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Coda wave interferometry and the equilibration of energy in elastic media

Roel Snieder
Department of Geophysics and Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado 80401

~Received 14 May 2002; published 21 October 2002!

Multiple-scattered waves usually are not useful for creating deterministic images of the interior of elastic
media. However, in many applications, one is not so much interested in making a deterministic image as in
detecting changes in the medium. Cases in point are volcano monitoring and measuring the change in hydro-
carbon reservoirs during enhanced recovery operations. Coda wave interferometry is a technique wherein
changes in multiple-scattered waves are used as a diagnostic for minute changes in the medium. This technique
was developed previously for scalar waves; however, the application of this technique in geophysics, nonde-
structive testing, and other applications where elastic waves are used, requires the extension of the existing
formulation of coda wave interferometry to include conversions betweenP andSwaves. Here, a simple model
for the equilibration betweenP andSwaves incorporates into the theory of coda wave interferometry the mode
conversions that are inherent to multiply scattered elastic waves.

DOI: 10.1103/PhysRevE.66.046615 PACS number~s!: 42.25.Fx, 03.65.Nk, 91.30.2f
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I. INTRODUCTION

Imaging techniques, as used in seismic imaging@1#, non-
destructive testing@2#, radar applications, and medical ima
ing @3#, usually rely on a single-scattering approximation.
many practical applications waves are strongly scattered,
deterministic imaging is not feasible. Often, however, t
primary goal is not to form an image of the interior of
medium, but to detect changes in the medium instead.

Speckle pattern interferometry@4–7# uses the change in
the spatial speckle pattern of interfering multiply scatte
waves to retrieve the average change in the scatterer l
tions as a result of changes in the medium. This techni
has been used to monitor Brownian motion in colloidal s
pensions@8#, the passage of ultrasound through a stron
scattering medium@9#, and the properties of Taylor-Couet
flow @10#. Speckle pattern interferometry requires the m
surement of the intensity of the wave field over a cert
region of space. Although this is straightforward when lig
waves are used, spatial sampling is a problem in situat
where the wave field or its intensity can be measured onl
a limited number of locations.

When only a limited number of detectors of the wave fie
are in place, one can use the temporal fluctuations of
transient multiple-scattered waves. The idea is to exploit
change in the multiple-scattered waves generated by a
sient incident wave as a diagnostic of the change in the
dium. The term ‘‘coda’’ is used to denote the relatively lat
arriving multiply scattered waves; this term comes fro
music where it denotes the closing passage of the piece.
technique to extract the change in the medium from
change in the multiple scattered waves is called ‘‘coda w
interferometry’’@11# because the multiple-scattering mediu
acts as an interferometer.

Coda wave interferometry can potentially be used in n
destructive testing of materials to detect the formation
cracks, but it also has applications for monitoring change
hydrocarbon and hydrological reservoirs, and for the mo
toring of dams and volcanoes. In such applications, the n
ber of receivers is often limited, so that the temporal spec
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pattern of the multiple-scattered waves is the primary too
detect changes in the medium.

Because for these applications the medium is elastic,
theory developed for coda wave interferometry of sca
waves @11# is not applicable. A number of seismologic
studies have been carried out to infer a change in the seis
velocity from coda waves@12–16#. In an elastic medium
there is not a single wave velocity because such a med
supports bothP andSwaves, each with a distinct velocity. I
strongly scattering elastic media, conversions betweenP and
S waves are in general as strong as the scattering of th
waves. Since a multiply scattered wave has traveled over
of its trajectory as aP wave and part of its trajectory as anS
wave, it is not obvious how often an elastic wave at a giv
time has been scattered and what the effective velocity
propagation is. Aki and Chouet@17# assume that the cod
waves are dominated byS waves.

Here, I extend the theory of coda wave interferome
@11# for scalar waves to the more complex application
elastic waves. Section II treats multiple scattering of vec
waves, and the influence of changes in the medium on th
waves. To account for the partitioning of propagation b
tween P and S waves, I introduce a simple model for th
propagation of elastic waves in Secs. III and IV. The info
mation on the spatial distribution and directionality of th
waves is discarded in this model, which results in a sim
description of the partitioning ofP- and S-wave energies.
With this model, I infer the change in the coda waves due
a change in the scatterer locations~Sec. V! and the propaga-
tion velocity ~Sec. VI!.

