;
Verbeke et al. 2012). The ensemble averaged cross-spectrum is
given by,

C D(rxy, k̃) = 〈ux u∗
y〉

=
∫ 2π

0

∫ 2π

0
〈u(θ )u∗(θ ′)〉 ei(�[k̃]+i	[k̃]) cos(θ) rxy/2

×ei(�[k̃]−i	[k̃]) cos(θ ′) rxy/2dθdθ ′

=
∫ 2π

0
|u(θ )|2ei cos(θ)ωrxy/cdθ. (3)

The superscript D signals the incorporation of dissipation of energy
in the cross-correlation through the complex wavenumber. This
notation allows for an unambiguous comparison with the cross-
spectrum affected by scattering (Section 4). Despite the fact that
attenuation has been accounted for, CD is independent of α, which is
explained in more detail in Tsai (2011). The independence implies
that cross-correlation of far-field sources does not allow for the
correct reconstruction of the Green’s function between x and y. This
can be attributed to the fact that the wave equation for a dissipative
medium is not invariant under time-reversal (Snieder et al. 2007).
Furthermore, we note that the obtained expression depends on the
choice of origin, which was observed by Weaver (2012) previously.
This dependence casts doubts on the usefulness of the result, but,
for our purpose of contrasting attenuation due to scattering with
attenuation due to dissipation, is not an obstacle.

Following Cox (1973), we decompose the power of the wavefield
in a weighed sum of sines and cosines and introduce the (non-
normalized) power density function P(θ ), that is,

P(θ ) ≡ |u (θ )|2 =
∞∑

m=0

[am cos (mθ ) + bm sin (mθ )] . (4)

A strongly varying power density function represents a large devi-
ation from a uniform illumination pattern. Substituting eq. (4) in
eq. (3), we find,

C D(rxy, k̃) =
∫ 2π

0

∞∑
m=0

[
am cos(mθ ) + bm sin(mθ )

]
ei cos(θ) ωrxy/cdθ

= 2π

∞∑
m=0

amim Jm

(ωrxy

c

)
(5)

where Jm denotes a Bessel function of the first kind of order m.
In the last step we have recognized the Bessel function series [eq.
(9.1.21) of Abramowitz & Stegun (1964)]. Since the obtained ex-
pression only relies on the am, eq. (5) shows explicitly that the cross-
correlation is explained by amplitude variations that are symmetric

with respect to θ = 0, that is, with respect to the line connecting the
receivers (see also Cox 1973; Harmon et al. 2010). In the special
case of a uniform power density function, that is, am = 0 for m > 0,
CD is proportional to J0, similar to the result of Aki (1957) for a
lossless medium. Given cross-correlations computed from an array
of receivers, eq. (5) can be used to invert for a truncated series of
the Fourier coefficients am (Harmon et al. 2010).

In recent studies addressing the attenuation of the ambient seis-
mic field, the cross-spectrum is normalized by the product of the
root-mean-squares of the two amplitude spectra. As mentioned pre-
viously, this physical quantity is generally referred to as the co-
herency (Prieto et al. 2009; Tsai 2011) and the normalization pro-
cedure itself as ‘spectral whitening’. We define the coherency as

ρD(rxy, k̃) ≡ C D(rxy, k̃)√
C D

xx(rxy, k̃)
√

C D
yy(rxy, k̃)

. (6)

We note that Weemstra et al. (2014) refer to the normalization in
eq. (6) as the ‘whitened averaged coherency’, which allows them to
distinguish it from the case where ensemble averaging takes place
after spectral whitening. These authors show that the latter proce-
dure results in a significant amplitude decrease. We emphasize that
throughout this work we only consider the procedure in eq. (6),
which we will simply refer to as the coherency and which is equiv-
alent to the normalization considered in Tsai (2011) and similar
to the normalization used in Prieto et al. (2009) and Lawrence &
Prieto (2011).

To find a more explicit expression for ρD, let us evaluate the
terms in the denominator of eq. (6). As shown by Tsai (2011), the
ensemble averaged autocorrelation of recordings ux is given by,

C D
xx(rxy, k̃) = 〈ux u∗

x 〉

=
∫ 2π

0
P(θ ) e−α cos(θ) rxy dθ

=
∫ 2π

0

∞∑
m=0

[
am cos(mθ ) + bm sin(mθ )

]
e−α cos(θ) rxy dθ

= 2π

∞∑
m=0

am Im(αrxy) (7)

where Im denotes a modified Bessel function of the first kind of order
m. We have followed the same procedure as in our derivation of CD

and arrive at a summation over integral expressions of the modified
Bessel function [eq. (9.6.19) of Abramowitz & Stegun (1964)]. The
ensemble averaged autocorrelation of recordings uy, denoted C D

yy,
is obtained in the same way. A slight difference originates from the
positive sign in the real exponential term of uy:

C D
yy(rxy, k̃) = 2π

∞∑
m=0

(−1)mam Im(αrxy). (8)

Substituting eqs (5), (7) and (8) in expression (6) we recover the
result of Tsai (2011), that is,

ρD(rxy, k̃) =
∑∞

m=0 amim Jm(ωrxy/c)√∑∞
m=0 am Im(αrxy)

√∑∞
m=0(−1)mam Im(αrxy)

. (9)

The behaviour of eq. (9) is discussed in some detail by Tsai (2011)
and applies to arbitrary am, provided P(θ ) > 0 for all θ .

It is useful to note that in case of isotropic illumination (by far-
field sources), that is, am = 0 for m > 0 in eq. (4), ρD coincides
with [1/I0(αrxy)]J0(ωrxy/c). This decay is quite different from the
behaviour of ρD for a homogeneous distribution of sources, that is,
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Cross-correlations of scattered waves 1057

including sources in the near field: in that case it coincides with
e−αrxy J0(ωrxy/c) (Snieder 2007; Tsai 2011; Nakahara 2012). This
difference is exemplary for the dependence of the coherency on the
source distribution in case of a dissipative medium, which has been
pointed out in detail by Tsai (2011).

Prieto et al. (2009) and Lawrence & Prieto (2011) use the ex-
ponentially decaying model, that is, e−αrxy J0(ωrxy/c), to retrieve
surface wave attenuation. To overcome the mapping of azimuthal
source distribution variations into the attenuation coefficient these
authors average the observed coherency over a set of receiver pairs
sampling as many different azimuths as possible. This of course
means that only the average attenuation over the area spanned by
such receiver pairs can be measured. In the remainder of this study
we will refer to this procedure as the ‘exponentially decaying Bessel
function method’ and abbreviate it as the ‘EBF method’. Applied to
a dissipative medium, azimuthal averaging of coherencies associ-
ated with equidistant but differently oriented receiver pairs largely
corrects for azimuthal variations in the source distribution (Tsai
2011). For example, the azimuthal average of the coherency com-
puted for an array of receivers illuminated non-uniformly by far-
field sources will not be very different from [1/I0(αrxy)]J0(ωrxy/c).
Importantly, however, azimuthal averaging of the coherency does
not correct for variations in source power as a function of dis-
tance from the centre of the receiver array: in a dissipative medium
sources are still required within the array as well as outside the array
to justify the use of e−αrxy J0(ωrxy/c) as model.

