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ABSTRACT

Seismic imaging is a geophysical technique that uses elastic waves to form images of geo-

logic formations in the subsurface. Seismic imaging has become the most reliable diagnostic

tool for modern hydrocarbon exploration and production. Conventional imaging methods,

however, rely on the single-scattering assumption, which requires the recorded seismic data

to not include multiples—waves that are reflected more than once in the subsurface before

reaching the receivers. While the surface related multiples can be effectively suppressed

with the Surface Related Multiples Elimination (SRME) method, the elimination of the in-

ternal multiples multiples that are not surface related—remains challenging with current

seismic processing techniques. The traditional workflow to mitigate the artifacts associated

with internal multiples involves 1) predicting internal multiples, and 2) subtracting them

from the acquired seismic data. This workflow requires accurate horizons of the multiple

generators and a labor-intensive adaptive subtraction, which is usually performed in a least-

squares sense and may damage primary events when primaries and multiples interfere. The

Marchenko framework used in this dissertation is based on inverse problems in quantum

physics. This framework consists of two steps. The first step is Marchenko redatuming,

which allows one to use surface seismic reflection data to retrieve seismic responses (Green’s

functions) between arbitrary points in the subsurface to the acquisition surface. The second

step is Marchenko imaging, which utilizes the Green’s functions retrieved by Marchenko re-

datuming for imaging. These two steps provide a solution for resolving the issues associated

with internal multiples and producing multiple-free images, without requiring horizons of

multiple generators or performing adaptive subtraction.

For my PhD research, I develop and investigate the 2D and 3D Marchenko framework

for field data deployment and application. I elucidate the specific requirements for the two

inputs of the Marchenko method: the seismic reflection data acquired on the earth surface
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and a background velocity model for estimating first arrivals from subsurface locations to

the surface. To make the standard surface seismic data (which can be sparsely sampled

in practice) useful for Marchenko redatuming, I consider forward interpolation methods to

convert sparse surface data to densely and uniformly sampled data that corresponds to an

equal number of co-located sources and receivers at the acquisition surface. I show that the

background velocity model does not need to be known in great detail since the first-arriving

wave needed by the Marchenko method is mostly determined by its travel time. A smooth

velocity model is sufficiently accurate for such estimations. I demonstrate that the combi-

nation of Marchenko redatuming and imaging is robust with respect to erroneous velocity

models. I extend the Marchenko redatuming algorithm to 3D seismic data by reformulating

the Marchenko-type equations in 3D Cartesian coordinate system and develop an efficient

3D numerical implementation, in which I resolve the associated computational optimiza-

tion and memory issues. Despite the idealized assumptions and the specific requirements

for the input data within the Marchenko framework, I obtained two successful field data

applications of the Marchenko method for imaging complex subsurface areas and propose a

practical and effective workflow for processing streamer field data. With a Gulf of Mexico

field dataset, I show that discontinuities along true reflectors—resulting from the destructive

interference between primaries and the internal multiples due to salt layers—is resolved by

the Marchenko method, which produces a clean and continuous sub-salt image. With an

offshore Brazil dataset, I show that the artificial or nonphysical interfaces—resulting from

the internal multiples that are generated by volcanic intrusion layers in the overburden—are

adequately eliminated by performing Marchenko imaging.
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CHAPTER 1

GENERAL INTRODUCTION

Internal multiples pose one of the important yet unsolved problems in modern seismic

processing and imaging. If not correctly handled, internal multiples contaminate the seismic

images that are utilized in the geologic interpretation for subsurface hydrocarbon exploration

and production.

Conventional seismic methods for imaging the earth’s interior, such as Ray-based mi-

gration (e.g Kirchhoff migration): Beylkin (1985); Bleistein et al. (2001); Bleistein (1987);

French (1975); Operto et al. (2000); Schneider (1978), one-way wave equation migration:

Claerbout (1971); Hale (1991); Zhang et al. (2005), and two-way wave equation migration

(Reverse Time Migration): Baysal et al. (1983); McMechan (1983); Whitmore (1983), rely

on the single-scattering assumption, which means these methods require that the recorded

seismic data do not include waves that are reflected more than once in the subsurface before

reaching the receivers (for overviews of the conventional migration methods: Etgen et al.

(2009); Sava & Hill (2009)). Geophysicists consider that the single-scattering assumption is

valid for the majority of the seismic data. Yet, multiples - the waves that are reflected more

than once in the subsurface—usually are present in seismic data. The elimination of one spe-

cific type of multiples, the surface related multiples—the waves that are reflected downwards

only by the earth surface and are reflected twice or more inside the earth (blue dashed line

in Figure 1.1(a))—can be resolved with 2D and 3D Surface Related Multiple Elimination

(SRME) (Berkhout & Verschuur, 1997; Dragoset et al., 2010; Matson & Abma, 2005; Ver-

schuur, 1991). But internal multiples—the multiples that are not surface related (red dashed

line in Figure 1.1(a))—remain a challenge with current seismic processing techniques.

Strong internal multiples can be generated in a variety of subsurface environments. Par-

ticularly, for marine seismic surveys, the water bottom or seabed is one of the strongest
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interbed multiple generators due to the high velocity and density contrast between water

and sediments. Generally, multiple-generating interfaces can be any interface with strong

acoustic impedance, such as salt bodies, carbonates, volcanic intrusions, gas layers, etc.

Part of the reason why the attenuation of the internal multiples is challenging is due to

the complexity (structural shapes and various impedance along the interfaces) of the inter-

nal multiples generators and the similar behaviour of internal multiples and primaries in the

seismic records. Conventional imaging methods (e.g. Reverse Time Migration, Kirchhoff mi-

gration) treat all input seismic events as primary reflections (black solid line in Figure 1.1(a)).

If strong internal multiples exist, but are not properly handled, conventional methods map

the internal multiples to a greater depth beneath strong multiple generators. Meanwhile,

because the large impedance difference between the multiple generators and the surrounding

sediments, hydrocarbons also tend to be trapped beneath the multiple generators. Therefore

the internal multiples are often imaged onto the reservoir layers by the conventional methods,

misleading the geologic interpretation for subsurface structure, lithology and fabric. This is

illustrated in Figure 1.1(b) where an artificial structure (enclosed by red dashed line) result-

ing from internal multiples, interferes with a deeper hydrocarbon reservoir and contaminates

the seismic image. Hence, a robust and effective method for handling the internal multiples

is highly desired for for hydrocarbon exploration.

The traditional workflow to mitigate the artifacts associated with internal multiples in-

volves, 1) predicting internal multiples, and 2) subtracting them from the acquired seismic

data. Berkhout & Verschuur (1997) proposed an algorithm to remove internal multiples,

which requires knowledge of the smooth velocity model between the surface and the upper

boundary of the multiple generating layer. Jakubowicz (1998) developed an explicit inter-

nal multiple prediction method involving a two-trace convolution followed by a single-trace

correlation. Current industrial internal multiple prediction tools are mostly based on this

idea. These tools require accurate picking of subsurface horizons (either by geophysicists or

automated computer algorithms) and inevitably rely upon an adaptive subtraction technique
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Figure 1.1: (a) Primary reflections (solid black lines), surface related multiples (blue dashed
line), and internal multiples (red dashed line). (b) An artificial structure (enclosed by red
dashed line) resulting from internal multiples by conventional seismic imaging, that interferes
with a deeper hydrocarbon reservoir and contaminates the seismic image.

to mute the internal multiples from the seismic data. Both horizon picking and adaptive

subtraction need human intervention and can be labor-intensive. Horizon picking suffers

if the velocity model is not accurate. Adaptive subtraction, which is usually performed

in a least-squares sense, may damage primary events at the location where primaries and

multiples interfere.

Issues related to internal multiples can be potentially resolved with the Marchenko

method, a novel technique for producing multiple-free seismic images using the surface seis-

mic data and a background velocity model (Broggini et al., 2012, 2014b; Wapenaar et al.,

2014b). It provides target-oriented images specifically for areas with complex structures that

generate strong internal multiples. I outline the development of the Marchenko framework

below.

Rose (2001) raised a simple yet interesting question: can one find an incident wave from

one side of the medium such that the wavefield focuses at a pre-defined location and time,

without knowing the detailed properties of the medium? He sought for the equation that

determines such a focusing incident wave, and found that the equation he looked for was the

Marchenko equation. Marchenko (1955) derived the equation of 1D inverse-scattering, which

reconstructs the properties of the medium from reflected waves for several wave equations
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(such as time-dependent Schrödinger equation and the plasma wave equation). Rose (2001)

later showed that the Marchenko equation also leads to incident wavefields that focus at a

specified point in an unkown medium. Hence, Marchenko is credited and a newly developed

framework, which aims to retrieve the impulse response to a virtual source at a pre-defined

location inside a medium, is named after him. This framework was first formulated by Brog-

gini et al. (2012) for seismic applications, who demonstrated the Marchenko autofocusing

method using the single-sided reflection response of a one-dimensional (1D) medium, and

they showed that the focusing principles outlined by Rose (2001) could be extended to re-

trieve the Green’s function for the unknown medium as well. Based on a decomposition of

the wavefield into upgoing and downgoing waves, Wapenaar et al. (2014b) generalized the

theory of Marchenko redatuming/Green’s function retrieval to 2D and 3D, and proposed the

framework to eventually produce a seismic image based on the up/down decomposition of the

retrieved Green’s functions. The retrieved Green’s function is proven to accurately contain

both primaries and multiples that propagate in the medium. Therefore, unlike conventional

imaging approaches which are meaningful only for the primaries, Marchenko imaging pro-

vides an alternative approach for creating a seismic image which takes the internal multiples

into account. More specifically, the artifacts caused by internal multiples can be eliminated

in the seismic image produced by Marchenko imaging.

The Marchenko framework has since developed rapidly in various directions. The theory

has been extended to elastic data for Marchenko redatuming and imaging (da Costa Filho

et al., 2014, 2015; Wapenaar, 2014) and free surface multiples have been incorporated within

the Marchenko framework (Singh et al., 2015a, 2016a). Dukalski & de Vos (2017) pre-

sented two alternative methods to solve the Marchenko equations with free surface mul-

tiples taken into account: LSQR (least squares) and a modified Levinson-type algorithm.

To make the method model-free, Zhang & Staring (2018) proposed a modified data-driven

Marchenko algorithm. Ravasi (2017) and Slob & Wapenaar (2017) proposed an approach

to use dual-sensor data (e.g. pressure and vertical particle velocity) to solve the coupled
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Marchenko equations that can handle band-limited seismic data with an unknown wavelet

from a more flexible acquisition system—arbitrarily located sources above a line of regularly

sampled receivers. Besides imaging, applications such as internal multiples prediction and

removal, source wavelet estimation, time-lapse monitoring have been developed based on the

Marchenko framework (Meles et al., 2014; Mildner et al., 2017; Wapenaar & Slob, 2017).

Marchenko imaging has been successfully applied to several field datasets. Ravasi et al.

(2016) applied Marchenko imaging to an ocean-bottom cable survey recorded over the Volve

North Sea field. Staring et al. (2017) show an adaptive double-focusing Marchenko imaging

with a Santos Basin field dataset. Jia et al. (2018) demonstrated a practical work flow to

perform Marchenko imaging with marine streamer data for sub-salt imaging and showed

that sub-salt image produced with the Marchenko method was cleaner and more continuous

compared to the RTM image using a Gulf of Mexico field dataset. Krueger et al. (2018) pre-

sented their internal multiple attenuation workflow based on Marchenko internal multiple

prediction and adaptive subtraction for four pre-salt fields in the Santos Basin, Brazil.

1.1 Thesis overview

The objective of this thesis is to make the Marchenko framework applicable to 2D and

3D field seismic data for producing multiple-free subsurface images.

In Chapter 2, I apply the Marchenko method to a Gulf of Mexico field dataset to resolve

challenging sub-salt imaging problems. I purpose a practical work flow for processing marine

streamer field data, and present a complete theoretical and practical framework to produce

a target-oriented sub-salt image using the Marchenko method. I show the first successful

field data application that exploits Marchenko imaging to eliminate the artifacts associated

with internal multiples beneath salt bodies. While being consistent and comparable with the

RTM image, Marchenko imaging achieves improvements in the smoothness and continuity

of the imaged geological structures. In this field data example, internal multiples corrupt

seismic images producing false negatives by destructively interfering with primaries. Later

in Chapter 5, with an offshore Brazil field dataset, I demonstrate that the false positives
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(focusing energy at nonphysical interfaces) associated with internal multiples can also be

eliminated by the Marchenko method.

In Chapters 3, I investigate the specific requirements for the two inputs of the Marchenko

algorithm: the surface seismic data and the background velocity model. I summarize the

idealised scenario for which the required surface seismic data should be acquired. Since

the field data acquisition rarely meets these requirements, data regularization, a process of

putting the irregular and sparse data to a uniform and dense grid, needs to be performed.

I investigate four forward interpolation methods for both 2D and 3D data regularization.

The investigated interpolation methods are used in Chapter 4 for the data regularization

of 3D streamer type data. For the other input—the velocity model—I clarify that the back-

ground velocity model does not need to be detailed as it is merely used to estimate the first

arriving waves, hence it only needs to be sufficiently accurate to predict the arrival time of

the direct wave from the imaging point to the surface. With two synthetic examples and an

offshore Brazil field data example, I show that the combination of Marchenko redatuming

and imaging is robust with respect to erroneous velocity models.

In Chapter 4, I extend the Marchenko redatuming algorithm for seismic data in three

dimensions. I reformulate the Marchenko equations in a three dimensional Cartesian coor-

dinate system. I propose an approach to efficiently determine the aperture and the spatial

sampling of the source/receiver pairs required for surface seismic surveys by 3D Marchenko

redatuming. I validate the 3D Marchenko redatuming algorithm with a 3D trapezoidal

and dipping model and a 2.5D Gulf of Mexico model. I also test the B-spline interpola-

tion for resolving the sparsity of the cross-line spatial sampling for 3D streamer data with

the 2.5D Gulf of Mexico model. I discuss the computational optimization I use for the 3D

Marchenko algorithm for saving memory and CPU time and formulate a comparison between

the surface-related multiple elimination (SRME) method and the Marchenko method.

In Chapter 5, I address another challenging scenario in which internal multiples generate

artifacts in seismic images—sub-basalt imaging. Sub-basalt imaging for hydrocarbon explo-
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ration is challenging because of multiple scattering, attenuation and mode-conversion when

seismic waves encounter highly heterogeneous and rugose basalt layers (Ziolkowski et al.,

2003). With an offshore Brazil dataset, I demonstrate the capability of the Marchenko

method for sub-basalt imaging. I show that the internal multiples, which are generated by

the seabed and basalt layers and create significant nonphysical interfaces in the conventional

image, are clearly eliminated by Marchenko imaging.

In Chapter 6, I present the general conclusions and final remarks of this dissertation

and make recommendations for future research along the path of the field data deployment

of the Marchenko framework.
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CHAPTER 2

A PRACTICAL IMPLEMENTATION OF SUBSALT MARCHENKO IMAGING WITH A

GULF OF MEXICO DATASET

Xueyi (Alex) Jia1, Antoine Guitton2, and Roel K. Snieder1

Published in Geophysics3 .

2.1 Abstract

Marchenko redatuming allows one to use surface seismic reflection data to generate the

seismic response from sources at the surface to any point in the subsurface. Without re-

quiring much information about the earth’s properties, the seismic response generated by

Marchenko redatuming contains accurate estimates of not only the primaries, but also in-

ternal multiples. A target- oriented imaging method, referred to as Marchenko imaging, was

implemented for imaging complex structures of the earth using the seismic response obtained

through Marchenko redatuming. Taking account of the contribution of both primaries and

internal multiples, Marchenko imaging produce images that contains less artifacts than the

images obtained using conventional imaging methods (e.g. Reverse Time Migration) with

the same input data. In this study, we applied Marchenko imaging to a field dataset ac-

quired at the Gulf of Mexico to produce an image of a subsalt area. We investigated two

important and practical aspects of the Marchenko framework: 1) the missing near offsets

in marine shot records, and 2) the calibration of the reflection data. Finally, we suggested

a work flow for processing the marine towed-streamer field dataset acquired at the Gulf of

Mexico, and presented a complete theoretical and practical framework to produce a target-

oriented subsalt image using the Marchenko methods. The images obtained from Marchenko

1Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
2Total CSTJF, EC465, AvenueLarribau, Pau, 64018 PAU Cedex, France
3Reprinted with permission of Geophysics, Volume 83, Issue 5 (Sep 2018), S409-S419,
https://doi.org/10.1190/geo2017-0646.1
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imaging are consistent and comparable, for the most part, with conventional migration meth-

ods. However, Marchenko imaging achieves improvements in the continuity of the geological

structures and in suppressing the artifacts which are caused by internal multiples.

2.2 Introduction

Marchenko imaging is a technique to image the subsurface of the earth using both the

primaries and multiples of seismic data, and aims to produce an image that is free of artifacts

caused by multiple reflections. This imaging approach is based on the redatumed reflection

response created by a method referred to as Marchenko redatuming, which virtually moves

the surface seismic sources and receivers to a deeper depth, close to the targets in the medium.

Significantly, the redatumed data contain only the reflection response below the redatuming

depth, and the medium above is treated as reflection-free. Therefore, Marchenko imaging

provides a target-oriented solution specifically for imaging the area below complex structures

such as salt bodies (which can create strong multiples).

Marchenko redatuming (the core of the Marchenko frame work) contains two steps: re-

ceiver redatuming and source redatuming (Figure 2.1). Receiver redatuming aims to retrieve

wavefields from sources at the surface to a virtual receiver in the medium using Marchenko-

type equations. Classic redatuming methods (Berryhill, 1979, 1984; Kinneging et al., 1989)

do not account for internal multiple reflections; hence, spurious events can emerge when

there is only single-sided illumination (Snieder et al., 2006). With Marchenko redatum-

ing, both the primaries and the multiples can be correctly estimated (Broggini et al., 2012;

Rose, 2002; Wapenaar et al., 2014b), and the retrieved wavefields are naturally separated

into up- and downgoing components. In the second step of source redatuming, these up-

and downgoing wavefields can be utilized to move the sources to the redatuming level by

approaches such as multidimensional deconvolution (van der Neut et al., 2011). Unlike the

wavefield retrieval method that uses seismic interferometry, which requires the data recorded

at a physical receiver in the subsurface (Bakulin & Calvert, 2006), Marchenko redatuming

requires only surface seismic data and a background velocity model as inputs, which are the
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same requirements for many standard imaging techniques (e.g. Reverse Time Migration). A

background velocity model, instead of being used to perform any wavefield propagation, is

used to compute the traveltime of the first arrival from a subsurface point to the surface, In

general, the Marchenko redatuming process does not require any more details of the medium

parameters than conventional imaging schemes (Broggini et al., 2014b).

R(x0, x0
’)

G(x0, xi
’)

G(xi, xi
’)

surface 
recording

receiver 
redatuming

source 
redatuming

𝜕 D0

𝜕 D1

reflection-free

Figure 2.1: Illustration of the source and receiver levels for surface recording, after receiver
redatuming and after source redatuming.

Broggini & Snieder (2012) first showed the scheme to use Marchenko equations to retrieve

the Green’s functions between an arbitrary virtual source position inside the 1D medium

and a receiver at the surface with only the reflection response recorded at the surface of that

medium. Wapenaar et al. (2014a,b) then derived the 3D Marchenko equations, which relate

the single-sided reflection response of a 3D medium to a focusing wavefield, of which the

focusing point is defined by estimating the traveltime from this point to the surface.