II. PERTURBATION OF THE MULTIPLE-SCATTERED
WAVES

Let us assume that discrete scatterers in the med
strongly scatter elastic waves. When the separation betw
the scatterers is much larger than a wavelength, the t
wave field can be written as the sum of waves that propag
along all possible trajectories:
©2002 The American Physical Society15-1
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u~u!~ t !5(
T

AT~ t !. ~1!

A trajectory is defined as a sequence of scatterers thro
which the wave has traveled over time. At each scatte
conversions betweenP andSwaves can occur. The sum ove
trajectories also enumerates all the possible combination
modes of propagation asP andSwaves between consecutiv
scatterers that are encountered.

The wave field in Eq.~1! is the wave field for the unper
turbed medium; this is called the unperturbed wave field.
us assume that, when the medium is perturbed, the domi
action of this perturbation is to change the travel time alo
each trajectory, and that the change in the~vector! amplitude
can be ignored. Denoting the travel time perturbation for
propagation along trajectoryT by tT , we can therefore write
the perturbed wave field as

u~p!~ t !5(
T

AT~ t2tT!. ~2!

Suppose that one has measured thei component of the
unperturbed and perturbed wave fields. We characterize
change in the wave field using the time-windowed corre
tion function, defined as

Cup
~ t,tw!

~ ts![E
t2tw

t1tw
ui

~u!~ t8!ui
~p!~ t81ts!dt8, ~3!

where t denotes the center of a time window of length 2tw
and ts the lag time for the correlation. The cross correlati
is given by

Cup
~ t,tw!

~ ts![(
TT8

E
t2tw

t1tw
ATi~ t8!AT8 i~ t81ts2tT8!dt8. ~4!

The double sum over all trajectories can be written as(TT8
5(T5T81(TÞT8 . The terms in the first sum add coherent
while the terms in the second sum add incoherently. For
reason the contribution of the trajectoriesTÞT8 can be ne-
glected; hence

Cup
~ t,tw!

~ ts!5(
T
E

t2tw

t1tw
ATi~ t8!ATi~ t81ts2tT!dt8. ~5!

In the following we consider a shift timets that is close to
the mean travel time perturbation. For small values ofts
2tT) a second order Taylor expansion ofATi(t81ts2tT)
gives

Cup
~ t,tw!

~ ts!5(
T
E

t2tw

t1tw
ATi~ t8!2dt8

1
1

2 (
T

~ ts2tT!2E
t2tw

t1tw
ATi~ t8!ÄTi~ t8!dt8.

~6!

This expression can be written as
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Cup
~ t,tw!~ ts!5(

T
E

t2tw

t1tw
ATi~ t8!2dt8S 12

1

2
v2~ ts2tT!2D ,

~7!

with the dominant frequency defined as

v2[2
(T* t2tw

t1twATi~ t8!ÄTi~ t8!dt8

(T* t2tw

t1twATi~ t8!2dt8
. ~8!

Analogous to Eq.~3!, the zero-lag time-windowed auto
correlation of the unperturbed wave is defined as

Cuu
~ t,tw!

~0![E
t2tw

t1tw
ui

~u!2~ t8!dt8, ~9!

with a similar definition for Cpp
(t,tw)(0) for the perturbed

waves. Using a similar reasoning as used in deriving exp
sion ~5! gives

Cuu
~ t,tw!

~0!5Cpp
~ t,tw!

~0!5(
T
E

t2tw

t1tw
ATi

2 ~ t8!dt8. ~10!

A dimensionless measure of the change of the wave fi
is given by the time-windowed correlation coefficient d
fined as

R~ t,tw!~ ts![
* t2tw

t1twui
~u!~ t8!ui

~p!~ t81ts!dt8

~* t2tw

t1twui
~u!2~ t8!dt8* t2tw

t1twui
~p!2~ t8!dt8!1/2.

~11!

With the expressions~7! and ~10!, this function is approxi-
mately given by

R~ t,tw!~ ts!512
1

2
v2^~t2ts!

2&~ t,tw! . ~12!

In this expression,̂ ¯& (t,tw) denotes the average over a

trajectories that arrive in the time window (t2tw ,t1tw)
with a weight factor that is given byATi

2 . This means that in
this work averages are taken with a weight factor that
given by the energy of each multiple-scattered wave.