At the frequencies considered in the studies of Prieto et al.
(2009) and Lawrence & Prieto (2011), the most notable ambient
noise source is forcing by oceanic waves, either direct (Hasselmann
1963) or through non-linear interaction (Longuet-Higgins 1950).
Using the EBF method to estimate attenuation may therefore be a
good approximation for arrays of receivers at the ocean bottom (e.g.
as in Weemstra et al. 2013), but expression (9) suggests it is not for
arrays of receivers far away from the oceans, for example, central
USA. The values found by Prieto et al. (2009) and Lawrence & Pri-
eto (2011) for α, however, agree rather well with geology. Especially
the attenuation maps produced by Lawrence & Prieto (2011) show
anomalies that coincide well with regional tectonic features such as,
for example, Yellowstone. At the periods evaluated in this specific
study, that is, 24, 12 and 8 s, scattering due to crustal heterogeneities
can be significant (Snieder 1988). Surface waves may exhibit sig-
nificant decay while traveling through such a scattering medium
(Foldy 1945; Wu & Aki 1988; Groenenboom & Snieder 1995).

3 AT T E N UAT I O N O F T H E A M B I E N T
S E I S M I C F I E L D I N A S C AT T E R I N G
M E D I U M

We model a heterogenous medium by a distribution of isotropic
point scatterers. Such scatterers can be thought of as medium het-
erogeneities represented by single points which, in two dimensions,
scatters circular symmetric waves. Assuming an assemblage of
isotropic scatterers embedded in a homogeneous and lossless back-
ground medium allows for explicit computation of the wavefield
(Foldy 1945). At the same time, a wave traveling through an assem-
blage of isotropic point scatterers can be described by an effective
wavenumber whose phase velocity and rate of attenuation depend
on (i) the wavenumber of the background medium, (ii) the scat-
terer density and (iii) the average strength of the scatterers. We note
that isotropic point scattering is not essential for the description of

a heterogeneous medium by an effective wavenumber (Lax 1951;
Waterman & Truell 1961).

The total wavefield at a location r can be described as the sum of
the background wavefield 	0 and the wavefield due to the scatterers
	s, that is,

	(r) = 	0(r) + 	s(r). (10)

Since the medium in which the scatterers are embedded is assumed
lossless and homogeneous, propagation in this background medium
is described by a real wavenumber k0. Similarly, the velocity of the
background medium is denoted by c0 and its wavelength by λ0.
In Appendix A we show how eq. (10) can be written as a linear
system of equations in case r coincides with the location of a scat-
terer. Solving this linear system of equations for a single incident
unit amplitude wave 	0(r) ≡ ei k0 ·r enables us to calculate the total
wavefield at any location r . In order to simulate a wavefield consist-
ing of many incoming waves, that is, an assemblage of scatterers
illuminated by a diffuse wavefield, the system of equations is solved
for each incident wave and the final wavefield at a location r is
simply obtained by summing the individual wavefields at that loca-
tion. In the next section we present solutions for multiple scattering
between isotropic point scatterers for three different background
wavefields. For all these solutions, energy is conserved by virtue of
the optical theorem.

The amount of energy an incident wavefield loses when imping-
ing on an obstacle is linearly related to the forward scattering ampli-
tude by the optical theorem (van De Hulst 1949; Newton 1976). The
relationship was first conceived of by Lord Rayleigh (Strutt 1871).
For a 2-D unit amplitude incident wave impinging on an isotropic
point scatterer the optical theorem reads (Groenenboom & Snieder
1995):


TOT = 	 [ f ]

k0
, (11)

where 	[ f ] denotes the imaginary part of the scattering amplitude f
and 
TOT the total cross-section. In general, this cross-section repre-
sents the loss of energy in the forward direction and hence depends
on the wave vector of the incident wave, but, since we consider
isotropic point scattering, 
TOT is independent of the direction of
the incident wave in our case. The total cross-section is also often
referred to as the extinction cross-section (e.g. Newton 2002).

Removal of energy from the incident wave by a scatterer can
be due to two mechanisms: absorption and scattering. The energy
loss associated with the absorption is usually referred to as the
capture or absorption cross-section, denoted 
C and the loss of
energy due to scattering is given by the scattering cross-section

S. The total cross-section therefore coincides with the sum of the
absorption and scattering cross-section, that is, 
TOT = 
C + 
S

(Newton 2002). In this work, we confine ourselves to isotropic point
scatterers that do not absorb energy, that is, 
C = 0. Conservation
of energy therefore equates the total cross-section of a scatterer
to its scattering cross-section. We show in Appendix B how this
equality enforces a relation between the real and imaginary part
of the scattering amplitude: �[ f ] = ±√−	[ f ](4 + 	[ f ]). This
relation bounds the imaginary part of f and hence caps the maximum
scattering amplitude, that is, −4 ≤ 	[ f ] ≤ 0 and |f| ≤ 4. Positive
and negative real parts of f correspond to phase advances and phase
delays, respectively, and can be loosely interpreted as positive and
negative velocity perturbations collapsed to a single point.

Foldy (1945) considers the ensemble averages of the physical
quantities of the wavefield, that is, the behaviour of the average
over a statistical ensemble of scatterer configurations is evaluated,
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henceforth ‘configurational average’. He explicitly derives expres-
sions for the configurational average of the wavefunction, the con-
figurational average of the square of its absolute value and the
configurational average of the flux of the wavefunction. The con-
figurational average of the cross-correlation is not treated in Foldy
(1945). In this work, we also consider the configurational average of
the wavefield and denote it by 〈	(r)〉. The configurational average
tends to its expected value in the limit of an infinite ensemble of
configurations. We will therefore use these terms ‘configurational
average’ and ‘expected value’ interchangeably in this study. Also, in
the remainder of this work, 〈 · 〉 denotes the average over a statistical
ensemble of scatterer configurations instead of a statistical ensemble
of cross-correlation amplitudes (as was the case in Section 2).

Foldy (1945) shows how the configurational average of the scat-
tered wavefield depends on the scatterer density ν(r, f ). In this
study we assume, for simplicity, the scatterer density as a function
of space and the scatterer density as a function of scattering ampli-
tude to be independent. We can therefore drop the dependence of ν

on f and account for the dependence of the configurational average
on scatterers with varying scatterer amplitudes by introducing the
random scattering amplitude F. We denote the corresponding prob-
ability density function by pf: the probability of finding a scatterer
with scattering amplitude F = f is given by pf (f).

Foldy (1945) shows explicitly that 〈	(r)〉 satisfies the wave equa-
tion with a complex wavenumber keff. This effective wavenumber
depends on the wavenumber of the background medium, that is, k0,
plus an additional term depending on ν and F. In two dimensions
we have (Groenenboom & Snieder 1995),

keff (r) = k0

√
1 − ν〈F〉

k2
0

, (12)

where the spatial dependence stems from the spatial variation of ν.
Substituting keff for k0 in eq. (A1) essentially dampens the back-
ground wavefield and retards/advances its phase (depending on the
sign of �[ f ] in eq. (B3)). Similar to k̃ in Section 2, the phase ve-
locity and attenuation coefficient of the configurationally averaged
scattered wavefield are given by

c = ω

�[keff ]
(13)

and

α = 	[keff ], (14)

respectively. We obtain keff by taking the principal square root in
eq. (12) since that is the only square root with a physical meaning,
that is, corresponding to α > 0. Note that because both k0 and ν can
be expressed in terms of λ0, also keff (and hence α) can be expressed
in terms of λ0. In the next section we therefore express all relevant
variables (ν, keff, α, receiver separation, etc.) in terms of λ0.