Marchenko redatuming has been extended to elastic media by using P- and S- wave

measured potentials from P- and S- wave potential sources (Wapenaar, 2014) and by using

velocity-stress recordings from force and deformation sources (da Costa Filho et al., 2014).

Based on the latter approach, an elastic Marchenko imaging method has been proposed

(da Costa Filho et al., 2015). All of the above redatuming methods are under the assump-

tion that surface-related multiples are eliminated in the data. In order to bypass the need to
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apply surface-related multiple elimination (SRME) to the data, Singh et al. (2015a) showed

a method to directly handle the free surface multiples by adding an extra integral that rep-

resents the free surface effect in the Marchenko equations (Singh et al., 2015a). Dukalski &

de Vos (2017) showed that the convergence of algorithm proposed by Singh et al. (2015a)

is not always guaranteed. They analytically derived the conditions where algorithm pro-

posed by Singh et al. (2015a) diverges and presented two alternative methods to solve the

Marchenko equation, LSQR (least squares) and a modified Levinson-type algorithm, which

do not suffer from the divergence problems but require an increased computational cost.

Provided dual-sensor (e.g. pressure and vertical particle velocity) data, Ravasi (2017) and

Slob & Wapenaar (2017) proposed the methods to solve the couple Marchenko equations

that can handle band-limited seismic date with an unknown wavelet from a more flexible

acquisition system (arbitrarily located sources above a line of regularly sampled receivers),

with free-surfaces multiples included. For field data applications, target-oriented Marchenko

imaging has been applied to an ocean-bottom cable (OBC) survey recorded over the Volve

North Sea field (Ravasi et al., 2016), and an adaptive Marchenko imaging scheme has been

applied to a marine streamer dataset (Staring et al., 2017). The application to the Volve

field dataset presents some encouraging results, as the image produced by Marchenko imag-

ing is more continuous compared to a standard RTM image. Moreover, Marchenko imaging

reveals some structural features that are not present in the surface RTM image.

In this paper, we will demonstrate a successful application of Marchenko redatuming

and imaging to a marine streamer dataset acquired over a salt structure at the Gulf of

Mexico. With a salt body, this dataset provides sufficient complexities to test the Marchenko

redatuming and imaging methods. In a standard marine towed-streamer survey, the near-

offset data cannot be recorded, and the data contain only one-sided offsets. Hence, we will

first perform a set of synthetic experiments to investigate whether the data acquired with such

geometry satisfy the requirement for the reflection response of Marchenko redatuming. Then

we will present a work flow (starting from the processing of the raw field data) to produce a
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subsalt Marchenko image. We will review all the steps in the working flow: processing the

raw data, estimating the direct arrival, redatuming through Marchenko iteration scheme,

and imaging using deconvolution imaging condition. Finally, we will analyze the subsalt

Marchenko image and compare it to a standard RTM image created with the same input

dataset, and discuss the improvements gained in the Marchenko image.

2.3 Methodology

In this section, we outline the methodology for the Marchenko framework, including re-

ceiver redatuming, source redatuming, and imaging. We focus on the implementation and

physical interpretation of receiver redatuming, and briefly discuss the source redatuming

and imaging algorithms used in our application. Readers who do not want the details of

the mathematical derivations for receiver redatuming, can treat the Marchenko redatuming

process as a black box. Given a background velocity model and the surface seismic reflection

response, the black box accurately produces the seismic wavefield recorded at a pre-defined

subsurface point (responding to the surface sources) with both primary and multiple reflec-

tions. In other words, the black box retrieves a virtual Vertical Seismic Profile (VSP) as if

a virtual receiver was placed inside the medium, and recorded data due to sources at the

surface. Moreover, the retrieved wavefield is decomposed into two components: the upgoing

component, which contains the energy that is propagating upward when it arrives at the vir-

tual receiver, and the downgoing component, which contains the energy that is propagating

downward when it arrives at the virtual receiver.

2.3.1 Receiver redatuming

In this study, we use an iterative scheme for receiver redatuming which is adapted from the

work of Broggini et al. (2014b) on the basis of the earlier theoretical Marchenko frameworks

(Broggini et al., 2012; Rose, 2002; Wapenaar et al., 2014b). The heart of the Marchenko

redatuming is the reciprocity theorem. The convolution- and correlation-type reciprocity

theorems relate two wave states with different field, material, and source properties in het-
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erogeneous media (de Hoop, 1988; Vasconcelos et al., 2009; Wapenaar et al., 2004). Source-

receiver reciprocity, which states that the same waveform will be observed if the locations of

the source and receiver are exchanged, is a special case of the reciprocity theorem.

X0 R

G+

G-

State B

𝜕 D0

𝜕 Di

f1+

Xi

f1-

State A

𝜕 D0

𝜕 Di

Reflection-free

Reflection-freeReflection-free

Figure 2.2: Illustration of the two wavefield states considered in Marchenko redatuming.

Figure 2.2 shows the two wave states we choose to relate by the reciprocity theorem

in order to derive the Marchenko-type equations. State A is represented by the focusing

functions (upgoing component f− and downgoing component f+) which are defined in a

modified medium that is reflection-free below the focusing level ∂Di. State B is represented

by the actual wavefields in the subsurface (upgoing component G− and downgoing compo-

nent G+). In the following discussion, we refer to these physical wavefields as the up- and

downgoing Green’s functions because the wavefields of state B represent the responses to

impulsive point sources. In all our examples, the “Green’s functions” shown in the figures

are convolved with a Ricker wavelet (15 Hz) for display purposes.

According to the one-way reciprocity theorem, the Green’s functions and the focusing

functions are related by (van der Neut et al., 2015a; Wapenaar et al., 2014b)
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G−(xi, x0, ω) =− f−1 (x0, xi, ω) +

∫
∂D0

R(x0, x
′

0, ω)f+
1 (x

′

0, xi, ω)dx
′

0;

G+(xi, x0, ω) =[f+
1 (x0, xi, ω)]∗ −

∫
∂D0

R(x0, x
′

0, ω)[f−1 (x
′

0, xi, ω)]∗dx
′

0. (2.1)

Here G−(xi, x0, ω) and G+(xi, x0, ω) are the frequency-space domain up- and downgoing

Green’s functions, with a point source at x0 at the acquisition surface and a receiver at xi

at a desired subsurface location. The focusing functions f−1 (x
′
0, xi, ω) and f+

1 (x
′
0, xi, ω) are

the up- and downgoing parts of the solution for a specified wave equation whose wavefield

focuses at the subsurface location xi. R(x0, x
′
0, ω) contain the earth’s reflection response from

a vertical dipole source at x
′
0 (recorded by a pressure receiver at x0). The left multiplication

is equivalent to convolution in the time-space domain, while * denotes complex conjugation.

We solve for G−(xi, x0, ω) and G+(xi, x0, ω) by decomposing equation 5.1 into two time

windows: t < td and t > td, where td is the direct arrival travel time from the focusing

point xi to the surface. In the time window when t < td, the Green’s functions G+(x0, xi, ω)

and G−(x0, xi, ω) are equal to zero. We first decompose f+ into a direct wave T inv
d and a

following coda M+:

f+
1 (x0, xi, ω) = T inv

d (x0, xi, ω) +M+(x0, xi, ω), (2.2)

and then substitute f+
1 (x0, xi, ω) in equation 5.1 with equation 5.2. Next, we compute the

focusing functions by the following iterative scheme in the time window t < td:

[M+
k (x0, xi, ω)]∗ =

∫
∂D0

R(x0, x
′

0, ω)[f−1,k(x
′

0, xi, ω)]∗dx
′

0;

f−1,k+1(x0, xi, ω) =

∫
∂D0

R(x0, x
′

0, ω)M+
k (x

′

0, xi, ω)dx
′

0 + f−1,0(x0, xi, ω),

(2.3)

with the initial value of f−1 computed by

f−1,0(x0, xi, ω) =

∫
∂D0

R(x0, x
′

0, ω)T inv
d (x

′

0, xi, ω)dx
′

0; (2.4)
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where T inv
d is the time-reversal of the direct arrival from the focusing point to the surface.

Note that T inv
d is also the initial value of f+

1 , and T inv
d can be approximated with any approach

that can calculate travel time between two points with a given background velocity model.

Finally, in the time window when t < td, G
−(xi, x0, ω) and G+(xi, x0, ω) are obtained by

substituting the f−1 (x
′
0, xi, ω) and f+

1 (x
′
0, xi, ω) into equation 5.1.

2.3.2 Source redatuming

Once the up- and downgoing Green’s functions are correctly retrieved, we use them to

obtain the redatumed reflection response R̃(xi, x
′
i, ω) that satisfies (Wapenaar et al., 2014b),

G+(x0, xi, ω) =

∫
∂Di

R̃(xi, x
′

i, ω)G−(x0, x
′

i, ω)dx
′

i (2.5)

Here R̃(xi, x
′
i, ω) can be interpreted as the redatumed reflection response as if both the sources

and receivers are placed at depth level ∂Di in a medium that is identical to the physical

medium below ∂Di and homogeneous above (as shown in the right part of Figure 2.1).

Such redatumed data only contain the seismic reflection events resulting from the geological

structures below ∂Di. Significantly, any complex overburden between the acquisition depth

∂D0 and redatumed depth ∂Di (e.g. weathered layers or salt bodies) does not affect the

redatumed data. In this study, we use the multidimensional deconvolution (MDD) approach

proposed by van der Neut et al. (2011) and Wapenaar et al. (2014b) to solve equation 5.5

and obtain R̃(xi, x
′
i, ω).

2.3.3 Imaging

The redatumed reflection response R̃(xi, x
′
i, ω) can be used in different ways for imaging.

One approach is to obtain the full reflection response by redatuming the sources and receivers

at the same depth level, and then utilize the redatumed data to form a seismic image below

the redatuming depth level using any established imaging algorithms (e.g. RTM). Note that

a velocity model for the areas below the redatuming depth level is also needed in the imaging

stage if one wants to perform RTM using the redatumed data in this way.
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An alternative approach for imaging (which is the one we adopted in this paper) is that:

for every image point inside a target zone, we extract the zero-offset and zero-time component

R̃(xi, xi, t = 0) from the redatumed reflection response R̃(xi, x
′
i, t), and construct an image

of the zero-offset reflectivity using

I(xi) = R̃(xi, xi, t = 0). (2.6)

With this imaging condition, we can compute the reflectivity of every image point in a target

zone. This approach for imaging is more robust in that it does not create the artifacts from

the local internal multiples below the redatuming level, but it comes with an additional cost

of performing Marchenko redatuming and MDD for each depth level.

2.4 Synthetic examples

We first demonstrate and interpret the up- and downgoing Green’s function retrieved

by Marchenko receiver redatuming with a synthetic example for a subsurface point in a 2D

acoustic medium (which contains a salt body). We verify the retrieved Green’s function

by comparing it with the Green’s function for the same subsurface point which is obtained

through directly modeling using the finite difference method. Next we investigate the in-

fluence of the missing near offsets for practical consideration of marine streamer surveys.

Finally, we illustrate the importance of calibration for the amplitudes of the data, and dis-

cuss how we calibrate the field dataset which we use in the following section.

2.4.1 Green’s function obtained through Marchenko redatuming and finite-
difference modeling

As a preparation for our field data application, we demonstrate and interpret the up- and

downgoing Green’s functions retrieved by Marchenko receiver redatuming with a synthetic

example. The background velocity model (Figure 5.1a) is estimated from a GOM field

dataset (the dataset that is used in our field data application). In the corresponding density

model (Figure 5.1a and Figure 5.1b), we add four flat horizontal reflectors with the thickness

of 100 m at the depth levels of 3 km, 4 km, 5 km, and 6 km. The density of these four
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reflectors are 100 g/cm3 smaller than the surrounding areas. We generate 1000 shot records

with 361 receivers in each shot record using acoustic finite-difference modeling. The spacing

between sources and receivers is set as 26.67 m. This synthetic dataset is simulated to match

the field dataset for source and receiver locations.

(a) (b)

Figure 2.3: Illustration of the velocity and density models used for the synthetic examples.
(a) Velocity model. Red box encloses the target area for which we produce images using field
data. (b) Density model. Green box encloses the target area for which we produce images
using synthetic data.

Using Marchenko receiver redatuming, we retrieve the up- and downgoing Green’s func-

tions for a subsalt point at x = 13, 225 m and z = 3, 500 m, which is referred to as the

virtual receiver. The retrieved downgoing Green’s function (Figure 2.4a) can be interpreted

as the seismic wavefields that are excited by the surface sources and are propagating down-

ward when they reach the virtual receiver. The first event (labeled with a) in the downgoing

Green’s function is the direct arrival from the surface sources to the virtual receiver. The

downgoing Green’s function contains internal multiples. For example, the hyperbola (labeled

with b in Figure 2.4a) corresponds to the internal multiples that are reflected inside the salt

body. The ray path of this event is drawn in Figure 2.4c, also labeled with b. The retrieved

upgoing Green’s function (Figure 2.4b) contains the wavefields that are propagating upwards

when they reach the virtual receiver. These wavefields start downward propagating from the

surface sources and are reflected upward by the structures below the virtual receiver. The
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three major events in Figure 2.4b (labeled with 1, 2, and 3) correspond to the primary re-

flections from the three reflectors below the virtual receiver. Their ray paths are shown in

Figure 2.4c.

a

b

(a)

1

2

3

(b)

G-

G+

1

2

3

a

b

(c)

Figure 2.4: (a) Retrieved downgoing Green’s function G+. (b) Retrieved upgoing Green’s
function G−. The linear dipping events appearing around 2 seconds are the artifacts caused
by the limited aperture of the dataset used in this example. (c) Physical interpretation of
G+ and G−.

The sum of the up- and downgoing Green’s functions is the total Green’s function

recorded at the virtual receiver (Figure 2.5a). In a numerical experiment to verify the

total Green’s function retrieved by the Marchenko scheme, we place a line of sources on the
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surface and a receiver at the same location as the virtual receiver at x = 13, 335 m and

z = 3, 500 m and then record the wavefield directly using finite-difference modeling. As

shown in Figure 2.5, the wavefield retrieved by the Marchenko redatuming method matches

very well with the directly modeled wavefield in the near-offset parts. The retrieved Green’s

function has some artifacts for far offsets because of the limited acquisition aperture. The

inconsistencies in Figure 2.5 that appear near the direct wave are due to the use of the

time reversed direct wave. As demonstrated by Vasconcelos et al. (2015) and Vasconcelos &

van der Neut (2016), using a physics-driven estimate of the inverse transmission to obtain

the direct arrivals may improve the amplitudes of events in the retrieved Green’s functions.

(a) (b) (c)

Figure 2.5: (a) The retrieved the Green’s function for a virtual receiver at x = 13, 335 m and
z = 3, 500 m.The sum of up- and downgoing field of Figure 2.4. (b) The directly modeled
Green’s function for a virtual receiver at x = 13, 335 m and z = 3, 500 m. (c) Difference
between the retrieved Green’s function in (a) and directly modeled Green’s function in (b).

2.4.2 Requirements for acquisition geometry

Marchenko redatuming requires the surface reflection response R to be obtained by an

evenly and densely sampled array of sources and receivers with a recording aperture as large

as possible. van der Neut et al. (2015a) showed that the sources and receivers should be
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placed at the corresponding stationary points to retrieve some particular up- or downgoing

events, and sometimes stationary points cover the entire surface. The field dataset used in

this study is acquired with the standard towed-streamer acquisition system, which contains

traces on only one side of the source for each shot record. One can reconstruct the traces

on the other side of each source using the source-receiver reciprocity theorem, forming a

dataset with two-sided offsets (given the source line is much longer than the maximum offset).

However, the near-offset data cannot be practically acquired for towed marine surveys. In the

field dataset we use, offsets from h = −107 m to h = 107 m (7 traces) are missing. Therefore,

we first investigate whether a dataset with missing near offsets in the shot records can be

directly used for Marchenko redatuming.

For Marchenko redatuming, each trace in the retrieved Green’s functions is constructed

by first convolving a trace in the reflection response with a trace in the first arrival, where

both traces correspond to the same location at the surface, and then summing over all the

source locations (equation 5.1). In both our synthetic and field examples, there should be

361 traces in each shot record if the near-offsets (including zero offset) can be acquired.

With the seven near-offset traces missing in each shot record, each trace in the retrieved

Green’s functions contains the contribution of the remaining 354 traces. We first consider

the moveout time difference ∆t between the apex of the hyperbola and the maximum missing

near-offset in a shot gather to evaluate the influence of these seven missing traces. Under

the assumption of horizontally layered earth, ∆t is given by

∆t =

√
t20 +

h2

4v2nmo

− t0;

' h2

8v2nmot0
,

(2.7)

where t0 is the two-way zero-offset travel time, h is the maximum missing near offset, and

vnmo is the normal moveout velocity. We make a first order approximation of the square

root term to obtain the formula in equation 2.7. We are able to obtain a good retrieval of
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the Green’s function from the data with missing near-offsets when the variation of the travel

time of the reflection in the missing trace ∆t is much less than the dominant wave period of

the wave of interest T , hence we require that

∆t ≤ T

8
. (2.8)

Spetzler & Snieder (2004) showed that the denominator of the right hand side in equation 2.8

should be no less than 8/3 for 2D cases and no less than 2 for 3D cases (equation 4 in

their paper). To be conservative, we use a stricter condition in this derivation and set the

denominator of the right hand side in equation 2.8 to 8. Then the maximum missing near

offset h should satisfy

h ≤
√
Tv2nmot0;

≤
√

2DTvnmo,
(2.9)

where D = vnmot0/2 is the depth of the first interface of interest. Obviously, with less missing

inner traces (smaller h) we obtain a better retrieval of the Green’s functions. Meanwhile, if

D, T and vnmo are larger, the Green’s function retrieval is less disturbed by the missing near

offsets. In a seismic survey, the dominant wave period can be estimated from the frequency

spectrum of the data. Equation 2.9 tells us that the influence of the missing near offsets

becomes smaller for deeper events (larger D and vnmo).

To investigate the influence of the missing near offsets numerically, we generate two

synthetic datasets using finite-difference modeling with the velocity and density models used

above (Figure 5.1). The first dataset (a full dataset) contains 361 shot records, with 361

traces in each shot record. For the second dataset (a dataset with missing near offsets),

we remove seven receivers near each source (one trace at the same location as the source

position and three nearest traces on both sides), and obtain the double-sided dataset with the

maximum missing offset of 214 m (identical to the field dataset we use). In this example,

D is approximately 1,550 m, T is approximately 0.0285 s (as the dominate frequency of

the data is approximately 35 Hz), and vnmo is approximately 1,500 m/s, so according to
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equation 2.9, h should be ≤ 258 m. Since the maximum missing offset (214 m) satisfies the

criterion (equation 2.9), we expect a good retrieval of the Green’s functions using the dataset

with missing near offsets. Note, we use a much stricter condition (8 instead of 8/3 in the

denominator in equation 8) to account for the fact that the dominant period of the reflection

response R can be larger than the data before source deconvolution. This is based on the

assumption that the dominant frequency will not increase as many as three times before and

after the source deconvolution. The total retrieved Green’s functions with the full dataset

(Figure 2.6a) and the dataset with missing near offsets (Figure 2.6b) are very close to each

other. We show the difference panel of these two Green’s functions in Figure 2.6c. The

difference panel shows the effect of the missing near-offsets. Some shallow events at the near

offset are not fully retrieved using the missing near offset data, which can be predicted by

equation 2.9. In general, as the internal multiples generators in this example are relatively

deep, our approach is not heavily affected by these seven near-offset traces in each shot

record.