The time shifted cross correlation attains its maximu
when

ts5^t&~ t,tw! , ~13!

and the value of the time shifted cross correlation at its ma
mum satisfies

Rmax
~ t,tw!

512
1

2
v2st

2, ~14!

with st the variance of the perturbation of the arrival tim
in the employed time window. This means that the tim
shifted cross correlation of the unperturbed and the pertur
waves gives the mean and variance of the travel time per
bation in the employed time window.
5-2
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III. A SIMPLE EQUILIBRATION MODEL
FOR P AND S WAVES

The mean and variance of the arrival times of seism
waves for a given perturbation of the medium is the resul
the change in the propagation of bothP andSwaves because
each trajectory consists of a combination of paths betw
scatterers along which the wave travels as aP or Swave. To
make further progress, it is necessary to account for the
titioning of elastic wave energy intoP andS energy.

The partitioning ofP-wave energy toS-wave energy has
been studied by counting the number ofP andSmodes@18#,
from the evolution equations forP- andS-wave energy@19#,
from radiative transfer theory@20,21#, and from seismologi-
cal observations@22#. The temporal evolution of theP- and
S-wave energies in an elastic medium can be studied wi
hierarchy of different methods. In radiative transfer theo
@20,23–27#, the spatial distributions of the intensity and th
direction of propagation are treated as independent par
eters. When the transition to diffusive wave propagation
made, the direction of energy propagation is related to
gradient of the intensity@21,28#.

As an alternative I use in this section an even simp
model to account for the equilibration ofP and S waves
where the information regarding the spatial distribution a
direction of the waves is discarded. In this model, the wa
move around as balls. A ball is either in aP state, or in theS1
andS2 states that represent the two polarizations ofSwaves.
The balls are a metaphor for units of energy. However,
balls should not be confused with the quanta of elastic w
propagation~phonons!; they are nothing but a tool for keep
ing track of the distribution of energy among the differe
wave modes. The balls in theP state travel with theP-wave
velocity vP , while the balls in theS states travel with the
S-wave velocityvS . After each ball has propagated over
distancea, with a certain probability it can convert to a ba
of another state. The model is similar to a Monte Carlo
scription of multiple scattering@29,30#, but spatial and direc-
tional information about the propagation of the waves is d
carded. This allows for an analytical solution rather than
numerical solution based on a Monte Carlo technique.

The probabilities of these transitions are shown in Fig

FIG. 1. Diagrammatic representation of the transition probab
ties for the conversions of balls among theP state and the twoS
states.
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The probability that aP ball converts to each of theS states
is denoted bypPS. This means that the probability at eac
collision that aP ball continues as aP ball is equal to 1
22pPS. The probability that anS ball is converted into aP
ball at a scatterer is denoted bypSP. There is a probability
pSS that anS ball is converted to anS ball of the other type.
It follows from Fig. 1 that the probability that anSball is not
converted to a ball of another type is 12pSP2pSS.

Suppose that in the system there areNP balls in theP
state andNS1

andNS2
balls in theS1 andS2 states, respec

tively. The transition probabilities can be used to derive d
ferential equations for the number of balls in each state.
an example, consider the number of balls in theP state.
There areNP balls in this state. In a time intervaldt, each
ball travels a distancevPdt and encountersvPdt/a scatter-
ers. As indicated in Fig. 1, the probability that a ball in theP
state is converted to each of theSstates upon encountering
scatterer ispPS. This means that in a time intervaldt the
total reduction of theP balls due to conversion toS states is
given by22pPSNPvPdt/a. The number ofP balls increases
due to the conversion ofS balls to P balls. By the same
reasoning the number of balls in theP state thus increases i
the same interval aspSP(NS1

1NS2
)vSdt/a. The total change

in the number of balls in theP state is therefore given by
dNp5pSP(NS1

1NS2
)vSdt/a22pPSNPvPdt/a. The same

reasoning can be applied to the balls in each of theS states;
this gives the following system of differential equations:

ṄP5
1

a
~pSPvSNS1

1pSPvSNS2
22pPSvPNP!,

ṄS1
5

1

a
@pSSvSNS2

1pPSvPNP

2~pSP1pSS!vSNS1
#,

ṄS2
5

1

a
@pSSvSNS1

1pPSvPNP

2~pSP1pSS!vSNS2
#. ~15!