Provided the scatterer density and the expected value of the ran-
dom scattering amplitude are known, eq. (12) can be used to com-
pute the expected attenuation and phase delay due to an assemblage
of isotropic point scatterers. The expected value of the random
scattering amplitude is, by definition, given by

〈F〉 =
∫

p f ( f ) f d f, (15)

where integration is over all values of f for which �[ f ] =
±√−	[ f ](4 + 	[ f ]). In the next section we consider the sim-
plest case of scatterers with equal amplitudes f0. This assumption
implies that pf = δ(f − f0), where δ is the Dirac delta function and
hence 〈F〉 = f0. In Section 5, however, we allow for scatterers with

varying scattering amplitudes by setting pf equal to a raised cosine
distribution.

In order to compare the behaviour of the ensemble averaged cross-
spectrum and the coherency in a scattered wavefield to the analytical
expressions obtained in Section 2, we introduce the counterparts of
these expressions in the scattered wavefield. These counterparts
are computed using displacements, that is, 	(r), obtained from
solutions of the multiple scattering inverse problem. The cross-
spectrum associated with a single scattering realization, denoted
CS, is defined as

C S(rxy) ≡ 	x	
∗
y . (16)

where 	x and 	y are the displacements at the locations of receivers
x and y, respectively. Since 	 = 	0 + 	s, the cross-correlation of
the direct wave can be isolated: it is simply obtained by multipli-
cation of 	0 measured by receiver x with the complex conjugate
of 	0 measured by receiver y. We denote this measurable C S

0 and,
additionally, define the complementary part C S

s ≡ C S − C S
0 . This

complementary part includes correlations between the direct wave
and the scattered waves and mutual correlations between the scat-
tered waves. In fact, for a single incident wave, C S

s contains many of
these ‘spurious arrivals’ (see Snieder & Fleury (2010) for a theoreti-
cal explanation and Godin et al. (2010) for observations of spurious
arrivals). The coherency in the scattered wavefield, denoted ρS, is
defined as

ρS(rxy) ≡ C S(rxy)√
C S

xx

√
C S

yy

. (17)

An overview of the symbols associated with the different physical
quantities is given in Table 1.

We consider a wavefield due to an assemblage of point scat-
terers embedded in a lossless background medium. Similar to the
dissipative medium considered in Section 2, we consider the scat-
tering medium to be illuminated uniformly from all angles by far-
field sources. For this specific case, Wapenaar & Fokkema (2006)
show that the cross-spectrum between any two points in the scatter-
ing medium is inversely proportional to the imaginary part of the
Green’s function between those two points, that is,

C S(rxy) ∝ −	[G(rxy)]. (18)

Since this relation (18) holds for arbitrary medium properties, G(rxy)
contains both the direct wave between y and x, denoted by G(0)(rxy)
and scattering contributions. Note that in the absence of scatterers,
G(0)(rxy) can be substituted in (18) and, using eq. (A3), we have
C S(rxy) = C S

0 ∝ J0

(
k0rxy

)
.

We recall that Foldy (1945) shows explicitly that 〈	(r)〉 satis-
fies the wave equation with a complex wavenumber keff. Conse-
quently, for a homogeneous effective medium, that is, constant keff,
the Green’s function is given by,

〈G(rxy)〉 = −i

4
H (2)

0

(
keff rxy

)
(19)

which upon substitution of the right-hand side of expression (12)
can be written as

〈G(rxy)〉 = −i

4
H (2)

0

(√
k2

0 − � [ν〈F〉] − i	 [ν〈F〉] × rxy

)
. (20)

Tsai (2011) notes that the Hankel function with a complex argu-
ment can, for b  a, be approximated as follows,

H (2)
0

(
a rxy

√
1 + ib

a

)
≈ H (2)

0 (a rxy)e−brxy/2. (21)
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Table 1. Symbols for the different physical quantities.

Symbol Explanation

	 Scattered wavefield
	0 Background wavefield
	s Wavefield due to scatterers (	 − 	0)
CD Cross-spectrum in a dissipative medium (propagation described by k̃)
CS Cross-spectrum in a scattering medium
C S

0 Cross-spectrum of the background wavefield in the scattering medium

C S
s The part of the cross-spectrum due to the presence of the scatterers (C S − C S

0 )
ρD Coherency in a dissipative medium (eq. 9)
ρS Coherency in a scattering medium (eq. 17)

Adapted to the argument of the Hankel function in eq. (20) this

gives a =
√

k2
0 − � [ν〈F〉] , b = −	 [ν〈F〉] /

√
k2

0 − � [ν〈F〉] and

the approximation holds for −	 [ν〈F〉]  k2
0 − � [ν〈F〉] (note that

−	[ν〈F〉] > 0 because 	[ f ] < 0 for all f and ν is real). Substituting
the approximation for the Hankel function in expression (20) yields

〈G(rxy)〉 ≈ −i

4
H (2)

0

[√
k2

0 − � [ν〈F〉] × rxy

]
e−αrxy , (22)

where, according to (21), α is approximated by,

α ≈ −	 [ν〈F〉]
2
√

k2
0 − � [ν〈F〉]

. (23)

Note that the right-hand side expression hence approximates 	[keff].
Similarly, c is approximated by

c ≈ ω√
k2

0 − � [ν〈F〉]
, (24)

whose denominator approximates �[keff]. We note that these ap-
proximations for c and α can also be inferred directly from eq. (12):
a complex number z with a real and imaginary part that are both
positive and for which the imaginary part is small with respect to
its real part, that is, 	[z]  �[z], has a principal square root that
can be approximated by

√
z ≈ √�[z] + i	[z]/(2

√�[z]).
We now draw a connection between relation (18) and eq. (22). Al-

though G(rxy) includes both the direct wave and scattered waves be-
tween receivers x and y, Foldy’s result implies that its expected value
can be approximated by eq. (22). Specifically, the imaginary part of

this approximation behaves like −J0

(√
k2

0 − � [ν〈F〉] rxy

)
e−αrxy .

For isotropic illumination, relation (18) tells us that CS(rxy) and
	[G(rxy)] are inversely proportional and hence so are 〈CS(rxy)〉 and
〈	[G(rxy)]〉. Consequently, we can conclude that,

〈C S(rxy)〉 ∝ J0

(ωrxy

c

)
e−αrxy , (25)

where c and α are given by eqs (24) and (23), respectively.
Summarizing the above, consider an (expected) wavefield in a

lossless scattering medium with a uniform scatterer density de-
scribed by keff and another wavefield in a homogeneous dissipative
medium described by k̃. Furthermore, assume both wavenumbers
to coincide, that is, keff = k̃. The latter implies that the velocity
and attenuation of a plane wave traveling through the dissipative
medium will coincide with the (expected) velocity and attenuation
of a plane wave propagating through the scattering medium. How-
ever, in case the same two media are illuminated uniformly from
all angles by mutual uncorrelated noise sources located in the far
field, the cross-spectrum in the scattering medium can be expected

to decay exponentially with distance, whereas the cross-spectrum in
the dissipative medium does not decay at all (eq. 5 with am = 0 for
m > 0). This difference between 〈CS(rxy)〉 and CD(rxy) is confirmed
by the numerical experiments in the next section.