(a) (b) (c)

Figure 2.6: (a) Redatumed field retrieved from the data with full offsets. (b) Redatumed
field retrieved from the data with missing near offsets. (c) Difference between (a) and (b).
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We perform Marchenko imaging with the method discussed above for the same target

zone (Green box in Figure 5.1b) using these two datasets and apply reverse time migration

(RTM) with the full dataset. According to the density model, the final images should

contain the salt bottom and four horizontal reflectors. The Marchenko image produced

using the full dataset (Figure 2.7a) is very similar to the one produced using the dataset

with missing near offsets (Figure 2.7b). Both contain all the expected reflections. Note

that in the RTM image (Figure 2.7c) an additional reflection appears with a similar shape

as the salt bottom. This additional reflection is an artifact introduced by a set of peg-leg

internal multiples. This type of artifacts is completely removed in Figure 2.7a and largely

suppressed in Figure 2.7b. To evaluate the artifact introduced by using the data with missing

near offsets, we use the horizontal reflector at z = 4, 000 m as a reference (the maximum

amplitude of this reflector is set as 1 unit). The maximum amplitude of the artifact caused

by internal multiples (at approximately x = 13, 335 m, z = 3, 300 m) in Figure 2.7b is 0.52

unit, and the maximum amplitude of the artifact caused by internal multiples (pointed by the

black arrow) in Figure 2.7c is 1.79 unit. Hence, even the artifact is not completely removed

when using the data with missing near offsets, the amplitude of the spurious event in the

RTM image is approximately 3.5 times larger than that in the Marchenko image produced

using the data with missing near offsets. The suppression of the internal multiple artifacts

becomes less successful towards the right edge of the image. This may be associated to the

fact that the overlaying salt bottom has a steeper dip on the right side of the image.

2.4.3 Data calibration

The initial step of the iterative scheme in Marchenko redatuming is to convolve the

surface reflection response R with the time-reversal of first arrival T inv
d (equation 5.4). The

convolution result is subsequently substituted into equation 5.3. In the initial iteration of

equation 5.3 (k = 0), the convolution result of R and T inv
d is used to convolve with R once

more to get M+
0 , and R will be used to convolve with the intermediate results repeatedly in

the following iterations. Hence, the amplitudes of the surface reflection response R need to
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Figure 2.7: (a) Marchenko image using the data with full offsets. (b) Marchenko image using
the data with missing near-offsets. (c) RTM image using the data with full offsets.

be properly calibrated such that R should be the response to a line of impulsive sources with

unit amplitudes. Note, in this example, we obtain the first arrival from a subsurface point

to the surface by: 1) computing the first arriving travel time (using a Eikonal solver), and 2)

placing a Ricker wavelet (15 Hz) at the first arriving travel time. The maximum amplitude

of the Ricker wavelet is not significant in the iterative process, as it puts a scaling factor on

all the Green’s functions and focusing functions accordingly (equation 5.3 and 5.4), and the

scaling factor will drop out during the MDD process indicated by equation 5.5.

In practice, the first step to approximate the required R from the surface seismic data D

is to estimate the source wavelet and deconvolve the source wavelet from D. We then need

to calibrate the deconvolved data obtained from the first step by the following approach. In

the synthetic examples, we are able to compute the exact scaling factor for data calibration

as the source wavelet is known. As shown in Figure 2.8b. the upgoing Green’s function (for

a focus point at x = 13, 335 m and z = 3, 200 m) retrieved with the correctly calibrated R

is free of artifacts. In Figure 2.8a and FigureFigure 2.8c, we show that the retrieved Green’s
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functions are contaminated with artifacts if the data are not correctly calibrated. Figure 2.8a

shows the upgoing Green’s function retrieved using the surface reflection response R which is

too small (scaled by a factor of 0.5 relative to the correctly calibrated R). The artifact caused

by the incorrect data calibration is depicted in Figure 2.8a (arrow). When R is too large, the

iteration scheme can not converge. In Figure 2.8c, we show that when the amplitudes of R

are too large (where R is multiplied by a scaling factor of 1.5), the retrieved Green’s function

is dominated by artifacts. We produce three Marchenko images using the Green’s functions

retrieved from these three sets of surface reflection responses R: the over- calibrated (with a

scaling factor equals to 0.5), the correctly-calibrated (with a scaling factor equals to 1), and

the under-calibrated (with a scaling factor equals to 1.5). For the over-calibrated case, the

artifacts in the Green’s functions result in an artifact in the final image (Figure 2.9a). Note

that this artifact shares the shape of the salt bottom and results from an incorrect handling

of the internal multiples. For the under-calibrated case, the imaging result completely breaks

down (Figure 2.9c) as the retrieved Green’s functions are dominated by artifacts. Finally, in

Figure 2.9b, with the Green’s functions retrieved from the correctly calibrated R, we produce

an image which is consistent with the velocity and density models and free of artifacts due

to multiples.

In the field data application that follows, we obtain the time-reversal of the first arrival

T inv
d in a exact same way by using the same velocity model to compute the first arriving

time and placing a same Ricker wavelet. However, given a surface seismic dataset, we do

not have any information about the amplitude of the original source functions. In addition,

we do not know what seismic processing steps (e.g. noise attenuation and gain function)

the field dataset has gone through, hence the recorded amplitude differs in general from

the true amplitude. Therefore, we calibrate the field dataset by comparing it with the

synthetic dataset with missing near offsets (which is used in retrieving the Green’s function

in Figure 2.8b). At the same source location, we pick a shot record from the field dataset and

a shot record from the synthetic dataset. By dividing the maximum amplitude of each shot
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(a) (b) (c)

Figure 2.8: (a) The retrieved upgoing Green’s function when the reflection response is scaled
by a factor of 0.5. (b) The retrieved upgoing Green’s function when the reflection response
is scaled by a factor of 1.0. (c) The retrieved upgoing Green’s function when the reflection
response is scaled by a factor of 1.5.
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(b) (c)

Figure 2.9: (a) The Marchenko image obtained from the Green’s functions retrieved with
the reflection response scaled by a factor of 0.5. (b) The Marchenko image obtained from
the Green’s functions retrieved with the reflection response scaled by a factor of 1.0. (c) The
Marchenko image obtained from the Green’s functions retrieved with the reflection response
scaled by a factor of 1.5.
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record, we can obtain the scaling factors for the calibration of each field shot record. Other

from our method to do amplitude calibration, van der Neut et al. (2015b) used a different

approach to estimate the scaling factors. They applied minimization of the energy norm of

the up-going Green’s function as a criterion to perform the data calibration.

2.5 Field data example: Mississippi canyon, Gulf of Mexico

The 2D marine field dataset we use was acquired over the Mississippi Canyon in the Gulf

of Mexico. This area contains a shallow salt body in a deep water environment. A total of

1000 shots were fired along a 26 km source line with a shot spacing of 26.67 m.

2.5.1 Data Processing

In this study, we design a work flow to apply Marchenko imaging to the streamer dataset

(Figure 5.10). With a background velocity model, we estimate the direct arrivals from all

the subsurface points in the target zone to the surface by computing the travel time using

an Eikonal solver using fast marching method (Fomel, 1997) and placing a Ricker wavelet at

the direct arrival time. For the data processing, we 1) apply SRME to the surface seismic

data for the suppression of the surface multiples; 2) deconvolve the source signature and the

suppress its bubbles; 3) generate the data with two-sided offsets in the common shot gathers

based on the data with one-sided offsets; and 4) calibrate the amplitudes of the data using

the scaling factor estimated from the comparison with the numerically modeled shot records.

Details for data preparation are discussed below.

For this dataset, the sources and receivers share the same the location along the 2D ac-

quisition line. Note co- located sources and receivers are required by Marchenko redatuming,

however, shot-based algorithms, such as RTM, do not have such requirements. This field

dataset has been processed to correct for attenuation. If strong attenuation presents in the

data, correction for attenuation is required before applying Marchenko receiver redatum-

ing. Considering that convergence of the approach proposed by Singh et al. (2015a) is not

always guaranteed, in this study, we start by applying SRME to suppress the free-surface
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Figure 2.10: Workflow to apply Marchenko imaging to field data.

multiples before performing Marchenko redatuming. As shown in equation 5.3, in the fre-

quency domain implementation of the algorithm, the reflection response R(ω) is required, not

R(ω)S(ω) (where the source wavelet is contained in the reflection response). Therefore, the

Marchenko redatuming algorithm requires an accurate deconvolution of the source wavelet

from the data. We remove the effect of the source signature from the data using the sparse

log- domain deconvolution approach of Guitton & Claerbout (2015). Using the reciprocity

theorem, we then generate the data with two-sided offsets from the data with one-sided

offsets to increase the range of the aperture of the surface reflection response. Theoretically,

Marchenko redatuming requires the reflection response to be obtained from dipole sources

and pressure receivers (or monopole sources to particle velocity receivers). However, the

dataset we have is obtained with pressure source and pressure receivers (standard marine

streamer data) and we did not apply any monopole-to-dipole conversion. In this example,

even though we discard the requirement for dipole sources and pressure receivers, we are

still able to see that the artifacts caused by internal multiples are suppressed in the field

Marchenko image (as shown in the section of ”Field data Marchenko images”), however,

the impact of this requirement needs further investigation. As discussed above, we do not
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need to reconstruct the missing near offsets for this dataset. To approximate the physical

earth’s reflection response Rreal, after processing the recorded surface data, we also need to

calibrate R with a scaling factor s such that R ∗ s = Rreal. Here s is an unknown factor

which depends on the acquisition methods and the processing chain. In this application, we

find this scaling factor by comparing the maximum amplitude of a field shot record with a

synthetic shot record, as we use both the same velocity model and approach to estimate the

direct arrivals in both synthetic and field data examples. Figure 2.11 shows the comparison

a field shot record and a synthetic shot record. As the first waves of both records (which are

used to compute the scaling factor) match fairly well, it is reasonable to use the maximum

amplitude of the first waves for amplitude calibration. Scaling factors are computed and

applied shot by shot, however, in this example we find that the scaling factors for all shots

do not significantly vary. The approach that we proposed to find the scaling factor is simple

and robust, yet one obstacle of this approach is that as we obtain the scaling factor based on

the first waves, the rest of the data may be scaled with artifacts. The adaptive Marchenko

redatuming proposed by van der Neut et al. (2015b) is another valid method to overcome

the unknown scaling factor issue in the reflection data. Figure 2.12 and Figure 2.13 show

the comparison of a near-offset sections and a shot gather of the raw data and the data after

source- designature and SRME.

subsectionField data Marchenko images For imaging, we retrieve the up- and downgoing

Green’s functions for all the subsurface imaging points inside the target zone (red box in

Figure 5.1a, 4.0 km - 16.0 km horizontally and 2.4 km - 4.0 km vertically). We use 11

iterations in the Marchenko redatuming process. The virtual source (focusing points) sam-

pling in x and z directions is 26.67 m, which is same as the source and receiver sampling

on the surface. This target area contains the bottom and the left edge of the salt body,

some sediment layers to the left of the salt body, and structures below the salt body. Fol-

lowing equation 5.5, we create the redatumed reflection response R̃(xi, x
′
i, ω) at each depth

level. We then produce the Marchenko image by extracting the zero-time zero-offset value
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(a) (b)

Figure 2.11: Comparison of (a) field shot record and (b) synthetic shot record which are
used to compute the scaling factor. The red box indicates the missing near offset traces in
the field shot record. Note the events due to the three horizontal layers in Figure 5.1b are
included in the synthetic shot record.

(a)

(b)

Figure 2.12: (a) Raw field data: a near-offset section. (b) Raw field data: a shot record.
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(a)

(b)

Figure 2.13: (a) Field data after source-designature and SRME: a near-offset section. (b)
Field data after source-designature and SRME: a shot record.
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R̃(xi, xi, t = 0), as instructed in equation 5.6.

A comparison between the Marchenko image (Figure 2.14b) and the image produced us-

ing standard RTM (Figure 2.14a) shows that they are comparable for the most part: both

present similar structures for the bottom of the salt body, the structures of the sediment

layers to the left of the salt body, and the detailed structures of the subsalt area. Further-

more, we find significant improvements in the Marchenko image: 1) the reflectors are more

continuous and smoother (green arrows in Figure 2.14a and Figure 2.14b); 2) the structures

of the sediment layers to the left of the salt body are more clearly revealed (red arrows in

Figure 2.14a and Figure 2.14b); 3) additional structural features are revealed (blue arrows

in FigureFigure 2.14a and Figure 2.14b).

To better understand these improvements accomplished in the Marchenko image, we pro-

duce an RTM image for the same target area using the synthetic dataset generated using

the models in Figure 5.1. In this RTM image (Figure 2.14c), we observe some artificial

reflections who have a shape similar to the bottom of the salt (dashed green arrow in Fig-

ure 2.14c), which indicates the artifacts result from internal multiple reflections at the salt

bottom. When these artificial structures interfere with the horizontal reflector at 3 km, the

phases of the horizontal reflector are either added or subtracted, creating amplitude disconti-

nuities (solid green arrows in Figure 2.14c). Hence, the discontinuities in the field data RTM

image (Figure 2.14a) could also result from the interference between the multiple artifacts

and real sedimentary layers. As the Marchenko imaging method correctly handles internal

multiples, it is able to produce an image (Figure 2.14b) that is more continuous and free

from the multiple artifacts. The layered structures to the left of the salt body (red arrows in

Figure 2.14a and Figure 2.14b), revealed both in the RTM image and the Marchenko image,

are sedimentary layers beneath the seabed. Note that the amplitudes of these sedimentary

layers in the RTM image are suppressed, while the layers are more clearly revealed and more

comprehensible in the Marchenko image (red arrows in Figure 2.14a and Figure 2.14b). This

is because the imaging approach we adopted also removes all the artifacts caused by the
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internal multiples that originate within the target zone (in contrast to the approach of using

the MDD-redatumed reflection response as input for RTM). Moreover, Marchenko imaging

reveals some structural features (blue arrows in Figure 2.14b) that are not presented in the

RTM image.

2.6 Discussion

Internal multiples can play two completely different roles in seismic imaging: if the

primaries are well recorded, internal multiples create artifacts in migration and therefore

should be removed; if there is significant portion of primaries unrecorded, internal multiples

have the potential to improve the illumination of the subsurface and should be utilized for

imaging. In the synthetic and field examples presented in this study, we focus on the artifacts

caused by the internal multiples related to salt bodies. In these examples, we assume that

the primaries are well recorded and are sufficient for producing a subsalt image, however,

the internal multiples in the data will introduce artifacts, which contaminate the image.

Wapenaar et al. (2016) discussed the role of multiples in Marchenko imaging and presented

a potential approach to use multiples (instead of remove) in Marchenko imaging. In our

implementation of Marchenko deconvolution imaging, the effect of internal multiples are

eliminated for a cleaner subsalt image.

About the value of the denominator on the right hand side in equation 2.8, it is set as 8 in

this study, based on the assumption that the dominant frequency will not increase as many

as three times before and after the source deconvolution. Theoretically, it should be larger

than 8/3 for 2D cases and larger than 2 for 3D cases (Spetzler & Snieder, 2004). The reason

that we use a much stricter value is that the dominant frequency of the reflection response

can be larger than the dominant frequency of the original data (before source deconvolution),

and a stricter condition will compensate this.
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Figure 2.14: (a) RTM image with the field dataset. (b) Marchenko image with the field
dataset. (c) RTM image with the synthetic dataset generated from velocity and density
models in Figure 5.1.
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2.7 Conclusions

We successfully apply subsalt Marchenko redatuming and imaging to a marine dataset

from the Gulf of Mexico. With some numerical experiments, we investigate the effect of the

missing near-offset traces, and conclude that the artifacts caused by multiples can be largely

suppressed by directly using the missing near offset data. We show that calibration of the

data need to be properly performed, and we calibrate the data based on the comparison with

the numerically modeled dataset in this study.

We present that the image produced by Marchenko imaging is more continuous than

the RTM image produced using the same dataset and velocity model. Furthermore, the

Marchenko method seems able to reveal some structures that cannot be found in the RTM

image. We use an RTM image produced with a synthetic dataset to demonstrate that

the discontinuities in the RTM image are very likely caused by internal multiples. The

improvements in the Marchenko image over the RTM image demonstrate that for field data,

the Marchenko frame work is applicable and effective in suppressing the artifacts caused by

internal multiples.
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CHAPTER 3

ON THE TWO INPUTS FOR MARCHENKO REDATUMING: SURFACE SEISMIC

DATA AND BACKGROUND VELOCITY MODEL

Xueyi (Alex) Jia1, and Roel K. Snieder1

Prepared for submission to Geophysics.

3.1 Abstract

Marchenko redatuming and imaging requires two inputs: the seismic data acquired on

the earth surface and a background velocity model, which is used to estimate first arrivals

from subsurface locations to the surface. We investigate both inputs in order to elucidate the

specific requirements for these inputs for field data applications. The input surface seismic

data should be acquired in an idealised scenario where 1) equal numbers of seismic sources

and receivers are used for acquisition 2) the depths and lateral positions of all sources and

receivers are the same 3) both sources and receivers are placed on an uniform, regular and

dense grid 4) the aperture of the sources and receivers is sufficiently large. A real field data

acquisition rarely meets these requirements. We adopt the term “data regularization” to

describe the process of placing the irregular and sparse data on a uniform and dense grid.

Often, data interpolation is part of the data regularization for Marchenko redatuming. We

investigate four forward interpolation methods: nearest neighbor interpolation, Lagrange

interpolation, Sinc interpolation, and B-spline interpolation for both 2D and 3D data reg-

ularization. With a relatively simple trapezoidal structural model and a complex Gulf of

Mexico synthetic model, we show that for 2D surface data with a realistic source and receiver

spacing, even the nearest neighbor interpolation works sufficiently well for the integration

over surface locations during Marchenko redatuming. These interpolation methods may pro-

duce errors at far offsets for complex models, but the errors are largely mitigated thanks to

1Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
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the edge taper that is applied to far offsets at each iteration in the redatuming algorithm.

For 3D data regularization, we show that the 8-point B-spline interpolation works fairly well

for a relatively complex 2.5D Gulf of Mexico model while nearest neighbor interpolation

produces significant errors. For the other input—the background velocity model, we clarify

that it does not need to be known in great detail since the velocity model is merely used to

estimate the first arriving waves. With two synthetic examples and an offshore Brazil field

data example, we demonstrate that the combination of Marchenko redatuming and imaging

is robust when an erroneous velocity model is used to estimate the first arrivals.

3.2 Introduction

The Marchenko redatuming algorithm (Broggini & Snieder, 2012; Broggini et al., 2012;

da Costa Filho et al., 2014; Singh et al., 2015a; Wapenaar et al., 2014b) takes two inputs: the

seismic reflection data that is recorded on the earth’s surface and the first arrivals estimated

from a background velocity. Both inputs need to satisfy certain criteria to be useful for

Marchenko imaging. Practical questions, such as what kind of surface data the Marchenko

method requires, how much detail the velocity model needs to include, and what happens if

the velocity model is in error are relevant when applying Marchenko imaging to field data.