The average distance between scatterers isa, but this dis-
tance is not the mean free path. In the following, we take
limit that a and the transition probabilitiespPS, pSP, and
pSSgo to zero; this limit describes the continuous convers
between different wave types that occurs in a strongly in
mogeneous elastic medium. It follows from Fig. 1 that, wh
a ball in theP state encounters a scatterer, the probabi
that it is not converted to one of theS states is given by 1
22pPS. SincepPS is assumed to be small, this means th
the probability that aP ball is not converted to another sta
when it propagates over a distancel is given by (1
22pPS)

l /a. By definition, this probability is equal to 1/e
when the ball has propagated over the mean free pathl P ;
hence (122pPS)

l P /a51/e. Taking the natural logarithm
gives, for small values ofpPS,

-

5-3
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l P5
a

2pPS
. ~16!

For the balls in eachS state, the probability that the ball i
not converted at a scatterer is given by 12pSP2pSS. Using
the same reasoning as for the balls in theP state, the mean
free path of eachS state is given by

l S5
a

pSP1pSS
. ~17!

From these expressions, the mean free paths remain fi
when the limitsa→0, pIJ→0 are taken as long as the rat
defined in expressions~16! and~17! remains finite. Note tha
the system of differential equations~15! depends only on the
ratiospIJ /a.

The system~15! has three different solutions, each with
characteristic decay time. Adding the three equations~15!
gives

d

dt
~NP1NS1

1NS2
!50. ~18!

This expression states that the number of balls is consta
time; this is a consequence of the fact that the probabilitie
Fig. 1 are chosen in such a way that balls are neither cre
nor destroyed when they encounter a scatterer. The iden
cation of balls with units of energy means that for this s
tem the total energy is conserved.

The total number of ballsNS in an S state is the sum o
the balls in the twoS states:

NS[NS1
1NS2

. ~19!

Using this relation in the first line of the system~15!, and
adding the last two lines of that system, gives the followi
system of equations that governs the partition between
total numbers of balls in theP andS states:

ṄP5
1

a
~pSPvSNS22pPSvPNP!,

ṄS5
1

a
~2pPSvPNP2pSPvSNS!. ~20!

It follows from this expression that, in equilibrium, the rat
of the number of balls in theP state to the total number o
balls in theS states is given by

S NP

NS
D

eq

5
pSPvS

2pPSvP
. ~21!

The ratio of the number of balls, and hence the ratio of theP-
and S-wave energies depends on the ratiopSP/pPS of the
transition probabilities. Aki@31# gives a simple derivation
based on reciprocity that explains why these probabilities
different. These transition probabilities are defined in expr
sion ~15!, where they multiply terms such asvPNP . When
NP denotes theP-wave energy, thenvPNP describes the en
04661
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ergy flux ofP waves. In scattering theory the scattering cro
section is defined by the change in the energy flux. The
fore, the ratiopSP/pPS is defined by the ratio of the scatte
ing cross sections forPSscattering andSPscattering, respec
tively, which is given by@30#

pSP

pPS
52

sSP

sPS
5S vS

vP
D 2

. ~22!

The factor 2 in the middle term is due to the fact that t
transition probability in Eq.~15! is defined for eachS-wave
polarization separately whereas the cross sectionsSP is de-
fined for the totalS-wave energy.

Inserting the ratio~22! in ~21! and identifying the number
of balls with energy, the following conditions follow for th
equilibrium value of theP- andS-wave energy@18–21#:

S EP

ES
D

eq

5
1

2 S vS

vP
D 3

. ~23!

For a Poisson medium, wherevP5)vS , this ratio is given
by (EP /ES)eq'0.096, which indicates that theS-wave en-
ergy is much larger than theP-wave energy. There are thre
reasons for this. First, there are twoS states compared to
only oneP state. Second, theP waves propagate faster tha
do theSwaves, so the probability per unit time that aP wave
is converted to anS wave is much larger than that of th
reverse conversion. Third, the transition probability for t
conversion fromP to S is larger than fromS to P; see ex-
pression~22!.