4 N U M E R I C A L S I M U L AT I O N S

We numerically investigate the cross-spectrum in a medium popu-
lated with isotropic point scatterers for three different illumination
patterns. For each illumination pattern P(θ ), we compare the con-
figurationally averaged cross-spectrum in the scattering medium
to the cross-spectrum in a dissipative medium whose wavefield is
described by the same wavenumber, that is, we consider k̃ = keff .
Throughout this section, we express all relevant parameters and
variables in terms of λ0. In all three experiments we consider a
total of four thousand (N = 4000) scatterers which we randomly
place within a circle with radius R = 20λ0 (Fig. 2); this im-
plies a constant ν = 4000/(π202λ2

0). We consider an attenuation
rate of α = 0.075/λ0, which upon inversion of eq. (12) yields
〈F〉 = f0 ≈ −1.067 − 0.309i and implies keff = (6.548 + 0.075i)/λ0.
Note that a phase delay of the average wavefield is imposed by pre-
scribing �[f0] < 0. Under these assumptions, the rate of attenuation
and relative phase velocity decrease of the configurationally av-
eraged wavefield are constant throughout the scattering medium.
Fig. 3 presents the rate of attenuation and relative phase velocity
decrease as a function of ν and 	[〈F〉]. The considered attenuation
rate of α = 0.075/λ0 represents, for example, a surface wave with
a period of 8 s traveling with a background velocity of 3 km s−1

whose of attenuation is described by an attenuation coefficient of
3.125 × 10−3 km−1.

Consistent with our derivation in Section 2, we also assumed
plane waves in Section 3: keff describes a damped and phase re-
tarded/advanced plane wave (eq. 12). Recall from Section 3 that the
scatterers are embedded in a lossless and homogeneous background
medium in which the propagation is described by a real wavenum-
ber k0 (and its velocity and wavelength by c0 and λ0, respectively).
In practice, an incident plane wave is modeled by a far-field impul-
sive source at a distance of 333.3λ0 from the origin; its signature
is therefore given by eq. (A3). Since we consider a total of 4000
scatterers, numerical modeling involves solving a system of 4000
equations for each of these sources (see Appendix A). The wave-
field due to the scatterers 	s (r) at any location r can subsequently
be obtained by substituting the obtained solutions for the 	(r j ) in
eq. (A2). Finally, the total wavefield 	 (r) results from a simple
summation of the background wavefield, 	0 (r) and the wavefield
due to the scatterers, 	s (r) (eq. 10). In Section 2 we explicitly
assumed simultaneously acting uncorrelated sources. We showed
in eq. (3) that this azimuthal decoherence reduces the calculation
of the ensemble-averaged cross-correlation to a single integral. In
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1060 C. Weemstra, R. Snieder and L. Boschi

Figure 2. The experimental setup of the first (a) and second experiment (b). Red dots represent (a single scattering realization of) isotropic point scatterers. In
our first experiment we consider a single incident plane wave from a direction θ = π while in the second experiment we prescribe a uniform distribution of
far-field sources, that is, uniform P(θ ). A zoom-in on the very centre of (a) depicts the receivers as black diamonds separated by λ0/60.

Figure 3. Attenuation coefficient (a) and relative phase velocity decrease (b) of the configurationally averaged wave as a function of scatterer density and the
imaginary part of the scattering amplitude. A yellow dot marks the scatterer density and imaginary part of the scattering amplitude associated with the expected
attenuation and relative phase velocity decrease considered in this section. Note that we have prescribed the real part of the scattering amplitude to be negative.

all our numerical experiments (both in this section and the next
section), we will assume this azimuthal decoherence. This implies
that for any superposition of plane waves, that is, any P(θ ), we com-
pute cross-spectra individually for each incident wave (including
scattering events) and subsequently stack them.

The configurational average of the physical quantities of interest,
that is, 	, CS and ρS, is computed by averaging over a total of
M ‘scattering realizations’; each realization associated with a (dif-
ferent) random configuration of the scatterers. We consider three
different experiments which are discriminated from each other by
their illumination of the line of receivers, that is, by P(θ ). The or-
der in which we conduct these experiments serves to incrementally
increase our understanding. In the first experiment we consider a
single plane wave impinging on the distributions of scatterers, sub-
sequently we examine the effect of a uniform P(θ ) and, finally, we
investigate the behaviour of the cross-spectrum in case of some
random illumination function.

4.1 Experiment 1: a single plane wave

We consider a single incident plane wave illuminating the distribu-
tion of scatterers from the azimuth θ = π (Fig. 2a). The spectrum

[	(r); see eq. (10)] is computed at 481 locations (240 receivers
x, 240 receivers y and one at the centre) where the distance be-
tween neighboring receivers is λ0/60. The configurationally av-
eraged wavefield is obtained by averaging over a total of 38 400
scattering realizations. The spectrum associated with a single scat-
tering realization is shown, as function of location along the line
of receivers, in Fig. 4(a) (realization no. 30001; chosen arbitrarily).
In the same graph, the configurationally averaged wavefield is plot-
ted (i.e. the wave described by keff). It is clear that the impact of
the isotropic point scatterers is such that the spectrum associated
with a single realization by no means approximates the configura-
tionally averaged wave. In Fig. 4(b) we separate the contributions
of 	0 and 	s (see Appendix A for details). This shows that the
direct wave has a significantly lower amplitude than the signal due
to the combined effect of the scatterers. Finally, Fig. 4(c) shows
the configurationally averaged wavefield. The numerically obtained
〈	〉 coincides with the predicted (analytical) configurational aver-
age, that is, with the wave propagating with wavenumber keff. This
confirms that our setup enables us to successfully simulate the con-
figurationally averaged wavefield. The increasing phase delay and
decreasing amplitude with respect to the direct wave is the (average)
signature of the isotropic point scatterers. The decrease in amplitude
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Cross-correlations of scattered waves 1061

Figure 4. Experiment 1: the spectrum as a function of distance in the scattered wavefield. The spectrum associated with a single configuration of the scatterers
(	) is presented in (a). The light blue and red dots depict the real and imaginary part of the spectrum, respectively. The solid blue and red lines represent the
real and imaginary part of the configurationally averaged wavefield, that is, 〈	〉, respectively. The contributions of the direct wave (	0; dashed line) and the
wavefield due to the scatterers (	s; triangles) are separated in (b). The bottom graph (c) shows the configurationally averaged wavefield obtained from our
numerical experiment (dots) and predicted by Foldy (1945), that is, keff (solid lines). Also, the direct, non-attenuated wave, is plotted (dashed lines).

is predominantly due to the ‘randomization’ of the wavefield (Wu
1982).

The cross-spectrum of the scattering realization presented in
Fig. 4 is shown in Fig. 5(a). We only compute cross-spectra for
receivers equidistant from the origin, rxy is hence incremented by
λ0/30. The strong fluctuations in the spectrum cause the cross-
spectrum to behave very different from the cross-spectrum of the
direct wave (Fig. 5b), where we have normalized both C S

0 (rxy) and
C S

s (rxy) with respect to C S
0 (rxy = 0). This shows explicitly (for the

considered scatterer density and strength) that the wavefield due to
the scatterers has an impact on the cross-correlation that is more
than an order of magnitude larger than the cross-spectrum of the
direct wave. In the time domain this manifests itself as high ampli-
tude seismic coda (Groenenboom & Snieder 1995). These coda can
be used to retrieve the Green’s function between a pair of receivers
(Campillo & Paul 2003; Snieder 2004). Since the ambient seismic
field is a combination of direct arrivals and scattered waves, how-
ever, we do not aim to separate their effect in this study (note that
splitting CS in C S

0 and C S
s is not the same as separating the direct

wave from the scattered waves, because C S
s still includes interac-

tions between the direct waves and the scattered waves, that is, it
does not only represent the coda but also includes the terms 	x0	

∗
ys

and 	xs	
∗
y0).