We first clarify the requirements for the surface data by the Marchenko redatuming

algorithm. Unlike conventional imaging methods, which are quite compatible with data

recorded in different acquisition geometries, the surface seismic data for the Marchenko

redatuming algorithm need to be acquired in an idealised scenario. Modified from Ravasi

(2019), we summarize the idealised scenario where the data satisfy the following criteria:

1) equal numbers of seismic sources and receivers are used for acquisition,

2) the depths and lateral positions of all sources and receivers are the same,

3) both sources and receivers are placed on a uniform, regular and dense grid,

4) the aperture of the sources and receivers i sufficiently large.

Such an ideal data acquisition scenario can be achieved in synthetic data simulations.

In practice, however, seismic exploration data are often recorded with irregularly located
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sources and receivers. The number of sources and receivers are not necessarily equal: for

example, the number of receivers is usually three to four times larger than the number

of sources for marine streamer data. Additionally, the source and receiver spacing is not

necessarily dense: for 2D streamer data, the source spacing is sparser than the receiver

spacing; and for 3D streamer data, the cross-line spacing is sparser than the in-line spacing.

In this study, we adopt the term “data regularization” from Fomel (2000) to describe the

process of making irregularly sampled seismic data to regular grids that meet the requirement

for Marchenko redatuming. Seismic data regularization itself is a broad subject. Advanced

algorithms, such as iterative model-space or data-space optimization, are used for 2D and

3D seismic data regularization (Fomel, 2000; Tikhonov et al., 2013). Investigation of these

sophisticated regularization techniques is beyond the scope of this study. We consider four

forward interpolation approaches—nearest neighbor interpolation, Lagrange interpolation,

Sinc interpolation and B-spline interpolation—for both 2D and 3D streamer type data. We

then evaluate how the Marchenko redatuming works with the regularized data by these

four interpolation methods. Although 3D seismic surveys, in which a designed grid layout

of receivers and sources covering an area on the surface are used for acquisitions, have

become standard for hydrocarbon exploration and production, regularization for 3D data

remains a challenging topic. In this study, we investigate B-spline interpolation for the

cross-line data reconstruction for a relative simply 3D acquisition scenario, where the in-

line data sampling is dense and the cross-line data sampling is sparse. We first outline

the formulation for the forward interpolation methods mentioned above. In the numerical

experiments subsection, we compare and discuss the four interpolation methods using a

simple 2D trapezoidal model and a complex 2D Gulf of Mexico model. We then test our 3D

B-spline interpolation algorithm with a 2.5D Gulf of Mexico model.

We also address the questions around the velocity model required by the Marchenko

method. The velocity model is used to estimate the first-arriving waves from the position

where we want to create the virtual source to the acquisition surface. Since this first-arriving
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wave is mostly determined by its travel time, only an estimate of the smooth velocity model

is needed. Several field data examples (Jia et al., 2017, 2018; Ravasi et al., 2016; Staring

et al., 2017) have been published showing that a background or smooth velocity model, which

is also needed for Reverse Time Migration, works sufficiently for Marchenko imaging. Yet,

in practice it can be challenging to build an accurate smooth velocity model for complex

areas, especially for deeper portions of the subsurface. When using an erroneous velocity,

conventional imaging methods, such as Reverse Time Migration, map the reflections to

shifted positions. Conventional imaging methods, such as RTM, still produce artifacts due

to the internal multiples when an erroneous velocity model is used. Broggini et al. (2014b)

demonstrated the robustness of the combination of Marchenko redatuming and imaging when

using an erroneous velocity model with a synthetic example. In this study, we investigate

this problem using a simple layered synthetic model and a complex Gulf of Mexico synthetic

model. We also show a field data example where the Marchenko method eliminates the

artifacts due to internal multiples despite the fact that deeper parts of the velocity model

are inaccurate.

3.3 Forward interpolation methods

The equations for the Marchenko algorithm from Wapenaar et al. (2014b) in a three

dimensional Cartesian coordinate system are solved iteratively and the iteration is given by,

M+
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with

f−1,0
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′′

0, r
′
, t
)

=∫
∂x0

∫
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(∫ −td
−∞

R
(
r
′′
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)
· Td
(
r
′
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dt

′
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where k labels the iteration number, r
′′
0 = (x

′′
0 , y

′′
0 , 0) represents a point located on the

acquisition surface, and r
′

= (x
′
i, y

′
i, z

′
i) stands for a point located in the 3D earth model at

the depth z
′
i. In these expressions R represents the seismic reflection response. Particularly,

R
(
r
′′
0, (x0, y0, 0), t

)
represents the reflection response corresponding to a source at the surface

location r
′′
0 and a receiver at the surface location (x0, y0, 0), at time t. The one-way travel

time of the first arrival from a subsurface focusing location at (x
′
i, y

′
i, z

′
i) to a surface location

(x0, y0, 0) is represented by td. Using S to represent the source wavelet and D to represent the

recorded surface data, the surface reflection response, deconvolved with the source wavelet,

is given by R = S−1 ∗D, where ∗ represents temporal convolution. Readers are referred to

Wapenaar et al. (2014b) for the detailed physical meaning of M+
k , f−1,k, and Td.

Since the 3D Marchenko equations involve spatial integrations along x and y axes, the

surface data R should be sampled uniformly and densely. For modern 2D seismic surveys,

the receiver spacing is usually dense (e.g. 12.5 m or 25.0 m), however, the source spacing

can be sparse, typically threefold or fourfold of the receiver spacing (e.g. 37.5 m or 100.0 m).

Thus, the gap in sources need to be interpolated. For 3D marine streamer seismic surveys,

the source and receiver sampling along in-line direction is dense (e.g. 25.0 m), but the cross-

line source sampling is sparse, approximately fourfold of the in-line spacing (e.g. 100.0 m).

In order to make 3D marine data meet the requirements of 3D Marchenko imaging (in other

words, to accurately evaluate the integrations in equations (3.1), (3.2), and (3.3) with a 3D

streamer dataset), we need to conduct data interpolation along the cross-line direction.

The general form of a linear forward interpolation operator is

f(x) =
∑
n∈N

Wn(x)fn, (3.4)
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where n is a point on a given regular grid N , x is a point in the continuum, f(x) is the

reconstructed continuous function, andWn(x) is a linear weight. This form can be generalized

to multi-dimensions.

One classic example of the interpolation weight W (x, n) for data sampled at points xn

= n is the Lagrange polynomial, which has the form

Wn(x) =
∐
i 6=n

x− i
n− i

. (3.5)

Lagrange interpolation provides a unique polynomial, which goes exactly through the data

points f(n). The local 1-point Lagrange interpolation is equivalent to the nearest-neighbor

interpolation, defined by

W (x, n) =

{
1, for n− 1/2 < x ≤ n+ 1/2
0, otherwise.

(3.6)

Because of its simplicity, nearest-neighbor interpolation is easy to apply. Its accuracy is

limited and may be inadequate for interpolating high-frequency signals. Its interpolant acts

as low-pass filters, preventing the high-frequency energy from being correctly interpolated.

Lagrange interpolants of higher order correspond to more complicated polynomials. An-

other popular practical approach is cubic convolution (Keys, 1981). The cubic convolution

interpolant is a local piece-wise cubic function:

Wn(x) =


3/2|x− n|3 − 5/2|x− n|2 + 1, for 0 ≤ |x− n| < 1
−1/2|x− n|3 + 5/2|x− n|2 − 4|x− n|+ 2, for 1 ≤ |x− n| < 2
0, otherwise.

(3.7)

We test 8-point cubic convolution interpolant in the following numerical examples. Note the

cost of interpolation grows proportionally to the interpolant length.

A well-known interpolation method, the Shannon Sinc interpolation, consists of a weight-

ing function

Wn(x) =
sin[π(x− n)]

π(x− n)
. (3.8)
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Shannon Sinc interpolation provides an optimal interpolation for band-limited signals (Ko-

tel’nikov, 1933; Shannon, 1949), but the slow decay with (x -n) of its practical implementa-

tion results in expensive computation. This problem is solved in practice using the Kaiser

window (Kaiser and Shafer, 1980), which has the form

Wn(x) =

 sin[π(x− n)]

π(x− n)

I0(a

√
1− (

x− n
N

)2)

I0(a)
, for n−N < x < n+N

0, otherwise,

(3.9)

where I0 is the zero-order modified Bessel function of the first kind. The Kaiser-windowed

Sinc interpolant in equation 3.9 has the adjustable parameter a, which controls the behavior

of its spectrum.

One general approach to construct the weighting function in equation 3.4 is to select an

appropriate basis to represent the function f(x). The basis function expansion takes the

form

f(x) =
∑
k∈K

ckψk(x), (3.10)

where ψk(x) are basis function, and ck are the corresponding coefficients. The interpolant

Wn(x) can be defined with the least-squares method, once an appropriate basis is selected.

For B-spline interpolation, we select a convolutional basis in such way that the B-spline

βn(x) of an order n is defined by a repetitive spatial convolution of the zeroth-order spline

βn(x) (the boxcar function) with itself:

βn(x) = β0(x) ∗ ... ∗ β0(x). (3.11)

Hence, the B-spline basis satisfies equation

ψk(x) = β(x− k). (3.12)

Substituting equation 3.12 into equation 3.10 yields

f(x) =
∑
k∈K

ckβ(x− k). (3.13)
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Evaluating the function f(x) in equation 3.13 at a sampling point n yields,

fn =
∑
k∈K

ckβ(n− k), (3.14)

which leads to the exact form of a discrete convolution. We can invert equation 3.14 to

obtain the coefficients ck from f(n) by means of deconvolution. With the B-spline con-

volutional basis, forward interpolation becomes a two-step procedure: (1) obtain the basis

coefficients ck by deconvolving the sampled function f(n) with the factorized filter β(n)

based on equation 3.14, and (2) reconstructs function f(x) according to equation 3.13.

The explicit expression of the B-spline basis is (Fomel, 2000)

βn(x) =
1

n!

n+1∑
k=0

Cn+1
k (−1)k(x+

n+ 1

2
− k)n+, (3.15)

where Cn+1
k are the binomial coefficients and the function x+ is defined as: for x > 0,

x+ = x, otherwise x+ = 0. The B-spline interpolation method is proven to be accurate and

efficient for interpolating regularly spaced data, and B-spline interpolation leads to a faster

convergence in under-determined problems and a more accurate result in over-determined

problem in comparison with other linear interpolation methods, such as the nearest neighbor

interpolation and Sinc interpolant (Fomel, 2000).

3.4 Data regularization: 2D and 3D numerical examples

In this section, we investigate the data interpolation methods for Marchenko redatuming

with two 2D synthetic examples with 1) a trapezoidal model and 2) a Gulf of Mexico model.

We demonstrate that for 2D cases and for the used sampling intervals Marchenko redatuming

is robust with these forward interpolation methods. We then test B-spline interpolation for

3D data regularization with a 2.5D Gulf of Mexico model.

3.4.1 2D Trapezoidal model

We show the velocity and density model of the trapezoidal model in Figure 3.6a and

Figure 3.6b, respectively. The grid for the model is 10 m in x-direction and 10 m in z-
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direction. We use 101 shots at depth z = 0 m and the same number of receivers to generate

the ideal surface dataset. A shot gather with a source located at x = 0 m and z = 0

m is shown in Figure 3.2a. The direct arrival is removed from the shot gather and a free

surface boundary condition is not adopted when simulating the data; therefore, the first two

hyperbolic events are primaries reflected from the two interfaces and the following hyperbolic

events are internal multiples. To mimic a sparse and practical surface data acquisition, we

sub-samped the source/receiver spacing to 40 m. A surface shot gather recorded with such

a sparse acquisition geometry is shown in Figure 3.2b.

We use the following four 2D forward interpolation methods for data interpolation for each

shot gather: nearest neighbor interpolation, the 8-point Lagrange interpolation, the 8-point

Sinc interpolation, and B-spline interpolation. We show the comparison of an interpolated

surface shot record using these four interpolation methods for this trapezoidal model in

Figure 3.3. We show the interpolated surface shot gathers in Figure 3.3a, Figure 3.3c,

Figure 3.3e, and Figure 3.3g, and the difference between the interpolated shot gather and the

reference shot gather in Figure 3.3b, Figure 3.3d, Figure 3.3f, and Figure 3.3h, respectively.

Nearest neighbor interpolation generates relatively large residuals. The other three methods

work fairly well and B-spline interpolation generates least amount of residuals and is the

most computationally effective.

We first perform Marchenko redatuming with the densely sampled surface data (Fig-

ure 3.2) and a background velocity model. The virtual source is located at x = 0 m and

z = 800 m. The retrieved Green’s function is shown in Figure 3.4b, which should be equiva-

lent to a shot gather with source at x = 0 m and z = 800 m and receivers on the surface at

z = 0 m. For this trapezoidal synthetic model, we simulate such a shot gather directly with

finite-difference modeling (Figure 3.4a). The retrieved Green’s function matches well with

the direct simulation.

In order to check how the interpolation methods work for Marchenko redatuming, with

the interpolated surface shot data obtained by the four interpolation methods and a back-
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(a)

(b)

Figure 3.1: The velocity (panel a) and density (panel b) of the trapezoidal synthetic model.
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(a) (b)

Figure 3.2: A surface shot gather simulated with the trapezoidal model for a dense sampling
of 10 m (panel a), and a sparse sampling of 40 m (panel b).

ground velocity model, we perform the Marchenko Green’s function retrieval and compare

the results with the reference Green’s function, which is the Green’s function retrieved with

the densely sampled surface data (Figure 3.4b). We show the retrieved Green’s function

from a virtual source at x = 0 m and z = 800 m to the surface with the surface data recon-

structed with the four methods in Figure 3.5a, Figure 3.5c, Figure 3.5e, and Figure 3.5g, and

the difference between them and the reference Green’s function in Figure 3.5b, Figure 3.5d,

Figure 3.5f, and Figure 3.5h, respectively. For this relatively simple synthetic model, all

methods work well and generate negligible residuals or errors. Even nearest neighbor inter-

polation produces an accurate Green’s function. This is because the Marchenko algorithm

involves the process of surface integration, and the associated averaging supresses the inter-

polation errors. Moreover, during the calculation of the surface integration, a edge taper is

applied resulting in the elimination of the interpolation errors at large offsets.
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Figure 3.3: A comparison of an interpolated surface shot record using different interpolation
methods for the trapezoidal model: (a) nearest neighbor interpolation, (b) The difference
between (a ) and the reference surface shot record, (c) 8-point Lagrange interpolation, (d)
The difference between (c) and the reference surface shot record. (e) 8-point Sinc inter-
polation, (f) The difference between (e) and the reference surface shot record, (g) 8-point
B-spline interpolation, (h) The difference between (g) and the reference surface shot record.
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(a) (b)

Figure 3.4: (a) Directly simulated Green’s function from a subsurface location at x = 0
m and z = 800 m to surface receivers. (b) Green’s function retrieved with Marchenko
redatuming using regular and dense surface data.

3.4.2 2D Gulf of Mexico model

In this synthetic experiment, we test the four interpolation methods with a more complex

model, which is inspired by a Gulf of Mexico dataset. This model contains a salt body in the

sallow parts with rugose interfaces, and a number of horizontal subsalt targets in the density.

Severe internal multiples are generated by the water bottom and the salt body. We show the

velocity and density of the Gulf of Mexico model in Figure 3.6a and Figure 3.6b, respectively.

The grid for the model is 4 m in x-direction and 4 m in z-direction. We use 262 shots at

depth z = 0 m and the same number of receivers to generate the ideal surface dataset. A

shot gather with source located at x = 1500 m and z = 0 m is shown in Figure 3.7a. For a

sparse data acquisition where the source/receiver sampling is 40 m, a surface shot gather is

shown in Figure 3.7b.

We perform data interpolation with four forward interpolation methods used in the pre-

vious example. We show the comparison of an interpolated surface shot record using these

four interpolation methods for the Gulf of Mexico model in Figure 3.8. The interpolated
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Figure 3.5: A comparison of the Green’s function retrieved by different interpolation methods
for the trapezoidal model: (a) Green’s function retrieved with the interpolated surface data
by nearest neighbor interpolation for a virtual source at x = 0 m and z = 800 m, (b) The
difference between (a) and the reference Green’s function, (c) Green’s function retrieved with
the interpolated surface data by 8-point Lagrange interpolation, (d) The difference between
(c) and the reference Green’s function, (e) Green’s function retrieved with the interpolated
surface data by 8-point Sinc interpolation, (f) The difference between (e) and the reference
Green’s function, (g) Green’s function retrieved with the interpolated surface data by 8-point
B-spline interpolation, (h) The difference between (g) and the reference Green’s function.
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(a)

(b)

Figure 3.6: The velocity (panel a) and density (panel b) of the Gulf of Mexico synthetic
model.
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(a) (b)

Figure 3.7: A surface shot gather simulated with the Gulf of Mexico model for a dense
sampling of 10 m (panel a), and a sparse sampling of 40 m (panel b).

surface shot gathers are shown in Figure 3.8a, Figure 3.8c, Figure 3.8e, and Figure 3.8g,

and the difference between the interpolated shot gathers and the reference shot gather are

shown in Figure 3.8b, Figure 3.8d, Figure 3.8f, and Figure 3.8h, respectively. The nearest

neighbor interpolation method generates relatively large residuals. The other three methods

work fairly well but more residuals are generated at far offsets for all the interpolation meth-

ods, because of the larger dip of the hyperbolas at far offsets. Again, B-spline interpolation

generates the least amount of residuals and is the most computationally effective.

We apply Marchenko redatuming with the densely sampled dataset and the interpolated

datasets by the four methods. First we show a comparison of the directly simulated Green’s

function from a subsurface location at x = 1500 m and z = 1600 m to surface receivers from

x = 0 m to x = 3000 m (Figure 3.9a) with the Green’s function retrieved with Marchenko

redatuming using the densely sampled dataset (Figure 3.9b). The Green’s function retrieved

with the densely sampled dataset matches well with the direct simulated Green’s function.
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Figure 3.8: A comparison of an interpolated surface shot record using different interpolation
methods for the Gulf of Mexico model: (a) nearest neighbor interpolation, (b) The difference
between (a ) and the reference surface shot record, (c) 8-point Lagrange interpolation, (d)
The difference between (c) and the reference surface shot record. (e) 8-point Sinc inter-
polation, (f) The difference between (e) and the reference surface shot record, (g) 8-point
B-spline interpolation, (h) The difference between (g) and the reference surface shot record.
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(a) (b)

Figure 3.9: (a) Directly simulated Green’s function from a subsurface location at x = 1500
m and z = 1600 m to surface receivers from x = 0 m to x = 3000 m. (b) Green’s function
retrieved with Marchenko redatuming using regular and dense surface data.

We show the Green’s functions retrieved with the interpolated datasets from the vir-

tual source at x = 1500 m and z = 1600 m to the surface in Figure 3.10a, Figure 3.10c,

Figure 3.10e, and Figure 3.10g, and the difference between them and the reference Green’s

function in Figure 3.10b, Figure 3.10d, Figure 3.10f, and Figure 3.10h, respectively. For

this relatively complex model, all methods still work well and generate small residuals. Be-

cause of the edge taper that is applied during the calculation of the surface integration in

the Marchenko algorithm, the large offset errors in the interpolated surface shot gathers are

largely mitigated.