Expressions~20! and~18! provide the time it takes for the
number of balls to equilibrate between theP state and theS
states. Equation~18! implies thatNP1NS5N, whereN is
the total number of balls. Using this relation to eliminateNS
from the first expression of Eq.~20! gives

ṄP5
pSPvS

a
N2

~pSPvS12pPSvP!

a
NP . ~24!

Using Eqs.~16! and~22!, this means that the timetPS for the
equilibration ofP andS energy is given by

tPS5
2l PvP

2

~vS
312vP

3 !
. ~25!

Trégourès and van Tiggelen@21# derived the same expres
sion from the diffusion equation.

The equilibration among the twoSstates can be found b
taking the difference of the last two lines of the system~15!;
this gives

d

dt
~NS1

2NS2
!52

~2pSS1pSP!vS

a
~NS1

2NS2
!. ~26!

Note that the equilibration of theS states depends not onl
on the transition probabilitypSS for the conversion between
the S states, but also on the probabilitypSP for the conver-
sion between theP state and theS states. This is becaus
conversions such asS1→P→S2 also contribute to the equili-
5-4
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bration of theSstates. With relations~16! and~17!, it follows
that the equilibration timetSS for the S states is given by

tSS5
l Sl P

l P1~ l S/2!

1

vS
. ~27!

The model presented here does not account for the sp
variations in the ratio of theP- andS-wave energies. When
this ratio has significant spatial variations the model can
be expected to be accurate. Therefore the model is use
the following to describe the properties of the wave fie
after an equilibrium between theP- andS-wave propagation
has been reached.

IV. PARTITIONING OF P AND S PROPAGATION

The analogy in Sec. III of balls that are distributed amo
different modes serves here as a simple model for the pr
gation ofP andSwaves in an elastic medium by identifyin
the propagation of balls in theP andSmodes with theP- and
S-wave energies, respectively. It is shown in Sec. II that
coda wave interferometry one measures averages of
propagation properties of the wave field with the squa
amplitude of the waves, and hence the energy, as we
factor. This means that, according to expression~23!, once
the P andS waves have equilibrated the ratio of the timetP
spent traveling as aP wave to the timetS that the wave
traveled as anS wave is given by

tP

tS
5

vS
3

2vP
3 . ~28!

This expression should be interpreted as an energy-weig
average after equilibration of theP- andS-wave energies.

The total travel time is given bytP1tS5t. With Eq. ~28!
this gives

tS5
2vP

3

2vP
3 1vS

3 t, tP5
vS

3

2vP
3 1vS

3 t. ~29!

The meandering distance traveled as aP wave is given by
LP5vPtP and the corresponding distance for theS waves is
LS5vStS , so that

LS5
2vP

3vS

2vP
3 1vS

3 t, LP5
vPvS

3

2vP
3 1vS

3 t. ~30!

The total length of the wandering path is given byL5LS
1LP , so that

L5
2vP

3vS1vPvS
3

2vP
3 1vS

3 t. ~31!

This means that after theP and S waves have equilibrated
they propagate on average with an effective velocityveff that
is given by

veff5
vPvS~2vP

2 1vS
2!

2vP
3 1vS

3 . ~32!
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For a Poisson mediumveff'1.064vS , so that the effective
velocity is close to theS velocity.

The number of scatterers encountered is given byn
5LS / l S1LP / l P ; therefore from Eqs.~29! and ~30! it fol-
lows that

n5
vPvS

2vP
3 1vS

3 S 2vP
2

l S
1

vS
2

l P
D t. ~33!

Writing the number of scatterers as

n5
veff

l eff
t, ~34!

this gives for the effective mean free path

1

l eff
5

1

2vP
2 1vS

2 S 2vP
2

l S
1

vS
2

l P
D . ~35!

V. PERTURBING THE SCATTERER LOCATIONS

In this section, I derive the influence of random perturb
tions of the scatterer locations on the time-windowed cor
lation function. The perturbations of the components of
scatterer locations are assumed to be independent with

FIG. 3. Diagram of the four pairs of incoming and outgoin
wave types at a scatterer.