Perhaps surprisingly, the configurational average of the cross-
spectrum of the scattered wavefield decays significantly (Fig. 5c).
This observation agrees with Foldy’s result for the configurational
average of the autocorrelation (the configurational average of the
cross-correlation at rxy = 0 is simply the configurational average
of the autocorrelation). Foldy derives explicitly that the configu-
rational average of the autocorrelation is larger than the autocor-
relation of the configurational average and provides an exhaustive
physical interpretation. The difference can be interpreted consid-
ering the interference between different wave arrivals, which, in
general, reduces |	|. Similarly, interference between wave arrivals
associated with different scatterer configurations has the result that
|〈	〉|2 is, in general, less than 〈|	|2〉. For consistency with the
next two experiments, we also plotted the analytical solution for the
expected cross-spectrum in a uniformly illuminated, strongly het-
erogeneous medium, that is, expression (25) (with α = 0.075/λ0), in
Fig. 5(c).
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1062 C. Weemstra, R. Snieder and L. Boschi

Figure 5. Experiment 1: the cross-spectrum as a function of distance in the scattered wavefield. The cross-spectrum associated with a single configuration
of the scatterers is presented in (a). The green and orange dots depict the real and imaginary part of the spectrum, respectively. The cross-correlation of
the direct wave, that is, C S

0 , (dashed lines) and its complementary part C S
s (triangles) are presented in (b). Graph (c) shows the configurationally averaged

cross-spectrum obtained from our numerical experiment (dots). For comparison, the cross-spectrum of the configurationally averaged spectrum is plotted (solid
lines). Furthermore, the analytical behaviour of 〈CS〉 associated with a uniform illuminating wavefield, that is, eq. (25), is depicted in (c) by the solid black line.

4.2 Experiment 2: uniform illumination from all angles

We illuminate the scatterers and receivers prescribing an illu-
mination pattern with a constant power as function of azimuth
(P(θ ) = 1/2π ). To decrease computational costs, we evaluate the
cross-spectrum up to a maximum receiver separation of ∼5.3λ0.
Receiver separation is again incremented by λ0/30 (Fig. 2b). For
an arbitrarily chosen scattering realization, the cross-spectrum is
presented in Fig. 6(a). The imaginary part of the cross-spectrum is
zero for all rxy, which agrees with the theory applicable to the setup
of this experiment, that is, eq. (18).

As in Fig. 5, we have isolated the cross-correlation of the direct
wave and plotted it along with its complementary part (Fig. 6b).
We have again normalized both C S

0 (rxy) and C S
s (rxy) with respect

to C S
0 (rxy = 0). Contrary to the cross-spectrum associated with a

single incident wave, C S
s does not dominate the behaviour of CS:

we observe that C S
0 and C S

s contribute approximately equally to
the behaviour of the cross-spectrum. This reduction in the relative
strength of C S

s can be explained by the isotropic illumination of
the scatterers. In accordance with theory, that is, CS ∝ − 	[G(rxy)],

spurious arrivals vanish. This has been shown explicitly for both
single scattered waves (Snieder et al. 2008) and multiple scattered
waves (Snieder & Fleury 2010). Compared to our first experiment,
the absence of spurious arrivals in C S

s causes an amplitude reduc-
tion with respect to C S

0 . For that reason, C S
s leaves a significantly

lower imprint on the behaviour of CS for an isotropic distribution
of sources. Thanks to this cancellation of spurious arrivals we only
need to average over 768 scattering realizations to obtain a stable
estimate of the configurationally averaged cross-spectrum (com-
pared to 38400 for illumination by a single plane wave). Fig. 6(c)
shows that this configurationally averaged cross-spectrum, that is,
the numerically simulated �[〈CS〉], coincides with expression (25).
We have normalized 〈CS〉 with respect to 〈CS(rxy = 0)〉. For compar-
ison, we have plotted the analytical solution for the cross-spectrum
in a uniformly illuminated, dissipative medium (CD with am = 0
for m > 0 and a0 = 1/2π ). Our experiment confirms that the con-
figurationally averaged cross-spectrum 〈CS〉 decays faster than CD:
J0

(
ωrxy/c

)
e−αrxy (with α = 0.075/λ0) versus J0(ωrxy/c), respec-

tively.
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Figure 6. Experiment 2: graphs (a) and (b) present the same quantities as in Fig. 5, but for a wavefield consisting of plane waves incident from all directions
with equal power. Graph (c) compares the configurationally averaged cross-spectrum in a scattered wavefield (green and orange dots) to the cross-spectrum
associated with a dissipative medium, that is, eq. (5) with am = 0 for m > 0 and a0 = 1/2π (solid red and dark yellow lines). The numerically computed
�[〈CS〉] coincides with theory, that is, eq. (25) (depicted by the solid black line).

We investigate the impact of the spectral whitening procedure
on the amplitudes. Fig. 7 presents the numerically obtained 〈ρS〉
and compares it to ρD. The figure bears a striking resemblance to
Fig. 6(c) for two reasons. First, the attenuation of ρD, given by ex-
pression (9) (with am = 0 for m > 0 and a0 = 1/2π ), is negligible
with respect to the attenuation of CD (a factor 1/I0(0.075rxy/λ0)
versus 1, respectively), which makes their behaviour very alike.
Secondly, 〈ρS〉 appears to decay at an equal rate as 〈CS〉, that is,
e−αrxy . We cannot prove such equality analytically, but their similar
behaviour can be understood intuitively by considering Foldy’s re-
sult for the expected value of the autocorrelation in relation to the
illumination considered. Given the uniform illumination considered
here, 〈|	|2〉 can be expected equal for all receivers. Furthermore,
the loss of coherency, which depends on ν〈F〉 and is approximated
by eq. (23), can be due to either few strong scatterers or many weak
scatterers (Fig. 3a). On the one hand, in case of few strong scatterers,
the deviation of a single scattering realization from the configura-
tional average can be expected to be large and many scattering
realizations will be needed to converge to the expected values of CS

and |	|2. On the other hand, in the limit of an infinite number of
isotropic point scatterers with their scattering amplitudes approach-

ing zero, each scattering realization’s |	|2 will approach 〈|	|2〉.
In the latter case, the division by

√
C S

xx

√
C S

yy in eq. (17) may not

change the decay of 〈ρS〉 with respect to the decay of 〈CS〉. This in
turn suggests that 〈ρS〉 ∝ 〈CS〉 in this limit. An exponential decay of
〈ρS〉 agrees with the findings of Lin et al. (2011).

4.3 Experiment 3: non-uniform illumination

In our third experiment we illuminate the assemblages of scatter-
ers with a wavefield characterized by an illumination described by
substitution of a0 = 1/2π , a2 = 1/4π and a3 = 1/5π in eq. (4);
the other coefficients are set to zero. The power of the wavefield
as a function of azimuth is shown in Fig. 8. Similar to the previ-
ous experiment, we evaluate the cross-spectrum up to a maximum
receiver separation of ∼5.3λ0 and increment the separation of the
receivers by λ0/30. We average over a total of 1536 scattering real-
izations to estimate the configurationally averaged cross-spectrum.
With respect to the previous experiment, twice as many realizations
are thus needed before the numerically simulated averaged cross-
spectrum converges to its theoretical values. This can be attributed
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Figure 7. Experiment 2: the configurationally averaged coherency in a scattered wavefield (green and orange dots) compared to the coherency in a dissipative
medium, that is, eq. (5) (solid red and dark yellow lines; the latter is overprinted by the orange dots). For comparison, the predicted behaviour of �[〈CS〉], that
is, according to eq. (25), is plotted on top (solid black line).