3.4.3 2.5D Gulf of Mexico Model

In this numerical experiment, we test our 3D Marchenko algorithm and 3D data inter-

polation algorithm with a 2.5D Gulf of Mexico model. Figure 4.7a and Figure 4.7b show

the velocity and the density of the 2.5D Gulf of Mexico model. This model is referred to

as a 2.5D model as it is created by extending a 2D Gulf of Mexico model along another
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Figure 3.10: A comparison of the Green’s function retrieved by different interpolation meth-
ods for the Gulf of Mexico model: (a) Green’s function retrieved with the interpolated
surface data by nearest neighbor interpolation for a virtual source at x = 1500 m and
z = 1600 m, (b) The difference between (a) and the reference Green’s function, (c) Green’s
function retrieved with the interpolated surface data by 8-point Lagrange interpolation, (d)
The difference between (c) and the reference Green’s function, (e) Green’s function retrieved
with the interpolated surface data by 8-point Sinc, (f) The difference between (e) and the
reference Green’s function, (g) Green’s function retrieved with the interpolated surface data
by 8-point B-spline interpolation, (h) The difference between (g) and the reference Green’s
function.
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horizontal axis - the y-axis. We use this model as a proof of concept and we benefit from

the 2.5D geometry for the following reasons: 1) The reduction of the computational costs

for data generation—we can create all the 3D shot gathers over a large surface area by gen-

erating the 3D surface shot records along one line (for example, the line y = 0 m) and use

transnational invariance in the y-direction to create all other surface 3D shot gathers. 2)

The simplicity of analyzing and interpreting the reconstructed Green’s function results as

there are no out-of-plane reflections. The grid of the model is 10 m by 10 m by 10 m along x

(in-line), y (cross-line), and z (depth). For the surface data simulation, the spacing between

neighboring sources/receivers is set to 20 m along both cross-line and in-line directions. We

aim to retrieve the Green’s function between a subsurface point at (x = 0 m, y = 0 m, and

z = 1500 m) and the earth’s surface.

For operability and cost considerations, 3D seismic data are rarely acquired with fully,

densely and regularly sampled surveys. Three typical seismic data acquisition patterns,

marine towed-steamer data, land data, and ocean-bottom data, have different acquisition

characteristics. In this study, we choose to apply our 3D Marchenko algorithm with marine

3D towed-streamer type of seismic data. In a marine 3D towed-streamer seismic survey,

data are acquired by survey vessels that traverse an area of the ocean following a series of

parallel lines, trailing air gun arrays and hydrophone streamers as long as tens of kilometers

(Figure 4.8). We assume that the dataset acquired from a modern 3D marine survey contains,

1) long offsets along the in-line directions, and 2) dense spatial sampling along the in-line

direction (e.g. 12.5 m). However, the spacing of hydrophones along the cross-line direction is

usually sparse (fourfold or more of the in-line spacing). As shown in equations 3.1 and 3.2, the

3D Marchenko algorithm involves the integration over an aperture of temporal convolutions

and temporal cross-correlations of pairs of traces; therefore, both the in-line and cross-line

sampling density should be sufficiently fine to avoid aliased energy contaminating the stacked

trace. The desired sampling of the recorded data is determined by the aliasing condition:

having at least four samples for the smallest wavelength. Therefore, interpolation is needed
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(a)

(b)

Figure 3.11: The 2.5D Gulf of Mexico velocity model (panel a) and density model (panel b).
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to overcome the sparse spatial sampling in the cross-line direction. In this study, we use

B-spline forward interpolation to obtain densely sampled shot gathers from sparse surface

data. For comparison we also use nearest neighbor interpolation. We apply 2D nearest

neighbor interpolation and 8-point B-spline interpolation at each time section.

Figure 3.12: Geometry of a standard towed streamer survey.

Figure 4.9a shows a 3D surface shot gather with densely sampled receivers along both

in-line and cross-line directions (10 m by 10 m). We sub-sample the reference surface shot

gather in both the in-line and cross-line directions to obtain a sparse shot gather shown in

Figure 4.9b. As a preliminary test for our interpolation algorithm for 3D surface data, we

make both in-line and cross-line sampling sparse. We show the interpolated 3D surface shot

gathers by nearest neighbor interpolation and 8-point B-spline interpolation in Figure 4.9c

and Figure 4.9d, respectively. To evaluate how the interpolation algorithms work, we show

time slices of the 3D shot cubes. Figure 3.14 shows that nearest neighbor interpolation

produces a considerable amount of errors for the data regularization of a 3D shot gather.
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We compare three time slices at t=0.52 s, 0.68 s, and 1.00 s between the original densely-

sampled shot gather and the interpolated shot gather by nearest neighbor interpolation. The

error panels for t=0.52 s, 0.68 s, and 1.00 s due to interpolation are shown in Figure 3.14d,

Figure 3.14h, and Figure 3.14l, respectively.

We show the interpolation results of B-spline interpolation in Figure 4.10. Similar to Fig-

ure 3.14, the three panels in the last column (Figure 4.10d, Figure 4.10h, and Figure 4.10l)

depict the errors generated by B-spline interpolation at t=0.52 s, 0.68 s, and 1.00 s, respec-

tively. These three panels indicate that interpolation errors from B-spline interpolation are

considerably less compared to nearest neighbor interpolation and most residuals appear at

far offsets. As discussed earlier, far offset errors can be further suppressed by the edge taper

applied at the Green’s function retrieval stage.

We retrieve the Green’s function from a virtual source at x = 0 m, y = 0 m, and z = 1500

m to all the surface grid points. For this 2.5D model, the salt structure appears only along

the x-direction and the layers are flat in the y-direction. We use a 2D slice of the 3D Green’s

function in the plane y = 0 m to demonstrate the signature of the 3D Green’s function.

Figure 4.11a shows the in-line Green’s function section simulated with 3D finite difference

modeling with a source at x = 0 m, y = 0 m, and z = 1500 m and receivers along y = 0 m.

Figure 4.11b shows the Green’s function retrieved by 3D Marchenko redatuming algorithm

with the densely sampled surface data and a background velocity model. Figure 4.11c shows

the Green’s function retrieved by the 3D Marchenko redatuming algorithm with the sub-

sampled surface data. With the sparsely sampled data as input, 3D Marchenko redatuming

produces the Green’s function that is severely aliased.

Figure 3.17a shows the in-line section of the 3D Green’s function retrieved by Marchenko

redatuming with the 3D surface dataset interpolated by nearest neighbor interpolation. The

difference between Figure 3.17a and the reference Green’s function Figure 4.11b is shown in

Figure 3.17b. Since nearest neighbor interpolation produce large errors in the interpolated

surface data, the retrieved 3D Green’s function also contains significant errors with respect
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Figure 3.13: (a) A 3D surface shot gather with dense in-line and cross-line sampling. (b)
Sub-sampled surface shot gather with sparse in-line and cross-line sampling. (c) Interpolated
surface shot gather using nearest neighbor interpolation. (d) Interpolated surface shot gather
using 8-point B-spline interpolation.
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Figure 3.14: Nearest neighbor interpolation: Panels a, e, and i show the time slices of the
directly simulated surface gather for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels b, f, and
j show the time slices of the sparse surface gather for 0.52 s, 0.68 s, and 1.00 s, respectively.
Panels c, g, and k show the time slices of the interpolated surface gather by nearest neighbor
interpolation for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels d, h, and l depict the
differences between the interpolated surface gather and the direct simulated surface gather
at 0.52 s, 0.68 s, and 1.00 s, respectively.
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Figure 3.15: B-spline interpolation: Panels a, e, and i show the time slices of the directly
simulated surface gather for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels b, f, and j show
the time slices of the sparse surface gather for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels
c, g, and k show the time slices of the interpolated surface gather by B-spline interpolation
for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels d, h, and l depict the differences between
the interpolated surface gather and the direct simulated surface gather at 0.52 s, 0.68 s, and
1.00 s, respectively.
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(a) (b)

(c)

Figure 3.16: (a) In-line section of the 3D Green’s function for a source at x = 0 m, y = 0 m,
and z = 1500 m to receivers along y = 0 m, simulated using 3D finite-difference modeling.
(b) In-line section of the 3D Green’s function retrieved by 3D Marchenko redatuming with
densely sampled surface data. (c) In-line section of the 3D Green’s function retrieved by 3D
Marchenko redatuming with sparsely sampled surface data.
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to the reference Green’s function. We show the in-line section of the 3D Green’s function

retrieved by Marchenko redatuming with the 3D surface dataset interpolated by the 8-point

B-spline in Figure 4.12a and the difference between Figure 4.12a and the reference Green’s

function Figure 4.11b in Figure 4.12b. Figure 4.12b shows negligible residuals, indicating that

B-spline interpolation works well for 3D Marchenko redatuming. Sophisticated interpolation

methods need to be investigated in the future for 3D data that are severely irregular and

sparse, as in the case for example when ocean bottom nodes are used.

(a) (b)

Figure 3.17: (a) In-line section of the 3D Green’s function retrieved by Marchenko redatum-
ing with 3D interpolated surface data from nearest neighbor interpolation. (b) The difference
between (a) and the reference Green’s function.

3.5 Imaging with an erroneous background velocity: 2D and field data examples

In this section, we investigate the behaviour of Marchenko imaging given a background

velocity model that contains errors. We perform three experiments with 1) a three-layer

model, 2) a Gulf of Mexico model, and 3) a field data example involving imaging under

a volcanic intrusion, and show that Marchenko imaging is robust with respect to velocity
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(a) (b)

Figure 3.18: (a) In-line section of the 3D Green’s function retrieved by Marchenko redatum-
ing with 3D interpolated surface data from 8-point B-spline interpolation. (b) The difference
between (a) and the reference Green’s function.
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errors.

3.5.1 Three-layer model

In this numerical experiment, we use a simple velocity model - a three layer velocity model

to investigate the influence of velocity errors for Marchenko imaging. We show the velocity

model in Figure 3.19a and the RTM image produced with surface data in Figure 3.19b.

There is no free surface boundary used for surface data generation so all the multiples in

the surface data are internal multiples. The first two interfaces in the RTM image are the

real interfaces for this model, however, the following three interfaces indicated in the image

in Figure 3.19b by the green arrows are artifacts that are caused by internal multiples. Our

goal is to remove these artificial events with the Marchenko method.

(a) (b)

Figure 3.19: (a) The velocity model of the three-layer model. (b) The RTM image produced
with the surface data. The green arrows indicate the artifacts caused by internal multiples.

We show a comparison of the directly simulated Green’s function for a subsurface location

at x = 0 m and z = 1200 m to the surface and the retrieved Green’s function with Marchenko

redatuming using the true (or 100%) velocity in Figure 3.20a and Figure 3.20b, respectively.

The first two events are the primary reflections by the two interfaces and the following events
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are internal multiples. The retrieved Green’s function (Figure 3.20b) matches well with the

direct simulation (Figure 3.20a) in both kinematics and phase.

(a) (b)

Figure 3.20: (a) The Green’s function for a subsurface location at x = 0 m and z = 1200
m to the surface simulated by finite-difference modeling. (b) The Green’s function retrieved
with Marchenko redatuming with the correct velocity.

We perform Marchenko imaging with the Green’s functions retrieved with the surface

data and three different velocity models: the true velocity model (100%), the velocity model

that is 15% faster (115%) and the velocity model that is 50% faster (150%). We show the

Marchenko images produced with these three background velocity models in Figure 3.21b,

Figure 3.21c, and Figure 3.21d, respectively. The Marchenko image produced with the

correct velocity (100%) shows good match with the model in Figure 3.21a for the locations

of the interfaces. The interfaces in the Marchenko image produced with the velocity model of

15% errors and 50% errors are shifted and mapped to greater depth. There are, however, only

two interfaces in these images and the artifacts caused by internal multiples are successfully

eliminated despite of using inaccurate velocity models. This because that the image obtained

by Marchenko imaging with an erroneous background model still focuses the multiples along

with the primaries, although at the wrong location.

67



(a) (b)

(c) (d)

Figure 3.21: (a) The three-layer velocity model. (b) The Marchenko image produced with the
correct velocity. (c) The Marchenko image produced with the model with the 15% velocity
error. (d) The Marchenko image produced with the model with the 50% velocity error.
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3.5.2 Gulf of Mexico model

In this synthetic experiment, we use a more complex model - the whole Gulf of Mexico

model (the Gulf of Mexico model used in previous examples is a portion of this whole model)

to test how Marchenko imaging behaves when the background velocity model is inaccurate.

The green box in Figure 3.22 depicts the target area where we perform RTM and Marchenko

imaging with the correct velocity model and the velocity model with that is 15% faster. We

show an RTM image of the target area in Figure 3.23a. The dipping event between 3000

m and 4000 m is an artificial event that is caused by internal multiples from the bottom

salt. This event is removed in the Marchenko image that is produced with the correct

velocity model as shown in Figure 3.23b. We show the Marchenko image produces with the

model with 15% velocity errors in Figure 3.23c. The locations of the four flat reflectors are

shifted because the velocity model are off by 15%, but the dipping artifacts due to internal

multiples is largely suppressed. A residual of the dipping artifacts shows up when using the

115% velocity, but it is much weaker compared to the one in the RTM image.

Figure 3.22: The Gulf of Mexico model. The green box indicates the target area.
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(a) (b) (c)

Figure 3.23: (a) The RTM image of the target area indicated by the green box for the Gulf
of Mexico model shown in Figure 3.22. (b) The Marchenko image of the same area produced
with 100% velocity. (c) The Marchenko image of the same area produced with 115% velocity.

3.5.3 Field data example

Last we show the influence of the background velocity model on the image produced by

the Marchenko method with an offshore Brazil field data example, in which strong internal

multiles are generated by volcanic intrusions. More information of the field dataset can

be found in chapter 5, including the details of data regularization and the redatuming and

imaging process. For the purpose of this study, we compare and analyze the final images pro-

duced by RTM and Marchenko imaging. The RTM image of the subsurface area of interest is

shown in Figure 3.25a. The corresponding Marchenko image is shown in Figure 3.25b. Both

images are generated with the same surface data and the same velocity model (Figure 3.24),

a velocity model that is stongly smoothed and far from accurate. It’s fair to assume that the

velocity model is relatively accurate for the shallow parts and errors increase with depth. The

red arrows in Figure 3.25a and Figure 3.25b depict the real subsurface structures. The green

and blue arrows in Figure 3.25a depict the artifacts that are caused by internal multiples.
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For this field data example, strong internal multiples are generated by the water bottom and

volcanic intrusions. Note that the positions of the reflectors match well in the shallow areas

(above the brown dashed line) in Figure 3.25a and Figure 3.25b, however, the deep reflectors

right above the pink dashed line in the two images show up at slightly shifted locations.

This is because for greater depth the imprint of velocity errors become larger. The velocity

errors cause both RTM and Marchenko imaging to map the reflectors to shifted locations

in the deeper portion of the model. Since Reverse Time Migration is based on two-way

wave equation while Marchenko imaging is based on one-way travel time, the two methods

behave slightly differently with respect to an erroneous velocity model of same errors. This

example shows that, despite of using an inaccurate velocity model to estimate first arrivals,

the Marchenko method is still able to eliminate the internal multiple artifacts.

Figure 3.24: Background velocity model for the offshore Brazil dataset.

3.6 Discussion and conclusions

We investigate the two required inputs by Marchenko redatuming and imaging, the

surface reflection data and the background velocity model. The surface data required by

71



(a) (b)

Figure 3.25: (a) The RTM image of a target area produced with offshore Brazil field data.
(b) The Marchenko image of the same area.

Marchenko redatuming needs to be acquired in an idealised scenario where, 1) an equal

number of seismic sources and receivers are used for acquisition, 2) the depths and lateral

positions of all sources and receivers are the same, 3) both sources and receivers are placed

on an uniform, regular and dense grid, 4) the aperture of the sources and receivers are suffi-

ciently large (Strategies for the determination of the acquisition sampling and aperture are

discussed in Chapter 4 of this dissertation). Data regularization, which always involves data

interpolation, is required to prepare the surface reflection data for Marchenko redatuming.

We show that forward interpolation methods: nearest neighbor interpolation, Lagrange in-

terpolation, Sinc interpolation, and B-spline interpolation are sufficiently accurate for 2D

data regularization. The imprint of the sampling and interpolation errors are smaller in the

extracted Green’s function than in the interpolated shot gathers, as the Marchenko redatum-

ing algorithm involves an integration over surface locations and edge tapers are applied for

far offsets at each iteration. For 3D data regularization, with a relatively complex 2.5D Gulf

of Mexico model, we show that B-spline interpolation is sufficiently accurate to interpolate
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sparse 3D shot gather, while nearest neighbor interpolation produces significant errors. We

focus on the interpolation for missing receivers in this study. One way to reconstruct missing

sources is to utilize the interpolated receiver traces and source-receiver reciprocity. In gen-

eral, interpolation for sources in three dimensions is a challenging problem and needs further

investigations. We then show that the background velocity model required by Marchenko

redatuming does not need to be known in great detail. We demonstrate that, with an erro-

neous background model, Marchenko redatuming still focuses the multiples along with the

primaries (although both at the wrong location), and in the following imaging stage, the

retrieved internal multiples can still be effectively eliminated by multi-dimensional decon-

volution. In sum, combination of Marchenko redatuming and imaging is robust when an

erroneous velocity model is used to estimate the first arrivals.
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CHAPTER 4

3D MARCHENKO GREEN’S FUNCTION RETRIEVAL
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4.1 Abstract

The response to an impulse source is defined as Green’s function. The Green’s function

of the earth represents the elastic properties of the earth’s interior. Marchenko redatum-

ing enables an accurate retrieval of the earth’s Green’s function using single-sided seismic

reflection responses in a one, two or three dimensional medium. Various studies have been

published to demonstrate instinct aspects or applications of the Marchenko method. The

majority of the Marchenko examples, however, are performed with a 1D or 2D wave prop-

agation. We investigate Marchenko redatuming in the three dimensions. We reformulate

the Marchenko-type equations in the three dimensional Cartesian coordinate system, which

is then realised in our 3D numerical implementation of Marchenko redatuming. Based on

the 3D Marchenko equations and the stationary phase method, we propose an approach

to determine the aperture and the spatial sampling of the source/receiver pairs required

by 3D Marchenko redatuming. To overcome the sparsity of the 3D seismic data acquired

with practical 3D marine towed-streamer surveys, we revisit a forward interpolation method,

based on B-splines, for 3D data regularization. We validate our 3D Marchenko redatuming

algorithm with a 3D trapezoidal-dipping model and a 2.5D Gulf of Mexico salt model. By

comparing the retrieved 3D Green’s function with a simulated one by finite-difference mod-

eling, we demonstrate that both primaries and multiples are accurately reconstructed with

1Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
2Former: Aramco Services Company: Aramco Research Center-Houston, Texas, USA. Current: China
University of Petroleum, Beijing, China.
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our 3D Marchenko redatuming algorithm given a dataset acquired from an idealised acqui-

sition geometry. We then apply B-spline interpolation to sparse 3D data and demonstrate

that the Green’s function retrieved with the interpolated 3D data is sufficiently accurate.

We discuss the associated computational optimization of the 3D numerical implementation

of Marchenko redatuming for the purpose of saving memory and CPU time. We clarify the

similarities and differences between surface-related multiple elimination (SRME) and the

Marchenko method.