FIG. 2. Definition of the scattering angle and parameters of
incoming and outgoing waves at scatteri.
5-5
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ROEL SNIEDER PHYSICAL REVIEW E66, 046615 ~2002!
mean and varianced2. Since the resulting mean travel tim
perturbation vanishes, the change in the correlation func
is determined by the variancest

2 of the arrival times. This
quantity can be retrieved from the data with expression~14!.
The elastic waves that propagate through the medium co
of both P andS waves; therefore, it is necessary to accou
for the possibility that the incoming and outgoing waves a
given scatterer are of different type. In the Appendix, I sh
that when the incoming wave at a given scatterer has ve
ity v in and the outgoing wave a velocityvout, the variance in
the arrival time due to the perturbation of a single scatte
location is given by

st
252d2S 1

2vout
2 1

1

2v in
2 2

1

voutv in
cosc D , ~36!

wherec is the scattering angle of the trajectory as defined
Fig. 2.

This expression is valid for a perturbation of the locati
of one scatterer only. As shown in Fig. 3 for a given scatte
there are four possibilities for the incoming and outgoi
wave types because both the incoming and outgoing wa
can be either aP or Swave. This means that expression~36!
must be averaged, over these four types of incoming
f
g
ca
ci

er
in
s
l

el

s
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outgoing waves, using the energy of the waves as we
factors. Applying this weighting to the relative occurrence
P andS trajectories gives a weight 2(vP /vS)3 to anS-wave
trajectory relative to aP-wave trajectory. AnS trajectory thus
has a weightvS

3/(vS
312vP

3 ) while aP trajectory has a weigh
2vP

3 /(vS
312vP

3 ). This gives the following weighting for
products of the relative occurrences of pairs of incoming a
outgoing trajectories shown in Fig. 3:

PP: vS
6/~vS

312vP
3 !2,

PS: 2vP
3vS

3/~vS
312vP

3 !2,

SP: 2vP
3vS

3/~vS
312vP

3 !2,

SS: 4vP
6 /~vS

312vP
3 !2. ~37!

These weight factors are used to average Eq.~36! over the
four combinations of incoming and outgoing waves. Forn
scatterers along a trajectory, the variancest

2 is multiplied by
n because the perturbations of the scatterer location are
sumed to be independent. This gives for the variance in
arrival time
st
252nd2H vS

6

~vS
312vP

3 !2 S 1

2vP
2 1

1

2vP
2 2

1

vP
2 ^coscPP& D 1

2vP
3vS

3

~vS
312vP

3 !2 S 1

2vS
2 1

1

2vP
2 2

1

vSvP
^coscSP& D 1

2vP
3vS

3

~vS
312vP

3 !2 S 1

2vP
2

1
1

2vS
22

1

vPvS
^coscSP& D 1

4vP
6

~vS
312vP

3 !2 S 1

2vS
2 1

1

2vS
22

1

vS
2 ^coscSS& D J . ~38!
In this expression̂ coscSP& is the average of the cosine o
the scattering angle forS to P scattering over all scatterin
angles because the multitude of paths that visit a given s
terer sample all possible scattering angles. From recipro
^coscSP&5^coscPS&.

Expression~33! relates the average number of scatter
encountered to the travel time along the trajectory, tak
conversions betweenP andSwaves into account. Using thi
result to eliminaten from Eq.~38!, the variance of the trave
time is given by
t-
ty,

s
g

st
25

2d2t

v* l *
, ~39!

with the velocityv* given by

1

v*
[

2vP
2 1vS

2

~2vP
3 1vS

3!3 S vS
7

vP
12vS

4vP
2 12vS

2vP
4 14

vP
7

vS
D , ~40!

and the transport mean free path given by
1

l *
[

1

l eff
S 12

~vS
6/vP

2 !^coscPP&14vP
2vS

2^coscPS&14~vP
6 /vS

2!^coscSS&

vS
6/vP

2 12vPvS
312vP

3vS14vP
6 /vS

2 D , ~41!
oth
ions
re
with the effective mean free pathl eff given by Eq.~35!.
Equation~39! is identical to the expression for the trav

time variance for scalar waves@11,32#. This means that the
change in the arrival time~or phase! caused by perturbation
in scatterer locations has the same functional form for b
elastic and scalar waves, despite the recurrent convers
betweenP and S waves. Note that these expressions a
based on the presence of twoS polarizations. For a two-
5-6
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dimensional elastic medium the expressions forv* and l *
are different.

For a Poisson medium,v* and l * are given by

v* '1.005vS , ~42!

and

1

l *
'

1

l eff
~120.003̂ coscPP&20.098̂ coscPS&

20.883̂ coscSS&!. ~43!