Figure 8. The power of the illuminating wavefield is defined by a0 = 1/2π ,
a2 = 1/4π and a3 = 1/5π . The cross-spectra resulting from such an illu-
mination pattern are shown in Fig. 9.

to the lack of complete cancellation of the spurious arrivals due to
the non-uniform illumination pattern (Snieder et al. 2008; Snieder
& Fleury 2010).

The configurationally averaged cross-spectrum and configura-
tionally averaged coherency are presented in Fig. 9. We observe a
relatively large difference between the behaviour of 〈CS〉 and CD

(Fig. 9a); each associated with a different attenuation mechanism.
The relatively large amplitude deviation of CD from its behaviour
associated with a uniform illumination (Fig. 6c) cannot be observed
for 〈CS〉. In fact, the observed amplitude of 〈CS〉 is quite close to its
behaviour in our previous experiment and hence quite close to the
behaviour of the right-hand side of (25). Also, while the imaginary
part of CD is clearly oscillating, 	[〈CS〉] has a maximum amplitude
only slightly larger than zero. This indicates that, despite the non-
uniformity of the wavefield, the spurious arrivals cancel to a great
extent for the illumination considered here. Finally, the phase of the
symmetric part of the cross-correlation, that is, �[〈CS〉], is largely
unaffected by the non-uniformity of P(θ ). This suggests that phase
velocity measurements may give results that only slightly deviate
from the ‘real’ phase velocity and is in line with the data analyses
by Gouédard et al. (2008) and Froment et al. (2010).

The behaviour of the coherency (Fig. 9b) is almost coinciding
with the behaviour of the cross-spectrum (Fig. 9a); both in a scat-
tered and a dissipative wavefield. Regarding the latter, the stronger
decay of ρD with respect to CD is negligible. One should under-
stand, however, that this difference in decay between ρD and CD is
subject to significant change when sources are located closer to the
receivers (Tsai 2011). Also, the spectral whitening does not seem to
affect the behaviour of the cross-spectrum, that is, 〈ρS〉 exhibits the
same behaviour as 〈CS〉. Most likely, this can be explained by the

arguments given at the end of Section 4.2; the observed similarity
in behaviour may hence not hold for sparse distributions of rather
strong scatterers. In the following section we relate the results in this
and previous sections to recent studies focusing on the attenuation
of the ambient seismic field by means of a simple example.

5 T H E A Z I M U T H A L LY A N D S PAT I A L LY
AV E R A G E D C O H E R E N C Y

In this section we relate our findings to the EBF method. Ultimately,
in the context of scattering due to isotropic point scatterers, averag-
ing complex coherencies associated with a single receiver pair over
different scattering realizations is the same as averaging complex
coherencies associated with a specific scattering region over differ-
ent equally separated receiver pairs within that region; provided, of
course, that the scattering region has a constant or close to constant
ν〈F〉. Additionally, applied to our idealized point scattering model,
that region is required to have a homogeneous background medium.

We exemplify this analogy between the EBF method and averag-
ing over different scattering realizations by generating an (arbitrary)
array of receiver locations in the northwestern USA (Yellowstone
area; Fig. 10, left). The array consists of a rather large number of
receivers which allows us to average the coherency over sufficient
receiver pairs. We consider a background wavelength λ0 = 40.8 km
due to incident waves with periods of 12 s that propagate with a
velocity of 3.4 km s−1. Furthermore, we assume uniform illumina-
tion from all angles and prescribe ν independent of location which
implies a constant keff. We compute the wavefield 20 times, each
time incrementing ν by 1.912 × 10−3 km−2. To make the exam-
ple more realistic, we allow for scatterers with different scattering
amplitudes. The probability of a scatterer’s strength, that is, |f|, is
described by,

p f ( f, μ, s) = 1

pT
f

[
1 + cos

( | f | − μ

s
π

)]
, (26)

where μ denotes the mean scatterer strength and pf is supported
between |f| = μ − s and |f| = μ + s; the normalization constant
pT

f ensures that
∫

pfdf = 1. In Appendix C we show how 〈F〉 can be
written explicitly in terms of μ and s. We set μ = 0.30 and s = 0.15
and use eq. (C5) to compute the expected scattering amplitude.
Given a certain scatterer density ν, the expected attenuation rate
and phase velocity can be computed by eqs (14) and (13) through
eq. (12). The right map in Fig. 10 illustrates the randomly generated
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Figure 9. Experiment 3: the configurationally averaged cross-spectrum in a scattered wavefield (green and orange dots) is compared to the cross-spectrum in
a dissipative medium, that is, eq. (5) (solid red and dark yellow lines) in (a). In (b) we make the same comparison for the coherency. The analytical behaviour
of 〈CS〉 associated with a uniform illuminating wavefield, that is, eq. (25), is depicted (in both (a) and (b)) by the solid black line.

Figure 10. Receiver locations at which the ambient wavefield is computed (left) and randomly generated scatterer locations and strengths (given by the size of
the circles) for a prescribed scatterer density of 5.74 × 10−3 scatterers km−2 (right). The measured decay and phase velocity of the spatially and azimuthally
averaged coherency associated with this scatterer density is depicted in Fig. 11 by the red marked green dot.

scatterer locations and strengths for a prescribed scatterer density
of 5.74 × 10−3 scatterers km−2.

In line with earlier studies (Lawrence & Prieto 2011; Weemstra
et al. 2013), we introduce the binned spatially and azimuthally
averaged coherency, denoted ρ̄S . We discretize distance in bins with

width w and enumerate the bins by giving them indices i = 1, 2,
. . . , N. The centre distance of a bin with index i is denoted by ri

and the number of receiver pairs whose receiver–receiver distance
r fulfills the criterion [ri − (w/2)] ≤ r < [ri + (w/2)] is denoted
by Mi. After assigning each receiver pair to the appropriate bin, the
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Figure 11. Comparison between the attenuation rate and phase velocity
retrieved through our inversion for α and c by minimizing (28) (green and
blue dots, respectively) and the predicted attenuation rate and phase velocity
according to eqs (23) and (24) (green and blue solid lines, respectively).
The red circled dots correspond to the azimuthally and spatially averaged
complex coherencies presented in Fig. 12.

binned spatially and azimuthally averaged coherency is computed
by,

ρ̄S (ri ) ≡ 1

Mi

Mi∑
j=1

ρS j , (27)

where for each bin the summation is over the total number of re-
ceiver pairs it contains, that is, Mi, and where ρS j denotes the co-
herency associated with receiver pair j. Similar to the previously
mentioned data analysis papers, we determine the decay of the real
part of the spatially and azimuthally averaged coherency by fitting
an exponentially decaying Bessel function. We introduce the misfit
function

MF(α, c) =
N∑

i=1

∣∣∣� [ρ̄S(ri )] − J0

(riω

c

)
e−αri

∣∣∣ . (28)

We use a bin width of w = λ/25 ≈ 1.64 km and only consider ρ̄S

associated with bins that fulfill the criterion 1λ < ri < 6λ while
averaging the complex coherencies from different receiver pairs.
The fact that MF is based on the L1-norm, mitigates the effect of
outliers due to limited numbers of receiver pairs in some bins.