4.2 Introduction

Rose (2001) raised a simple yet interesting question: can one find a wave, incident from

one side of a medium, such that the wave focuses at a pre-defined location and time? He

sought for the equation that determines such a focusing incident wave, and he found that the

equation he looked for was the Marchenko’s equation. Marchenko (1955) derived the equation

of 1D inverse-scattering, which governs single-sided focusing for several wave equations (such

as the time-dependent Schrödinger equation and the plasma wave equation). Hence, a newly

developed framework, which aims to retrieve the impulse response to a virtual source at

a pre-defined location inside a medium, was named after Marchenko. This framework to

retrieve the scattering effects of a medium was first formulated by Broggini et al. (2012)

and by Broggini & Snieder (2012) for seismic applications, where they demonstrated the

Marchenko framework using the single-sided reflection response of a 1D medium. Based

on a decomposition of the wavefield into upgoing and downgoing waves, Wapenaar et al.

(2014b) generalized the theory of Marchenko redatuming/Green’s function retrieval to 2D

and 3D, and they proposed the framework to eventually produce a seismic image based on

the up and down decomposition of the retrieved Green’s functions. The retrieved Green’s

function is proven to accurately contain both primaries and multiples that propagates in

the medium. Therefore, unlike conventional imaging approaches which are meaningful only

for the primaries, Marchenko imaging provides an alternative idea for creating a seismic

image which takes the internal multiples into account (Behura et al., 2014; Broggini et al.,
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2014b; Singh et al., 2015a; Wapenaar et al., 2014b). More specifically, the artifacts caused by

internal multiples can be eliminated in the seismic image produced by Marchenko imaging.

The Marchenko framework continued to develop towards several directions. da Costa Filho

et al. (2014, 2015) investigated the elastic extensions of both Marchenko redatuming and

imaging. After Ravasi et al. (2016) presented a first field example for Marchenko imaging, Jia

et al. (2017) investigated the practical aspects of applying subsalt Marchenko imaging using

a Gulf of Mexico field dataset. Staring et al. (2017) applied an adaptive Marchenko imaging

scheme to a marine streamer dataset. Singh et al. (2015b, 2016b) added to the Marchenko

framework by integrating the free-surface multiples in the seismic reflection response into

the Marchenko equations with the aim to bypass the need for applying SRME to the seismic

recordings. Dukalski & de Vos (2017) proposed two methods to solve the Marchenko equa-

tion: LSQR (least squares) method and a modified Levinson-type algorithm, both of which

take account of the internal multiples and the free-surface multiples without suffering from

convergence problems. Provided dual-sensor (e.g. pressure and vertical particle velocity)

data, Ravasi (2017) and Slob & Wapenaar (2017) proposed approaches to solve the couple

Marchenko equations that can handle band-limited seismic date with an unknown wavelet

from a more flexible acquisition system (arbitrarily located sources above a line of regularly

sampled receivers). Besides imaging, applications such as internal multiples prediction and

removal, source wavelet estimation, and time-lapse monitoring have been developed based

on the Marchenko framework (Meles et al., 2014; Mildner et al., 2017; Wapenaar & Slob,

2017).

For the Marchenko applications discussed above, the numerical experiments are mostly

carried out with 2D seismic surveys, which provide a “slice” or cross-section through the

earth. It is assumed that seismic reflections arise along the vertical plane of the acquisition

line in 2D seismic experiments. When the earth has significant cross-line structures, the

seismic reflections recorded on the 2D survey line might come from the out-of-plane reflec-

tions. The events caused by the out-of-plane structures exist in the 2D seismic recording but
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cannot be explained with 2D models. In this case, the idea of 2D seismic doesn’t work very

well. Also, the cross-line spacing between 2D survey lines can be large (as large as 1 km);

therefore, attempts to interpret adjacent 2D sections involve a high degree of guesswork and

inaccuracy, and often result in an incorrect interpretation. Today, 3D seismic surveys, in

which a designed grid layout of receivers and sources covering an area on the surface are

used for acquisitions, has become a standard tool for oil and gas exploration and production.

Seismic methods for three-dimension configurations are significant for fields with complex

structures. In the theory subsection, we reformulate the Marchenko type equations in three-

dimension Cartesian coordinates that can be directly implemented numerically. Based on

the spatial variation of the integrand in the Marchenko equations, we propose an approach

to efficiently determine the smallest aperture for the surface seismic survey and the largest

spatial sampling of the sources/receivers pairs required by the Marchenko algorithm. We

discuss the B-spline interpolation method that we use for the cross-line data reconstruction

for the marine streamer type data. In the numerical experiments subsection, we apply 3D

Marchenko redatuming with a 2.5D Gulf of Mexico salt model and a 3D trapezoidal and

dipping model. We demonstrate that 3D Marchenko redatuming is able to retrieve both

primaries and multiples with an ideal dataset. Then we create a synthetic marine streamer

dataset with sparse cross-line data sampling and conduct the B-spline interpolation to re-

construct the data in-between the cross lines. We apply our 3D Marchenko algorithm to

the dataset reconstructed by the B-spline method, and demonstrate that we are able to

successfully retrieve the Green’s function with the reconstructed dataset. Finally, we discuss

how to save memory and CPU time in our implementation of the 3D Marchenko redatuming

algorithm.

4.3 Theory

We reformulate the equations for the Marchenko algorithm from Wapenaar et al. (2014b)

in a three dimensional Cartesian coordinate system as following,
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where r
′′
0 = (x

′′
0 , y

′′
0 , 0) represents a point located on the surface, and r

′
= (x

′
i, y

′
i, z

′
i) stands

for a point located in the 3D earth model at the depth of z
′
i (as shown in Figure 4.1). Symbol

R represents the seismic reflection response. Particularly, R
(
r
′′
0, (x0, y0, 0), t− t′

)
represents

the reflection response corresponding to a source at the surface location r
′′
0 and a receiver at

the surface location (x0, y0, 0), at time t−t′ . The one-way travel time of the first arrival from

a subsurface focusing location at (x
′
i, y

′
i, z

′
i) to a surface location (x0, y0, 0) is represented by

td. Using S to represent the source wavelet and D to represent the recorded surface data,

the surface reflection response is given by R = S−1 ∗D, where symbol ∗ represents temporal

convolution. The detailed physical meanings of M+
k , f−1,k, and Td are discussed in Wapenaar

et al. (2014b).

The integrations over dy0 and dx0 should be ideally applied over an infinite surface. Cov-

ering an infinite line (in 2D) or infinite surface (in 3D) is impossible in practice. According to
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(a)

Figure 4.1: Illustration of symbols of the 3D points. Subscript 0 indicts the point is at the
earth surface and subscript i indicts the point is in the subsurface.

the method of stationary phase that is mentioned in the appendix of Wapenaar et al. (2012),

once the stationary phase zone is properly sampled and covered, an accurate estimation

of the integration can be obtained. In the following subsection, we introduce an approach

to determine the stationary phase area and the spatial sampling by investigating the inte-

grand in equation 4.3. Equations 4.1, 4.2, and 4.3 are directly implemented for numerical

computations of the 3D Green’s function.

4.3.1 Spatial sampling and aperture of the source/receiver pairs

Marchenko redatuming requires the seismic data to be recorded with co-located sources

and receivers which are placed regularly and densely along a straight line on the surface for

2D cases or on a grid layout covering a surface area for 3D cases. This requirement for data

originates from equations 4.1, 4.2, and 4.3, where an infinite line or area integral needs to be

evaluated. An infinitely large acquisition aperture is, of course, not practical. To determine

the largest spatial sampling and the smallest aperture required by Marchenko redatuming for
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the retrieval of the Green’s function at a certain depth/location, we investigate the integrand

of equation 4.3, which is a temporal convolution between the direct arrival from virtual source

to the surface and a common shot gather at the surface.

(a)

(b)

Figure 4.2: (a) Cross-section of the integrand in equation 4.3 at 20 Hz in the frequency
domain, (b) Cross-section of the integrand of equation 4.3 at 40 Hz in the frequency domain.

We select a 2D cross-section at x = 0m in the velocity model (Figure 4.4a) and the density

model (Figure 4.4b) for demonstration. Figure 4.2a and Figure 4.2b show the integrand of

equation 4.3 in the frequency domain for a focusing point located at r
′

(x = 200 m, y = 0
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(a) (b)

(c) (d)

Figure 4.3: (a) Green’s function from a virtual source x′ (x = 0 m and z = 800 m) to a
surface receiver x′′0 (x = 0 m and z = 0 m) produced using finite-difference modeling, (b)
Green’s function retrieved with Marchenko redatuming with spacial sampling of dx = 10 m
and an aperture from −1000 m to 1000 m, (c) Green’s function retrieved with Marchenko
redatuming with spacial sampling of dx = 25 m and an aperture from −1000 m to 1000 m,
(d) Green’s function retrieved with Marchenko redatuming with spacial sampling of dx = 10
m and an aperture from −200 m to 200 m.
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m, and z = 800 m). The surface shot is located at r′′0 (x = 200 m, y = 0 m, and z = 0

m). Figure 4.2a is a cross-section at 20 Hz and Figure 4.2b is a cross-section at 40 Hz,

which is close to the high end of the frequency band of the data. We can identify the

stationary phase zones in the middle and rapid oscillations outside of the stationary phase

zone. Summing/integrating along the horizontal axis (receiver locations), the high frequency

oscillations on the side lobes will cancel out and converge approximately to zero.

To avoid aliasing and improve accuracy, we choose to put at least four sampling points

within the smallest wavelength of the curves in Figure 4.2b. The smallest wavelength for

the maximum frequency (Figure 4.2b) is approximately 100 m; therefore, the largest space

between two neighboring sources/receivers should be no larger than 25 m (dx ≤ 25 m).

We also need to properly sample and cover the stationary phase area to obtain a good

approximation of the integral. Figure 4.2a and Figure 4.2b indicate how to determine the

aperture for a virtual source at a specific depth. In this example, placing source/receiver

pairs ranging from −500 m to 500 m is sufficient to cover the stationary phase area.

We perform three experiments using various values of spatial sampling and aperture for

verification. Figure 4.3a shows the Green’s function obtained using finite-difference modeling,

which is used as a reference. Figure 4.3b shows the retrieved Green’s function with an

aperture of 1000 m and spatial sampling of 10 m. Figure 4.3c shows the retrieved Green’s

function with an aperture of 1000 m and sampling of 20 m. Both sampling intervals fall into

our desired sampling range (smaller than 25 m), and we obtain almost the same results of the

retrieved Green’s function both in amplitudes and kinematics (Figure 4.3b and Figure 4.3c).

Figure 4.3d shows the retrieved Green’s function with an aperture ranging from −200 m to

200 m with a source/receiver spacing of 10 m. Since the sources/receivers in this experiment

do not cover the entire stationary phase zone, the value of the integration computed with

this source/receiver coverage is less than the theoretical value of the integration. Thus, the

amplitudes of the retrieved Green’s function is underestimated.
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The criteria that we use to determine the aperture and spatial sampling is summarized

as follows: 1) the aperture should be large enough to cover the stationary phase area of the

integrand of equation 4.3 in the frequency domain, and 2) the smallest wavelength of the

integrand of equation 4.3 in the frequency domain should be sampled at least by four points.

The aperture and spatial sampling are determined according to the targeting redatuming

depth and the surface shot data with this approach. In general, deeper virtual sources

require larger acquisition aperture yet allow for a sparser spatial sampling. The reason is

that for deeper virtual sources, the horizontal wavelengths observed at the earth surface are

longer, and having four samples in one horizontal wavelength leads to a more relaxed spatial

sampling requirement at the surface. Given a background velocity model, this approach

can be used at an early stage for survey designs to determine the sampling and aperture

for various Marchenko applications and can be used to decide if a provided dataset with a

particular aperture and spatial sampling meets the requirements for Marchenko redatuming

and imaging.

4.3.2 Interpolation for 3D data

Indicated by the integrations in 3D Marchenko equations 4.1, 4.2, and 4.3 (with infinite

limits of integration along x and y axis), the Marchenko algorithm requires a dataset with a

sufficiently large range along the x and y axis and a sufficiently small spatial sampling. Here

we define x axis as the in-line direction and y axis as the cross-line direction for a 3D marine

streamer seismic survey. In typical 3D marine seismic acquisitions, spatial sampling (dx)

along the in-line direction is relatively small, however, spatial sampling (dy) along the cross-

line direction is much larger/sparser (usually fourfold of dx). In order to make the marine

streamer type of data meet the requirements of 3D Marchenko imaging (in other words,

to accurately evaluate the integrations in equations 4.1, 4.2, and 4.3) with a 3D streamer

dataset), we need to conduct interpolation along the cross-line direction.

We assume that cross-line are regularly sampled in a 3D marine steamer survey. Here we

introduce the B-spline method, which is proven to be accurate and efficient for interpolating
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regularly spaced data (Fomel, 2000). The B-spline is a set of convolutional basis for forward

interpolation problems and related signal processing problems due to their compact support

and other attractive numerical properties (Unser, 1999). Fomel (2000) showed that the B-

spline method leads to a faster iterative conversion in under-determined problems and a more

accurate result in over-determined problem in comparison with other linear interpolation

methods, such as the nearest neighbor method and Sinc interpolant method.

Here we briefly summaries the forward interpolation method with B-spline basis. The

general form of a linear forward interpolation operator is

f(x) =
∑
n∈N

W (x, n)fn, (4.4)

where n is a point on a given regular grid N , x is a point in the continuum, f(x) is the recon-

structed continuous function, and W (x, n) is a linear weight. This form can be generalized

to multi-dimensions.

One general approach to construct the weighting function in equation 4.4 is to select an

appropriate basis to represent the function f(x). The function basis takes the form

f(x) =
∑
k∈K

ckψk(x), (4.5)

where ψk(x) are basis function, and ck are the corresponding coefficients. The W (x, n)

function can be defined with the least squares method, once an appropriate basis is selected.

In the B-spines method, we select a convolutional basis in such way that B-spline βn(x)

of an order n can be defined by a repetitive spatial convolution of the zeroth-order spline

βn(x) (the boxcar function) with itself:

βn(x) = β0(x) ∗ ... ∗ β0(x). (4.6)

Hence, the B-spline basis satisfies equation

ψk(x) = β(x− k). (4.7)
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Substituting equation 4.7 into equation 4.5 yields

f(x) =
∑
k∈K

ckβ(x− k). (4.8)

Evaluating the function f(x) in equation 4.8 at an integer value n yields,

fn =
∑
k∈K

ckβ(n− k), (4.9)

which leads to the exact form of a discrete convolution. We can invert equation 4.9 to obtain

the coefficients ck from f(n) by means of deconvolution. With the B-spline convolutional

basis, forward interpolation becomes a two-step procedure: (1) obtain the basis coefficients ck

by deconvolving the sampled function f(n) with the factorized filter β(n) based on equation

4.9, and (2) reconstructs function f(x) according to equation 4.8.

The explicit expression of the B-spline basis is (Fomel, 2000)

βn(x) =
1

n!

n+1∑
k=0

Cn+1
k (−1)k(x+

n+ 1

2
− k)n+, (4.10)

where Cn+1
k are the binomial coefficients which are given by

Cn
k =

n!

k!(n− k)!
, (4.11)

and the function x+ is defined as: for x > 0, x+ = x, otherwise x+ = 0.

We apply the B-spline interpolation at each time sample, which is most accurate when

the curvatures of seismic events in the dataset are relatively flat in time domain. To fulfill

this condition, we first apply normal moveout (NMO) to the dataset before interpolation to

flatten the seismic arrivals. We aim to make the curvature of the seismic events relatively

small and flat without requiring a perfect NMO velocity model. Then we conduct the B-

spline cross-line interpolation in the NMO domain. Finally we apply the inverse NMO to

obtain the reconstructed dataset with the densely interpolated cross-line data.
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4.4 Numerical examples

4.4.1 Trapezoidal and dipping 3D model

In this synthetic example, we use a set of trapezoidal and dipping 3D velocity and den-

sity models (Figure 4.4a and Figure 4.4)b to validate our 3D Marchenko Green’s function

retrieval algorithm. On an arbitrary x − z section, the model contains a trapezoidal high

velocity/density layer in the middle. On an arbitrary y− z section, the model contains three

dipping layers. The grid of source/receiver pairs we use for Marchenko redatuming is chosen

as 101 grid lines (cross-line, −2000 m to 2000 m) by 101 grid lines (in-line, −2000 m to 2000

m), and the spacing between neighboring sources/receivers is 20 m in both cross-line and

in-line directions.

As indicted by equations 4.1, 4.2, and 4.3, the integrals are evaluated over x axis and y

axis successively as two one-dimensional integrals. Figure 4.5a shows the reference Green’s

function obtained using 3D finite-difference modeling from a virtual source at (x = 0 m,

y = 0 m, and z = 600 m) to a line of receivers (along y = 0 m) at the earth’s surface

(z = 0 m). Figure 4.5b shows the corresponding Green’s function produced using our 3D

Marchenko redatuming algorithm. The reference Green’s function obtained using 3D finite-

difference modeling from a virtual source at (x = 0 m, y = 0 m, and z = 600 m) to a line

of receivers (along x = 0 m) at the earth’s surface (z = 0 m) and the corresponding Green’s

function produced using our 3D Marchenko redatuming algorithm are shown in Figure 4.6a

and Figure 4.6b respectively. A comparison of the asymmetry of the Green’s functions in

both Figure 4.6a and Figure 4.6b indicates that both primaries and multiples are correctly

retrieved with the dip interfaces taken into account.

4.4.2 3D Marchenko with sparsely sampled data

We test our 3D Marchenko algorithm with a 2.5D Gulf of Mexico model in this numerical

experiment. Figure 4.7a and Figure 4.7b show the velocity and the density of the 2.5D Gulf

of Mexico model. This model is referred to as a 2.5D model as it is created by extending a
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(a)

(b)

Figure 4.4: (a) The dipping velocity model, (b) The dipping density model.
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(a) (b)

Figure 4.5: In-line Green’s function: (a) Green’s function from a virtual source at x = 0
m and z = 600 m to a line of surface receivers at y = 0 m produced using finite-difference
modeling, (b) Green’s function on a line of surface receivers at y = 0 m retrieved with 3D
Marchenko redatuming.

(a) (b)

Figure 4.6: Cross-line Green’s function: (a) Green’s function from a virtual source at x = 0
m and z = 600 m to a line of surface receivers at x = 0 m produced using finite-difference
modeling, (b) Green’s function on a line of surface receivers at x = 0 m retrieved with 3D
Marchenko redatuming.
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relatively complex 2D Gulf of Mexico model along another horizontal axis - y-axis. We use

this model for a proof of concept and 2.5D geometry the model allows for 1) a reduction of

the computational costs for surface data generation, as we create all the 3D shot gathers over

a large surface area by generating the 3D surface shot records along one line in the middle

(y = 0 m) and use transnational invariance in the y-direction to create all other surface 3D

shot gathers and 2) a relatively simple and intuitive process of analyzing and interpreting

the reconstructed Green’s function results as no out-of-plane reflections present. The grid of

the model is 10 m by 10 m by 10 m along x (in-line), y (cross-line), and z (depth).