Note that the velocityv* is close to theS velocity, and that
the transport mean free path depends most strongly on
scattering angle forSwaves because when theP andSwaves
have equilibrated theSwaves are much more prolific. In fac
the error is not large when one replacesv* by theSvelocity
and ignores in expression~43! the contributions of the scat
tering anglescPP andcPS that involve theP wave.

By inserting Eq.~39! in Eq. ~14! we can relate the vari
ance in the scatterer displacement to the time-windowed
relation function:

d25~12Rmax
~ t,tw!

!
v* l *
v2t

. ~44!

VI. A VELOCITY PERTURBATION

The change in the coda waves can be caused by a pe
bation in the average velocity of the medium. Here, I der
the effect of constant perturbations of theP andS velocities
on the time-windowed correlation of the coda waves. T
relative perturbations of theP and S velocities are denoted
by

gP[
dvP

vP

, gS[
dvS

vS

. ~45!

For the equilibration model forP andSwaves of Sec. IV,
along each trajectory, the wave spends on average a timtS
as anS wave and a timetP as aP wave. The unperturbed
travel time is given by

t5
LP

vP
1

LS

vS
. ~46!

If we assume that the relative velocity perturbations
much smaller than unity, the average change in the arr
time, to first order ingP andgS , is given by

^t&~ t,tw!52gP

LP

vP
2gS

LS

vS
. ~47!

Using expression~30! gives

^t&~ t,tw!52
1

2vP
3 1vS

3 ~vS
3gP12vP

3gS!t. ~48!
04661
he

r-

ur-
e

e

e
al

The relative change in the effective velocity is related
the mean travel time perturbation by

geff52
^t&~ t,tw!

t
5

vS
3

2vP
3 1vS

3

dvP

vP
1

2vP
3

2vP
3 1vS

3

dvS

vS
.

~49!

Coda wave interferometry thus constrains the weighted
erage of theP- andS-velocity perturbation given by expres
sion ~49!. For a Poisson medium

geff'0.09
dvP

vP
10.91

dvS

vS
, ~50!

so that coda wave interferometry for elastic waves depe
much more strongly on the relative perturbation of t
S-wave velocity than on that of theP-wave velocity.

VII. CONCLUSION

The treatment of coda wave interferometry as formula
for scalar waves extends to that of elastic waves, which
subject to the conversion betweenP andSwaves. The result-
ing expressions for the time-windowed correlation functi
of the multiple-scattered waves due to changes of the
dium are identical to those previous derived for scalar wav
Coda wave interferometry for elastic waves differs from th
for scalar waves only in that it depends on a weighted av
age of the propagation and scattering properties ofP and S
waves. In practice, elastic coda wave interferometry is p
dominantly influenced by the propagation and scattering oS
waves because these waves dominate over theP waves after
multiple scattering. Therefore this technique is most sensi
to changes in the propagation characteristics ofSwaves@17#.
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APPENDIX: THE EFFECT OF THE PERTURBATION
OF ONE SCATTERER LOCATION ON THE TRAVEL TIME

Consider the situation shown in Fig. 2 wherein the loc
tion of scattereri is perturbed, while the locations of th
scatterersi 21 andi 11 that the wave encounters before a
after meeting scattereri, respectively, are unperturbed. Th
incoming wave travels from scattereri 21 to scattereri with
velocity v in in the directionn̂in and the outgoing wave from
scattereri to i 11 travels with velocityvout in the direction
n̂out. The location of scattereri is denoted byr ( i ). The three
components of this vector are perturbed independently w
zero mean and varianced.

It follows by differentiation that]ur ( i 11)2r ( i )u/]x( i )5
2(x( i 11)2x( i ))/ur ( i 11)2r ( i )u52n̂x

out. Using this, and the
corresponding result for the incoming wave, gives for t
travel timet
5-7
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]t

]xi
52

1

vout
n̂x

out1
1

v in
n̂x

in , ~A1!

with similar expressions for the other derivatives. Since
d
-

a-

d

e

e

04661
e

perturbations in the three components of the location of s
tereri are assumed to be independent, the associated vari
in the travel time is given by ^t2& i5(]t/]xi)

2d2

1(]t/]yi)
2d21(]t/]zi)

2d2. With expression~A1! this gives
expression~36!.
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