The attenuation rates and phase velocities estimated by the min-
ima of (28) are compared to the theoretically predicted expected
attenuation rates and expected phase velocities for 〈CS〉 in Fig. 11.
Since we have assumed uniform illumination from all angles, these
predicted values are simply given by eqs (23) and (24) (with 〈F〉
computed using eq. (C5)). As expected, the estimated values follow
the same trend as the analytical curves and especially the phase
velocity is well constrained. We observe that the attenuation rate
estimates deviate more from the analytical predictions for higher
scatterer densities. This can be explained by the higher deviation of
individual realizations from their expected values for higher scat-

terer densities. Fig. 12 illustrates this effect: averages of ρS asso-
ciated with individual bins exhibit a larger variation in Fig. 12(b),
which presents ρ̄S (ri ) for a relatively high scatterer density. Note
that the imaginary parts are zero due to the uniform illumination
and the relation associated with this illumination pattern, that is,
eq. (25).

6 D I S C U S S I O N A N D C O N C LU S I O N

Previous studies have emphasized the dependence of the amplitude
of the cross-correlation on the distribution of sources in a dissipa-
tive medium (Tsai 2011; Hanasoge 2013). Our results show that
multiple scattering mitigates the effect of the source distribution
on the amplitude of the cross-correlation; this has been shown for
the phase of the cross-correlation previously (Froment et al. 2010;
Sens-Schönfelder & Wegler 2011). Specifically, we show that the
spatially and azimuthally averaged cross-spectrum decays expo-
nentially in case of a purely elastic scattering medium illuminated
uniformly from all angles. Compared to intrinsic attenuation, suc-
cessful recovery of scattering attenuation is therefore feasible under
relaxed constraints: the excitation of noise is not required to be uni-
form (Tsai 2011; Nakahara 2012), but merely such that the resulting
illumination pattern is uniform.

A few caveats apply while translating our results for distribu-
tions of isotropic point scatterers to data studies aiming to recover
subsurface attenuation using interferometric surface waves. First,
in case of abrupt changes in either scatterer density or strength, the
effective wavenumber changes accordingly and the azimuthal and
spatial averaging may produce unexpected or meaningless results.
Second and somewhat related, it is important that the typical length
scale over which the scattering properties of the medium vary, is
larger than the size of the regions over which cross-spectra are av-
eraged. This remark also applies to dissipative media however: the
assumption that phase velocity and attenuation are laterally invari-
ant throughout the region over which coherency measurements are
averaged, should not be violated (Tsai 2011). In fact, the recent
analysis by Menon et al. (2014) reveals that spatial and azimuthal
averaging may result in significant apparent attenuation in case
of an anisotropic velocity medium. A third caveat concerns the
trade-off between scatterer density and scattering amplitudes: loss
of coherency can be due to either few strong scatterers or many
weak scatterers (see Fig. 3a). A region with few strong hetero-
geneities, however, may well require an unreasonably high number
of individual coherency measurements, that is, receiver pairs, to
obtain a ‘stable’ measure of the coherency. Finally, the assumption
of waves having a single velocity corresponding to one frequency
does not hold in a layered Earth: several modes may be observed
at one frequency (Aki & Richards 2002; Weemstra et al. 2013). In
practice, ambient vibrations associated with primary microseisms
(0.05–0.1 Hz) are usually dominated by fundamental-mode waves,
whereas secondary microseisms (0.1–0.2 Hz) may well contain sig-
nificant overtone energy (Kimman et al. 2012; Menon et al. 2014).

Considering the caveats listed above and the assumptions made
in this work, we want to stress that with the experiments, analytical
relations and example presented in this paper we do not want to claim
that the method introduced by Prieto et al. (2009) enables one to
recover the ‘true’ subsurface attenuation. Ultimately, a purely elastic
scattering medium is a rather extreme assumption and applied to
surface waves on Earth may in many cases not be very realistic.
The assumption of a purely homogenous dissipative subsurface
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Figure 12. Spatially and azimuthally averaged coherency (ρ̄S (ri ); green and orange dots) computed from the receiver configuration shown in Fig. 10. An
ambient-seismic wavefield characterized by uncorrelated equal amplitude waves arriving from all directions is assumed. Plots (a) and (b) are associated with
scatterer densities of 5.74 × 10−3 and 28.7 × 10−3 scatterers km−2, respectively. Scatterers vary in strength according to eq. (26) with μ and s set to 0.30 and
0.15, respectively. The exponentially decaying Bessel function that minimizes eq. (28) is given by the black solid line. Receiver pairs separated by less than 1
wavelength or more than 6 wavelengths are discarded.

made in some recent theoretical studies (e.g. Tsai 2011; Weaver
2012), however, may well be equally unrealistic in other cases.
Our results therefore do suggest that for some regions the decay of
the (whitened) cross-spectrum may well be more sensitive to local
structure than suggested in previous studies (Tsai 2011; Hanasoge
2013).

The following conclusions, applicable to 2-D media illuminated
by far-field sources, can be drawn. First, the decay of a single
wave propagating through a dissipative medium and the decay of
the configurational average of a single wave propagating through
a scattering medium coincide in case the complex wavenumbers
describing the two media coincide. In that case, however, the cross-
spectra do not coincide; specifically, the real part of the cross-
spectrum in the scattering medium exhibits significant decay (illus-
trated by experiment 1). Second, the decay of the cross-spectrum
in a uniformly illuminated dissipative homogeneous medium and
the decay of the configurationally averaged cross-spectrum in a uni-
formly illuminated non-dissipative scattering medium, described
by coinciding complex wavenumbers, do not coincide. In fact, the
configurationally averaged cross-spectrum in a uniformly illumi-
nated scattering medium coincides with a Bessel function multiplied
by an exponentially decaying term (eq. 25), whereas the cross-
spectrum in a dissipative medium is described by only a Bessel

function (eq. 5 with am = 0 for m > 0) (illustrated by experi-
ment 2). Third, the presence of scatterers mitigates the deviation
of the coherency due to a non-uniform illumination pattern from
its behaviour due to uniform illumination pattern (illustrated by
experiment 3). Finally, provided a regionally constant (or smooth)
scatterer density, azimuthal and spatial averaging of cross-spectra
computed from equidistant receiver pairs is equivalent to averag-
ing over different scatterer ensembles characterized by equal scatter
densities.
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A P P E N D I X A : T H E S O LU T I O N O F T H E M U LT I P L E S C AT T E R I N G P RO C E S S

In general, a scatterer’s radiation pattern is described by its ‘scattering amplitude’, which depends on the direction of propagation of the
incoming and scattered wave. Isotropic point scatterers, however, are characterized by a scattering amplitude that is independent of the incident
and scattered wave vector. We denote the scattering amplitude of a scatterer at r j by fj.

Consider a background wavefield,

	0(r) ≡ ei k0 ·r , (A1)

where the wave vector k0 prescribes the direction of propagation and wavelength of the background incident wave (note that k0 = |k0|). The
wavefield at r due to scatterers located at r j can be written as a summation over their individual contributions (Foldy 1945; Groenenboom &
Snieder 1995), that is,

	s(r) ≡
N∑

j=1

G(0)(r, r j ) f j 	(r j ), (A2)

where we sum over a total of N scatterers. G(0)(r, r j ) denotes the Green’s function of the background medium.
In two dimensions, the impulse response to the scalar wave equation is given by

G(0)
(
r, r ′) = −i

4
H (2)

0

(
k0

∣∣r − r ′∣∣)

≈ 1

4

√
2

πk0 |r − r ′| e−ik0|r−r ′|−iπ/4
(
k0

∣∣r − r ′∣∣ � 1
)

(A3)

where H (2)
0 is a Hankel function of the second kind and zeroth order. A time dependence eiωt is assumed and the Green’s function is a solution

to the Helmholtz equation with a negative Dirac delta function as forcing function (Wapenaar & Fokkema 2006). The approximation is valid
at distances much larger than the wavelength.