Surface seismic data are rarely acquired with fully, densely and regularly sampled sources

and receivers in a practical 3D seismic survey. Three typical seismic data acquisition patterns,

marine steamer data, land data and ocean-bottom seismic (OBS) data, have individual char-

acteristics. In this study, we apply our 3D Marchenko algorithm with marine 3D streamer

type of seismic data. The challenges in applying Marchenko to ocean-bottom type data are:

1) the receivers/nodes are placed on the water or sea bottom (which can be pretty rough),

while the sources are excited near the sea surface. An extra redatuming to move the receivers

to acquisition surface is needed as the Marchenko method requires sources and receivers to

be placed on the same depth level, 2) the receivers of OBS data are usually sparsely and

irregularly distributed on the water bottom. Application of the Marchenko methods to land

data faces its own obstacles, such as complex near-surface structures, surface topography,

sparse spatial sampling and poor signal-to-noise ratio. Meanwhile, the multiples generated

on land are mostly downward reflected from non-planar surface (unlike being reflected from

the water bottom in the marine environment), so the shape of the multiples involves both the

topography of the earth surface and the multiple generators. This makes it more difficult to

recognize and predict the multiples on land compared to offshore. Meanwhile, the interplay

between statics, which are caused by uneven surface and non-uniform shallow layers, and

surface multiples for land data is another complication (Wilkinson & Bale, 2014).
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(a)

(b)

Figure 4.7: The 2.5D Gulf of Mexico velocity model (panel a) and density model (panel b).

90



In a 3D marine streamer seismic survey, data are acquired by survey vessels that traverse

an area of the ocean following a series of parallel lines, trailing air gun arrays and hydrophone

streamers as long as tens of kilometers. The typical marine acquisition is illustrated in

Figure 4.8. We assume that the data acquired from a modern 3D marine survey contains,

1) long offsets along in-line direction, 2) dense spatial sampling along the in-line direction

(e.g. 12.5 m). Yes the spacing of hydrophones along the cross-line direction is usually sparse

(fourfold or more of the in-line spacing). The 3D Marchenko algorithm (equations 4.1, 4.2,

and 4.3) involves the integration over an aperture of temporal convolutions and temporal

cross-correlations of pairs of traces, therefore, both in-line and cross-line sampling density

should be sufficiently fine to avoid having aliased energy contaminate the stacked trace.

The desired sampling of the recorded data is determined by the condition: having at least

four samples for the smallest wavelength.Therefore, interpolation is needed to overcome the

sparse spatial sampling in the cross-line direction. We use B-spline forward interpolation to

obtain densely sampled shot gathers from sparse surface data and we apply 8-point B-spline

interpolation at each time sample.

A 3D surface shot gather with densely sampled receivers in shown in Figure Figure 4.9(a)

shows, of which both in-line and cross-line sampling are 10 m. This is used as a reference 3D

surface shot gather. We sub-sample the reference surface shot gather in both the in-line and

cross-line directions to obtain a sparse shot gather shown in Figure Figure 4.9(b). We show

the interpolated 3D surface shot gathers by 8-point B-spline interpolation in Figure Fig-

ure 4.9(c). To evaluate how the interpolation algorithms work, we compare three time slices

at t=0.52 s, 0.68 s, and 1.00 s between the original densely-sampled shot gather and the

interpolated shot gather by B-spline interpolation in Figure 4.10. The three panels in the

last column, Figure 4.10(c), Figure 4.10(f), and Figure 4.10(i) depict the errors generated

by B-spline interpolation at t=0.52 s, 0.68 s, and 1.00 s, respectively. The interpolation

errors from B-spline interpolation are considerably small and most residuals appear at far

offsets. Far offset errors are further suppressed as we apply a taper to the edges of the far
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Figure 4.8: Illustration of the geometry of a standard towed streamer survey in marine
seismic
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offsets when calculating the source integrations in equations 4.1, 4.2, and 4.3 at the Green’s

function retrieval stage.

With 3D Marchenko redatuming, we retrieve the Green’s function from a virtual source

at x = 0 m, y = 0 m, and z = 1500 m to all the surface grid points. For this 2.5D

model, the salt structure appears only along the x-direction and the layers are flat in the y-

direction. We use a 2D slice of the 3D Green’s function in the plane y = 0 m to demonstrate

the signature of the 3D Green’s function. Figure Figure 4.11(a) shows the in-line Green’s

function section simulated with 3D finite difference modeling with a source at x = 0 m, y = 0

m, and z = 1500 m and receivers along y = 0 m. Figure Figure 4.11(b) shows the Green’s

function retrieved by 3D Marchenko redatuming algorithm with the densely sampled surface

data and a background velocity model. Figure Figure 4.11(c) shows the Green’s function

retrieved by the 3D Marchenko redatuming algorithm with the sub-sampled surface data.

With the sparsely sampled data as input, 3D Marchenko redatuming produces the Green’s

function that is severely aliased.

An in-line section of the 3D Green’s function retrieved by Marchenko redatuming with

the 3D data reconstructed by 8-point B-spline interpolation is shown in Figure 4.12(a) and

the difference between Figure 4.12(a) and the reference Green’s function Figure 4.11(b)

in Figure 4.12(b). Figure 4.12(b) shows negligible residuals, indicating that the B-spline

interpolation is efficiently accurate for 3D Marchenko redatuming,

4.5 Discussion and conclusions

It is efficient and convenient to perform the temporal convolution and cross-correlation in

the Marchenko iteration algorithm in the frequency domain. For 3D Marchenko implemen-

tation, the input reflection response data, which is a 5D cube with axes of source positions

(in-line and cross-line), receiver positions (in-line and cross-line), and frequency samples,

needs to be loaded into the memory. The total numbers of sources/receivers are determined

by multiplying the number of sampling points along the in-line direction with the number

of sampling points along the cross-line direction. For example, if the sources/receivers are
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(a) (b)

(c)

Figure 4.9: (a) A 3D surface shot gather with dense in-line and cross-line sampling. (b) Sub-
sampled surface shot gather with sparse in-line and cross-line sampling. (c) Interpolated
surface shot gather using 8-point B-spline interpolation method.
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Original

0.52 s

(a)

Interpolated
B-spline

(b)

Errors
B-spline

(c)

0.68 s

(d) (e) (f)

1.00 s

(g) (h) (i)

Figure 4.10: B-spline interpolation: Panels a, d, and g show the time slices of the directly
simulated surface gather for 0.52 s, 0.68 s, and 1.00 s, respectively. Panels b, e, and h
show the time slices of the interpolated surface gather by B-spline interpolation for 0.52
s, 0.68 s, and 1.00 s, respectively. Panels c, f, and i depict the differences between the
interpolated surface gather and the direct simulated surface gather at 0.52 s, 0.68 s, and
1.00 s, respectively
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(a) (b)

(c)

Figure 4.11: (a) In-line section of the 3D Green’s function for a source at x = 0 m, y = 0 m,
and z = 1500 m to receivers along y = 0 m, simulated using 3D finite-difference modeling.
(b) In-line section of the 3D Green’s function retrieved by 3D Marchenko redatuming with
densely sampled surface data. (c) In-line section of the 3D Green’s function retrieved by 3D
Marchenko redatuming with sparsely sampled surface data.
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(a) (b)

Figure 4.12: (a) In-line section of the 3D Green’s function retrieved by Marchenko redatum-
ing with 3D interpolated surface data from 8-point B-spline interpolation. (b) The difference
between (a) and the reference Green’s function.
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placed on a 200 grid lines by 200 grid lines area and we keep 200 frequency samples, the

size of the 5D data cube is 2,560 GB, which is much greater than the memory capacity of a

typical computing node (16 GB to 256 GB). Hence, the maximum memory of the computing

node puts a limitation on the scale of the 3D problem that we can handle. Apparently,

we first need to choose the spatial sampling as large as possible within the requirement for

the Marchenko method so as to cover a larger area with same numbers of total sources/re-

ceivers. One general way to manage a larger area is to minimize the number of frequency

samples. Standard fast Fourier transform tends to keep the frequency content from 0 Hz

up to approximately 120 Hz; however, the highest meaningful frequency will be smaller

(approximately 40-70 Hz) in most seismic imaging projects. In our examples, the highest

frequency is approximately 40 Hz. Therefore, by muting the frequency samples higher than

40 Hz in the reflection response and conducting the convolution and cross-correlation from

0 Hz to 40 Hz, we reduce both the memory needed and the CPU time for loading the 5D

cube by 66.7%. Meanwhile, the CPU time for computing the iterations for the Marchenko

algorithm is also reduced by 66.7%. As the time-windowing is applied in the time domain,

we pad the end of the inter-medium convolution and cross-correlation results with zeros to

match with the frequency samples before muting. This approach allows us to handle medium

size 3D projects using computers with a 256 GB memory. For large scale 3D projects, we

might need to adjust the code to conduct numerical parallelization by frequency.

3D seismic data are almost never acquired with sources and receivers placed on the

fully, densely and regularly sampling grids. In this study, we perform the cross-line data

interpolation by means of the B-spline method for the 3D marine streamer type of data.

For a complicated 3D data acquisition geometry, we may need to borrow the interpolation

methods that have been deployed for 3D SRME, since both SRME and Marchenko methods

involve computing the integration over the aperture of cross-convolutions of pairs of traces,

and they both require the sampling density to be sufficient to avoid having aliased energy

contaminate the stack trace. A comparison of the formulations of Marchenko and SRME
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algorithm is presented in the following table:

SRME (R=S−1 ∗ D) Marchenko

Mk =
∫
∂D0

R ∗ Pk Mk =
∫
∂D0

R ? fk

Pk+1 = P0 −
∫
∂D0

R ∗ Pk fk+1 = f0 +
∫
∂D0

R ∗Mk

P0 = D f0 =
∫
∂D0

R ∗ T inv
d

The symbol ? represents the temporal cross-correlation and ∗ represents temporal convolu-

tion. The differences of these two algorithms are, (1) in the Marchenko framework, a direct

arrival from virtual source location to surface T inv
d needs to be computed , and (2) the iter-

ative process includes both convolution and cross-correlation in the Marchenko framework,

while only convolution is computed in SRME. However, as demonstrated in the above ta-

ble, the requirement for the sampling and coverage of sources and receivers are very similar.

Therefore, interpolation methods for 3D SRME, such as DMO-based interpolation and inter-

polation on-the-fly, are to be investigated and accommodated for 3D Marchenko redatuming

in the future for 3D land and ocean bottom seismic data.

In summary, we reformulate the 3D Marchenko-type equations, which are then realized

with numerical implementation. We propose an approach to determine the sufficient aperture

and the spatial sampling of the source/receiver pairs required by the Marchenko redatuming

algorithm. We revisit B-spline forward interpolation for the reconstruction of sparse 3D

data that is often acquired in a practical marine streamer survey. We validate our numerical

implementation of 3D Marchenko redatuming with a 2.5D Gulf of Mexico model and a

3D trapezoidal-dipping model. We show the 3D Green’s function retrieved by Marchenko

redatuming with the reconstructed data from B-spline interpolation is sufficiently accurate

compared to the Green’s function from a direct simulation.
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CHAPTER 5

SUB-BASALT MARCHENKO IMAGING WITH OFFSHORE BRAZIL FIELD DATA
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Snieder1
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5.1 Abstract

Sub-basalt imaging for hydrocarbon exploration is challenging because of multiple scat-

tering, attenuation and mode-conversion when seismic waves encounter highly heterogeneous

and rugose basalt layers. With densely sampled seismic data by modern acquisition and ad-

vanced imaging techniques, imaging through basalt becomes feasible. Yet, the strong internal

multiples generated by the basalt layers and the seabed remains a challenge for conventional

imaging techniques. If not properly handled during seismic imaging, internal multiples can

be mapped below the basalt layers, overlapping with the hydrocarbon reservoirs, which

could mislead the further geologic interpretations. Conventional methods for internal multi-

ple elimination suffer from the requirements for accurate horizons of the multiple generators

and/or a labor-intensive adaptive subtraction process. In Marchenko imaging, the artifacts

related to internal multiples are mitigated directly without the need neither for picking the

multiple generators nor for detracting the predicted multiples. The Marchenko method can

produce seismic images that are comparable with the images by Reverse Time Migration

in both positions and phases of subsurface reflectors, but are free from the nonphysical in-

terfaces related to internal multiples, with a simply smooth velocity model. We propose a

practical work flow for the preparation of typical marine streamer data and show that data

regularization is crucial to the success of the Marchenko method. With a realistic synthetic

1Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
2ExxonMobil Upstream Research Company, Spring, Texas, USA
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example, we show that far offset horizontally propagating waves can be reconstructed by

Marchenko redatuming. We then show successful applications of the Marchenko method to

sub-basalt imaging, with a realistic synthetic example and field data acquired from offshore

Brazil. The nonphysical interfaces due to the strong internal multiples generated by the

seabed and basalt layers are clearly eliminated in our field data example.

5.2 Introduction

The elimination of internal multiples has long been a challenging problem in seismic data

processing. Strong internal multiples can be generated in a variety of subsurface environ-

ments. Particularly, for marine seismic surveys, the water bottom or seabed is one of the

strongest interbed multiple generator due to the high velocity and density contrast between

water and sediments. Generally, multiple-generating interfaces can be any interface with

strong acoustic impedance, such as salt bodies, carbonates, volcanic intrusions, gas layers,

etc. Because of the complexity (structural shapes and various impedance along the inter-

faces) of the internal multiples generators and the similar behaviour of internal multiples

and primaries, the attenuation of the internal multiples remains challenging for seismic pro-

cessing. Surface related multiple elimination (SRME) based methods do not necessary work

when applied to suppress internal multiples. Internal multiples and primaries can have sim-

ilar moveout, so that Radon-based methods are ineffective. Internal multiples and primaries

can have similar frequencies and amplitudes, so that predictive filtering based methods may

not work as well. And internal multiples and primaries can have similar dips, so that f − k

filters, tau-p filters, and migration methods implementing dip-discrimination techniques may

also not be as effective.

Conventional seismic methods for imaging the earth’s interior, such as Ray-based mi-

gration (e.g Kirchhoff migration): Beylkin (1985); Bleistein et al. (2001); Bleistein (1987);

French (1975); Operto et al. (2000); Schneider (1978), one-way wave equation migration:

Claerbout (1971); Hale (1991); Zhang et al. (2005), and two-way wave equation migration

(Reverse Time Migration): Baysal et al. (1983); McMechan (1983); Whitmore (1983), rely
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on the single-scattering assumption, which means these methods require that the recorded

seismic data do not include waves that reflected more than once in the subsurface before

reaching the receivers (for overviews of the conventional migration methods: Etgen et al.

(2009); Sava & Hill (2009)). Geophysicists consider that the single-scattering assumption is

valid for majority of the seismic data. Yet, multiples - the waves that reflected more than

once in the subsurface - usually are present in seismic data. If strong internal multiples exist

but are not properly handled, conventional imaging methods will map the internal multiples

to a deeper location in the seismic image. Meanwhile, because the large impedance difference

between the multiple generators and the surrounding sediments, hydrocarbons tend to be

trapped beneath the multiple generators. When the artifacts due to the internal multiples

overlay with the reservoir layer, which is often the case, geological interpretation for the

seismic images can be extremely challenging. Therefore, a robust and effective method for

handling the internal multiples is needed for from the oil and gas industry for exploration

and production purposes.

One conventional workflow used in the oil and gas industry includes 1) predicting internal

multiples and 2) removing them using adaptive subtraction in the data or image domain.

Berkhout & Verschuur (1997) proposed an algorithm for the removal of internal multiples,

which requires knowledge of the macro velocity model between the surface and the upper

boundary of the multiple generating layer. Jakubowicz (1998) developed a more explicit

internal multiple prediction method involving a two-trace convolution followed by a single-

trace correlation. Many industrial internal multiple prediction tools are developed based on

this idea. However, these tools require an accurate picking of the internal multiple generators

(either by geophysicists or automated computer algorithms) and inevitably rely upon the

adaptive subtraction for the attenuation of the internal multiples. Both horizon picking and

adaptive subtraction are labor-intensive. Horizon picking suffers if the model is not accurate,

and adaptive subtraction, which is usually performed in a least-squares sense, can damage

primaries at the location where primaries and multiples interfere.
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Marchenko imaging is a novel technique to produce multiple-free seismic images with

only surface seismic data and a background velocity model (Broggini et al., 2012, 2014b;

Wapenaar et al., 2014b). It provides a target-oriented image reconstruction specifically

for imaging areas with complex structures that generates strong internal multiples. The

core of the Marchenko frame work is the Marchenko receiver redatuming, which allows for

an accurate reconstruction of both primaries and internal multiples (Broggini et al., 2012;

Rose, 2002; Wapenaar et al., 2014b). The reconstructed wavefields are naturally separated

into up- and downgoing components, which can be utilized to virtually move the surface

sources to a redatuming level by means of multidimensional deconvolution (van der Neut

et al., 2011). With the redatumed sources and receivers, one can further perform imaging

with various strategies and directly obtain multiple-free seismic images without performing

multiple subtraction (Jia et al., 2018; Singh & Snieder, 2017). Theory of the Marchenko

framework has been extend to elastic data (da Costa Filho et al., 2014, 2015; Wapenaar, 2014)

,the incorporation of free surface related multiples (Singh et al., 2016a), and the handling

of short-period Dukalski et al. (2019). Dukalski & de Vos (2017) presented two alternative

methods to solve the Marchenko equations with the free surface multiples taken into account:

LSQR (least squares) and a modified Levinson-type algorithm. Even though the Marchenko

method is robust with respect to velocity errors and does not require a detailed velocity model

(Broggini et al., 2014a), it would be beneficial to make it completely data driven. Zhang

& Staring (2018) proposed a modified Marchenko algorithm, where a truncation operator

is used to make the method completely model-free. In order to relax the relatively strict

requirement for the surface reflection data by Marchenko redatuming, Ravasi (2019) showed

that if multi-component seismic data is used, one can perform Marchenko Green’s function

retrieval with sparse source sampling.

Besides theoretical developments, Marchenko imaging has been successfully applied with

various field datasets. Ravasi et al. (2016) applied Marchenko imaging to an ocean-bottom

cable survey recorded over the Volve North Sea field. Staring et al. (2017) show an adap-
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tive double-focusing Marchenko imaging with a Santos Basin field dataset. Jia et al. (2018)

demonstrated a practical work flow to perform Marchenko imaging with marine streamer

data for subsalt imaging and showed that subsalt image produced with the Marchenko

method was cleaner and more continuous compared to the RTM image using a Gulf of

Mexico field dataset. Krueger et al. (2018) presented their internal multiple attenuation

workflow based on the Marchenko framework for four pre-salt fields in the Santos Basin,

Brazil. In this study, we demonstrate a successful application of the Marchenko method

with a marine streamer dataset for sub-basalt imaging. The multiple generators are seabed

and volcanic intrusions with rugose interfaces. This dataset provides a challenging geologic

setting to test Marchenko redatuming and imaging. In the synthetic example section, we

apply Marchenko imaging with a dataset that is generated using a velocity model and a

density model that are inspired by the field dataset. We designed the synthetic experiment

and use it to calibrate the amplitudes of the field surface data and to identify artifacts due to

internal multiples. In the field data example section, we investigate the three major stages of

the implementation of Marchenko imaging: 1) pre-processing, including data regularization

and data calibration; 2) Marchenko redatuming or Green’s function retrieval in the target

area; and 3) multiple-free imaging. We discuss our work flow for data pre-processing in de-

tail. We show a comparison between the Marchenko image and the RTM image, and discuss

how the internal multiples are removed by the Marchenko scheme.