The wavefield at any location r can be obtained by substituting the right-hand side of (A2) for 	s in eq. (10). The summation in (A2),
however, requires the wavefield impinging on the scatterers while the wavefield acting at any of these scatterers depends in turn on the waves
scattered away from the other scatterers. This mutual dependence can be reformulated by eliminating a scatterer’s own contribution, that is,
for the wavefield at the location of the jth scatterer we have,

	(r j ) = 	0(r j ) +
N∑

l=1
l �= j

G(0)(r j , r l ) fl 	(r l ). (A4)

This linear system of equations can be written in matrix notation and solved for the 	(r j ). The obtained solutions take into account all
multiple scattering interactions.

We define

� ≡

⎛
⎜⎜⎜⎜⎝

	(r1)
	(r2)

...

...

	(r N )

⎞
⎟⎟⎟⎟⎠ (A5)

and

�0 ≡

⎛
⎜⎜⎜⎜⎝

	0(r1)
	0(r2)

...

...

	0(r N )

⎞
⎟⎟⎟⎟⎠ (A6)
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and finally the square matrix with rank N,

M ≡

⎛
⎜⎜⎜⎜⎝

−1 f2G(0)(r1, r2) ... ... fN G(0)(r1, r N )
f1G(0)(r2, r1) −1 ... ... ...

... ... ... ... ...

... ... ... ... ...

f1G(0)(r N , r1) ... ... ... −1

⎞
⎟⎟⎟⎟⎠. (A7)

In matrix notation eq. (A4) thus reduces to

M� = −�0, (A8)

which can be written as,

� = −M−1�0 (A9)

This system of equations can be solved numerically using, for example, LU decomposition. In the special case of equal fj for all scatterers, M
becomes Hermitian and Cholesky decomposition can be used to solve the system, which is approximately twice as fast as LU decomposition.
The solutions for the 	(r j ) can be substituted in expression (A2) which enables us to calculate 	s at any location r . Through eq. (10) we can
subsequently calculate the total wavefield at that location.

A P P E N D I X B : H OW T H E O P T I C A L T H E O R E M C A P S T H E S T R E N G T H O F A N
I S O T RO P I C P O I N T S C AT T E R E R

Our rather idealized point scatterer does not absorb energy, that is, 
C = 0. Conservation of energy therefore equates the total cross-section
of a scatterer to its scattering cross-section. Because a scatterer is assumed to be isotropic, its scattering amplitude is independent of the
incident and scattered wave vector. Without loss of generality, we position an isotropic point scatterer at the origin, and consider its wavefield
as function of distance r away from it, that is,

	(r ) = G(0)(r ) × f j 	0(0), (B1)

where 	0 is given by eq. (A1). Its outward flux is therefore obtained by:


S =
∫ 2π

0

∣∣G(0)(r ) × f 	0(0)
∣∣2

rdθ

≈ 1

8k0π

∫ 2π

0
| f |2 dθ

= | f |2
4k0

. (B2)

The approximation stems from substitution of the far-field approximation for the Green’s function, that is, eq. (A3).
Equating 
TOT, that is, expression (11), to 
S enforces a relation between the real and imaginary part of the scattering amplitude:

�[ f ] = ±
√

−	[ f ](4 + 	[ f ]). (B3)

This relation bounds both the imaginary part of f and the maximum amount of energy removed from the incident wave, that is,

− 4 ≤ 	[ f ] ≤ 0 or 0 ≤ 
TOT ≤ 4/k0. (B4)

The optical theorem therefore caps the strength of the isotropic point scatterers.

A P P E N D I X C : T H E E X P E C T E D S C AT T E R I N G A M P L I T U D E

The expected scattering amplitude 〈F〉 can be obtained by solving the integral in eq. (15). Furthermore, in Appendix B we show that
conservations of energy constrains the scattering amplitude of an isotropic point scatterer to the contour in the complex plane described
(�[ f ])2 + (	[ f ] + 2)2 = 4. The integral can therefore be computed by evaluating the integrand pff along this contour. We parametrize the
contour by the angle φ, which gives f = 2ei(φ + π/2) − 2i and f = 2ei( − φ + π/2) − 2i for negative and positive �[ f ], respectively (see Fig. C1).
The expected scattering amplitude is obtained by integration over t from 0 to π ,

〈F〉 =
{∫ π

0 p f (φ)
(
2ei(φ+π/2) − 2i

)
dφ, �[ f ] = −√−	[ f ](4 + 	[ f ])∫ π

0 p f (φ)
(
2ei(−φ+π/2) − 2i

)
dφ, �[ f ] = √−	[ f ](4 + 	[ f ]),

(C1)

where pf becomes φ-dependent by substituting the appropriate parametrization for f (i.e. f = 2ei(φ + π/2) − 2i and f = 2ei( − φ + π/2) − 2i for
negative and positive �[ f ], respectively).
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Figure C1. Parametrization of f by f = 2ei(φ + π/2) − 2i. The contour associated with positive �[ f ] is not depicted, but is simply obtained by mirroring with
respect to the imaginary axis.

We now show how 〈F〉 can be computed in case the absolute scattering amplitudes are drawn from a raised cosine distribution (eq. 26). We
only evaluate the integral associated with negative �[ f ] and relate the result of this evaluation to positive �[ f ] at the end of this appendix.
Substituting eq. (26) into eq. (C1) and explicitly writing f = 2ei(φ + π/2) − 2i we have,

〈F〉 = 1

pT
f

∫ φ2

φ1

[
1 + cos

(∣∣2ei(φ+π/2) − 2i
∣∣ − μ

s
π

)] (
2ei(φ+π/2) − 2i

)
dφ (C2)

where φ1 and φ2 are the angles corresponding to |f| = μ − s and |f| = μ + s, respectively.
The absolute value of f, in terms of φ, can be written as∣∣2ei(φ+π/2) − 2i

∣∣ =
√

(2ei(φ+π/2) − 2i) (2ei(φ+π/2) − 2i)∗

=
√

8 − 8 cos (φ). (C3)

Inverting for φ gives,

φ = cos−1

(
1 − | f |2

8

)
, (C4)

which implies that the integration boundaries φ1 and φ2 are given by cos−1
(

1 − (μ−s)2

8

)
and cos−1

(
1 − (μ+s)2

8

)
, respectively. Substituting

eq. (C3) in eq. (C2) yields,

〈F〉 = 1

pT
f

∫ φ2

φ1

[
1 + cos

(√
8 − 8 cos (φ) − μ

s
π

)] (
2ei(φ+π/2) − 2i

)
dφ, (C5)

where the normalization factor is defined as

pT
f ≡

∫ φ2

φ1

1 + cos

(√
8 − 8 cos (φ) − μ

s
π

)
dφ (C6)

and ensures that
∫

pf df = 1.
We obtain 〈F〉 by numerical integration of expression (C5). The expected value of F associated with positive �[ f ] is simply obtained by

substituting (2ei( − φ + π/2) − 2i) for (2ei(φ + π/2) − 2i) in eq. (C5).
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