5.3 Methodology

In this section, we outline the methodology for the Marchenko framework. Given ideal

data as input, the Marchenko imaging framework contains two major steps: Marchenko

redatuming and imaging.

5.3.1 Marchenko redatuming

We use an iterative scheme for receiver redatuming which is adapted from the work of

Broggini et al. (2014b) on the basis of the earlier theoretical Marchenko studies (Broggini
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et al., 2012; Rose, 2002; Wapenaar et al., 2014b). The heart of the Marchenko redatuming is

the representation theorem. The convolution- and correlation-type representation theorem

relates two wave states with different field, material, and source properties in heterogeneous

media (de Hoop, 1988; Vasconcelos et al., 2009; Wapenaar et al., 2004). The two wave

states we choose to relate by the representation theorem are, 1) wavefield A, a wavefield,

which is injected at the surface, focuses at a pre-defined subsurface location at time zero

and propagates only downwards shortly after the focusing time; 2) wavefield B, the actual

wavefield in the subsurface corresponding to surface sources. Wavefield A is represented

by the focusing function (upgoing component f− and downgoing component f+) which is

defined in a modified medium that is reflection-free below the focusing level ∂Di. Wavefield

B is a the wavefield in the actual subsurface responding to surface seismic sources. At the

focusing depth, wavefield B consists of the upgoing componentG− and downgoing component

G+ (referred to as up- and downgoing Green’s functions in the following discussions). The

upgoing wavefield is defined as the wavefield that leaves a virtual source at the focusing point

in the upward direction, while the downgoing wavefield is the wavefield that leaves a virtual

source in the downward direction (ray paths of upgoing and downgoing waves are indicated

with G− and G+, respectively, in Figure 5.2).

Based on one-way representation theorems, the Green’s function and the focusing func-

tion are related by (van der Neut et al., 2015a; Wapenaar et al., 2014b):

G−(xi, x0, ω) =− f−1 (x0, xi, ω) +

∫
∂D0

R(x0, x
′

0, ω)f+
1 (x

′

0, xi, ω)dx
′

0,

G+(xi, x0, ω) =[f+
1 (x0, xi, ω)]∗ −

∫
∂D0

R(x0, x
′

0, ω)[f−1 (x
′

0, xi, ω)]∗dx
′

0, (5.1)

where G−(xi, x0, ω) and G+(xi, x0, ω) are the frequency domain up- and downgoing Green’s

functions, corresponding to a implusive point source at x0 at the acquisition surface and

receivers on a desired subsurface depth (xi). The focusing functions f−1 (x
′
0, xi, ω) and

f+
1 (x

′
0, xi, ω) are the up- and downgoing parts of the solution for a specified wave equa-
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tion whose wavefield focuses at the subsurface location xi. R(x0, x
′
0, ω) contains the earth’s

reflection response from a vertical dipole source at x
′
0 recorded by a pressure receiver at x0.

The multiplication is equivalent to convolution in the time-space domain, while * denotes

complex conjugation.

One can solve for G−(xi, x0, ω) and G+(xi, x0, ω) by decomposing equation 5.1 into two

time windows: t < td and t > td, where td is the direct arrival travel time from the focusing

point xi to the surface. In the time window t < td, the Green’s functions G+(x0, xi, ω) and

G−(x0, xi, ω) are equal to zero. Decomposing f+ into a direct wave T inv
d and a following

coda M+ yields:

f+
1 (x0, xi, ω) = T inv

d (x0, xi, ω) +M+(x0, xi, ω). (5.2)

Substituting f+
1 (x0, xi, ω) in equation 5.1 with equation 5.2, we compute the focusing func-

tions by the following iterative scheme in the time window t < td:

[M+
k (x0, xi, ω)]∗ =

∫
∂D0

R(x0, x
′

0, ω)[f−1,k(x
′

0, xi, ω)]∗dx
′

0;

f−1,k+1(x0, xi, ω) =

∫
∂D0

R(x0, x
′

0, ω)M+
k (x

′

0, xi, ω)dx
′

0 + f−1,0(x0, xi, ω),

(5.3)

with the initial value of f−1 computed by

f−1,0(x0, xi, ω) =

∫
∂D0

R(x0, x
′

0, ω)T inv
d (x

′

0, xi, ω)dx
′

0; (5.4)

where T inv
d is the inverse waveform of the direct arrival from the focusing point to the sur-

face. Note that T inv
d is also the initial value of f+

1 , and T inv
d is in practice approximated by

Eikonal solver in this study. Finally, in the time window t > td, G
−(xi, x0, ω), G−(xi, x0, ω)

and G+(xi, x0, ω) are obtained by substituting the f−1 (x
′
0, xi, ω) and f+

1 (x
′
0, xi, ω) into equa-

tion 5.1.

5.3.2 Imaging

With the Green’s functions obtained using the surface reflection data and the background

velocity model, we are able to produce a multiple-free image with multi-dimensional decon-
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volution (MDD). MDD is applied independently to each depth level using

R̃ =

∫
∂D0

dx”0
∫∞
−∞G

+ ? G−∫
∂D0

dx0”
∫∞
−∞G

+ ? G+ + ε
, (5.5)

where
∫
∂D0

dx”0 represents the integration over surface source/receiver pair locations, G+

represents the downgoing Green’s function and G− represents the upgoing Green’s function.

The symbol ? represents cross-correlation, and ε represents a stabilization parameter. When

ε approaches infinity, MDD is equivalent to a cross-correlation imaging condition applied

between the up and downgoing Green’s functions.

The redatumed reflection response R̃(xi, x
′
i, ω) can be used with different strategies for

imaging (Singh & Snieder, 2017). One strategy is to obtain the full reflection response by

redatuming the sources and receivers at the same depth level, and produce seismic images

below the redatuming depth level using established imaging algorithms (e.g. RTM) with the

redatumed data. Note that a velocity model for the areas below the redatuming depth level

is still needed in the imaging stage when performing conventional imaging methods with the

redatumed data.

An alternative imaging strategy is adopted for this study. For every image point inside

a target zone, we extract the zero-offset and zero-time component R̃(xi, xi, t = 0) from

the redatumed reflection response R̃(xi, x
′
i, t), and construct an image of the zero-offset

reflectivity using

I(xi) = R̃(xi, xi, t = 0). (5.6)

With this imaging condition, we can compute the reflectivity of every image point in a target

zone. This imaging strategy is more robust because it does not create the artifacts from the

local internal multiples below the redatuming level, but it comes with an additional cost

of performing Marchenko redatuming and MDD for each depth level inside the target area.

Note for both imaging strategies mentioned above, no multiple generator picking or adaptive

subtraction is performed.
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5.4 Synthetic examples

We validate Marchenko imaging with a realistic synthetic experiment which is inspired

by a field dataset. This synthetic example helps us to identify the major internal multi-

ple generators and understand the artifacts associated with internal multiples that can be

generated when applying conventional imaging method to the original surface data. The

synthetic data is also used to calibrate the field data that is used for the field example. We

first compare the Green’s function retrieved with the Marchenko method with the wavefield

generated from direct simulation and recorded at the surface. We discuss the horizontally

propagating waves in the Green’s function that can be reconstructed with Marchenko reda-

tuming when the refractions are included in the surface data. We then perform Marchenko

imaging with the retrieved Green’s functions in a target zone to generate a multiple-free

image and analyze this image by comparing it with an image produced with Reverse Time

Migration (RTM).

5.4.1 Marchenko redatuming vs finite-difference modeling

Figure 5.1a shows the background velocity model estimated from an offshore Brazil field

dataset. The velocity model is so strongly smoothed that the water layer smears with the

sediments at the seabed. Figure 5.1b shows the corresponding density model we use for this

example. The density model consists of the complex subsurface structures. It is designed

and built by following the steps 1) we use Gardner’s relation to convert the smooth velocity

model (Figure 5.1a) to a smooth density model, 2) we migrate the surface dataset acquired

over the target field where considerable amount of basalt layers exist, generating a reflectivity

image, 3) we mute the deeper parts of the reflectivity image (right below the main volcanic

intrusion layers) while keeping the shallow interfaces, including several multiple generators,

4) we apply weighting factors on both the smooth density model and the reflectivity model

then add them together, and 5) we insert a dipping high density layer along the dipping

multiple generator and a horizontal strong density contrast at the bottom of the model.
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Step 3 ensures that every reflector in the image below the muted depth is caused by an

improperly imaged internal multiples. In step 5, a high density contrast is inserted in the

model to ensure that strong internal multiples can be generated and a flat density contrast

is inserted at the bottom of the model to mimic a deeper reservoir layer that is seen in the

field data image. The strong dipping contrast helps to identify internal multiples in the data

and evaluate our multiple elimination scheme. The deep flat reflector serves as an imaging

target and helps to test if our multiple-free imaging algorithm works effectively when internal

multiples interfere with primary events. The grid of the model is 5 m by 5 m (along x and

z directions). The spacing between neighbouring surface shot/receiver pairs is 20 m for the

surface data simulation. The total number of co-located shots/receivers are 734.

Putting a virtual source below the dipping reflector (location of the virtual source is shown

in Figure 5.2), we expect the following events to be recorded by the surface receivers: 1) the

direct arrivals from the virtual source to the acquisition surface, 2)a primary event with a

ray path that propagates downwards from the virtual source and then reflected upwards by

the deep flat reflector (Note that this event is counted as a primary because it only incurred

one reflection along its travel path), 3) the upgoing Green’s functions, which follow the ray

paths that went upwards initially from the virtual source and incurred at least two reflections

at the seabed and the multiple generators, and 4) the downgoing Green’s functions, which

follow the ray paths that initially propagates downwards from the virtual source and incurred

multiple reflections at the seabed and other multiple generators. The ray paths of all the

events mentioned are illustrated and labelled in Figure 5.2.

Figure 5.3 shows a comparison between the Green’s function reconstructed by the Marchenko

method (labelled with “Reconstruction”) and the directly simulated Green’s function (la-

belled with “Direct simulation”). Due to the large aperture of the data acquisition, substan-

tial refractions are recorded in the surface data at far offsets. According to the requirement

of the Marchenko method, we mute the far offsets in the surface shot gathers to ensure the

removal of refractions in the data. Comparing the “Reconstruction” and “Direct simula-
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(a)

Seabed

(b)

Figure 5.1: The velocity model (panel a) and density model (panel b) of the synthetic
example. The velocity model is so strongly smoothed that the water bottom smears with
the sediments.
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receiver line

first arrival

primary

G+

G-

(a)

Figure 5.2: The ray paths of the four different kinds of events that are recorded at the surface
receivers from a subsurface virtual source
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tion” in Figure 5.3, the near offsets of the Green’s functions match well, as shown in the

comparison of the two overlapped traces extracted from the middle of the Green’s functions

(the far right panel in Figure 5.3). Some horizontally propagating events that appear at the

far offsets in the ”Direct simulation” panel are not properly reconstructed by the Marchenko

algorithm. This is due to the fact that we mute the far offset events from the surface data.

Reconstruction Direct simulation

first arrival

primary

multiple G-

(a)

Figure 5.3: A comparison between the Green’s function reconstructed by the Marchenko
method and the directly simulated Green’s function.

To further explore if the Marchenko algorithm is able to reconstruct the waves that

incurred horizontal propagation along ray paths, we performed Marchenko redatuming with

the original surface data with full offsets. Figure 5.4 shows the comparison of a) the Green’s

function reconstructed with the surface data with only reflections, b) directly simulated

Green’s functions, and c) Green’s function reconstructed with the surface data of full offsets

(including both reflections and refractions). With far offsets muted in the surface data, we

obtain a good reconstruction of the near and middle offsets but get artificial events that look
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continuous with near offsets but do not match the “direct simulations” (Figure 5.4b) at far

offsets. With the full surface data, we obtain good reconstruction at the far offsets, which

are horizontally propagating waves. After a scrutiny of the snapshots of the wavefields from

the direct simulation, we are able to determine the ray path of the horizontally propagating

events of Figure 5.4b and Figure 5.4c at far offsets, which is demonstrated in Figure 5.5.

In sum, we show the reconstruction of the horizontally propagating waves in the Green’s

function by the Marchenko method. How to better utilize the reconstructed far offset waves

remains an open research topic.

(a)

refractions

(b)

refractions

(c)

Figure 5.4: (a) Green’s function retrieved by Marchenko algorithm using the data without
refractions (b) Green’s function by finite-difference modeling (c) Green’s function retrieved
by the Marchenko algorithm using the data of full offsets

To better reveal the artifacts due to internal multiples in the RTM image, we perform

RTM with data of different offsets: full offsets with refractions muted, medium offsets from

-2 km to 2 km, and near offsets from -500 m to 500 m, as shown in Figure 5.7 from left to

right, respectively.
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Virtual Source

Receiver line

refractions

first arrival

Figure 5.5: Ray paths of the horizontally propagating events in Figure 5.4b and Figure 5.4c
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Seabed

True reflector

Ghost reflectors

(a)

Figure 5.6: RTM image of the whole model. Red box indicates the target area where
Marchenko imaging is applied.

RTM
all offsets

RTM
offsets [-2km, 2km]

RTM
offsets [-500m, 500m]

Ghost reflectors

Ghost reflectors

Figure 5.7: RTM images produced with data of various offsets

115



We show the RTM image of the whole model in Figure 5.6. True subsurface structures,

the seabed, the volcanic intrusions and the deep flat reflector, are labelled and denoted

by the red arrows. Some of the multiple-related artificial interfaces or ghost reflectors are

labelled and denoted by the solid green arrows. The target area of this model is denoted

with the red box. Next, we apply Marchenko imaging in the red box and compare it with the

RTM image of the same area. We first reconstruct the Green’s functions at each depth level

inside the red box in Figure 5.6. Then we apply MDD independently to each depth level

following equation 5.5. To evaluate and calibrate the Marchenko image produced by MDD,

we compare it with the image produced by RTM. The consistency of the phase of a reflector

and the relative phases between different reflectors are important information for seismic

interpretation. Hence, it’s desirable that the images produced with different methods are

comparable in phase for the same reflectors. For the MDD method, the selection of ε plays

an important role in keeping the phase of Marchenko image consistent with RTM image.

The proper value of ε can be case-dependent. A rule of thumb is that ε should be within the

range of 0.1 to 1 of the maximum value of the first term in the denominator.

We show the RTM image of the target area in Figure 5.8 and the Marchenko image

of the same area in Figure 5.9. The images are produced with same surface dataset and

same background velocity model. The red arrows denote the true structures, the seabed, the

volcanic intrusions and the deep flat reflector, while the solid green arrows denote several

nonphysical interfaces associated with internal multiples that are generated by the seabed

and the intrusions. The dashed green arrows indicate a shallow smile-shaped true reflector

and its corresponding deeper ghost artifacts. The RTM image is contaminated with multiple

artifacts in the deeper area, as only the flat reflector should appear in the deeper area of the

model but we see many ghost interfaces. The flat deep reflector is destructed and distorted

by these ghost reflectors in the RTM image. While matching well with the RTM image in

the shallow portion of the model, the Marchenko image is much cleaner in the deeper area

with the flat reflector much better imaged.
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Seabed

True reflector

(a)

Figure 5.8: RTM image of the target area.
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Marchenko
Seabed

True reflector
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Figure 5.9: Marchenko image of the target area.
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5.5 Field data example: offshore Brazil

We implement Marchenko imaging to a 2D marine field dataset acquired offshore Brazil.

We aim to test the Marchenko method for imaging ultra-deep reflectors beneath sub-basalt

or volcanic intrusion layers, as the field of interest is occupied by volcanic intrusions which

can generate strong internal multiples.

5.5.1 Data regularization

We propose a practical work flow to apply Marchenko imaging to marine streamer data

(Figure 5.10). In this case, we remove the surface-related multiples by muting the data after

certain recording time, as the surface-related multiples appear at much later time than the

primaries and first order internal multiples in this deep sea environment. In the left branch

of the work flow in Figure 5.10, we prepare the surface data to make it adequate for the

Marchenko redatuming algorithm, which requires the surface data to be recorded by equal

number of co-located sources and receivers spreading on the acquisition surface. In order to

regularize the data, we first extrapolate the data for near offsets, which can be achieved with

existing SRME data regularization tools. We then sort the data into CMP-offset gathers and

interpolate the data in offset, populating the offset spacing to a denser grid. At this point,

the CMP-offset gather is still one-sided. To created two-sided data, we copy the one-sided

offsets in each CMP gather, flip the sign of the offsets and place them onto the other side of

that CMP gather. In this way, we are able to obtain the CMP-offset gathers with two-sided

offsets. We resort the CMP-offset gathers to shot-receiver gathers, successfully recreating

the regularized data with equal numbers of densely sampled and co-located sources and

receivers. The dataset naturally has fixed offset length in each shot gather, as the length of

the cable towed by the streamer is fixed. The Marchenko algorithm requires the input - the

surface shot gathers to be recorded by fixed receivers sampled along the whole acquisition

surface of the velocity model in the target area. To meet this requirement, after muting the

refractions in the data, we convert the shot gathers with fixed offsets to the shot gathers
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with fixed receives by windowing or padding with empty traces.

On the other hand, as shown on the right branch of Figure 5.10, we obtain the time-

reversal of the first arrival by first computing the direct arriving time based on a smooth

velocity model (Figure 5.1a) and then placing a Ricker wavelet at the arriving time of each

surface receiver. Based on the iteration algorithm we adopt (equation 5.3), we need to

calibrate the amplitude of the surface dataset in such way that after its convolution or

correlation with the first arrival (Ricker wavelet) in the frequency domain, the maximum

value of the convolution or correlation should be around one and won’t get dramatically

magnified or decreased over iterations. In this field example, we neither have information

about the amplitude of the original source functions nor of the seismic pre-processing steps

(e.g. noise attenuation and gaining) that the surface data has gone through. We calibrate

the data by comparing the maximum amplitude of the primary reflections from the seabed of

the field data with the equivalent events in the synthetic data that generated in the previous

example with the synthetic velocity (Figure 5.1a) and the density (Figure 5.1b) models. It

is feasible to use the synthetic data to calibrate the field data because, the first arrivals

we use for the field data is exactly the same as what we use for the synthetic example, so

the amplitudes of the surface data in both scenarios should be comparable. With such an

approach, we obtain a constant scaling factor and apply it to all field shot gathers. This

is a simple yet practical way to calibrate the field surface dataset and provides relatively

accurate results.

There will be inaccuracies introduced following the above data regularization process.

For example, the shots and receivers can never be strictly sampled on a perfect 2D line in

field seismic acquisitions. But the Marchenko algorithm (equation 5.3) involves integrations

over source locations, which is a process of stacking thousands of traces to reconstruct one

trace. The inaccuracy introduced in data regularization is reduced in the stacking process

and should be acceptable to a large extent. Figure 5.11 demonstrates one shot gather after

our data regularization work flow.
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Background velocity
model

First arrival
(3D Eikonal Solver)

Streamer data

3D Marchenko redatuming

Near offsets extrapolation

Shots/CMP interpolation

1-sided offsets to 2-sided

Data calibration

Multiple-free imaging

Figure 5.10: Workflow to apply Marchenko imaging to field data.

5.5.2 Field data images: Marchenko imaging vs RTM

Figure 5.12 shows the RTM image produced with the regularized field surface dataset.

Some typical geological structures are labelled, such as the seabed, a volcanic intrusion layer

and a deep reflector. A target area is denoted by the red box. We show the RTM image

of the target area in Figure 5.13 and the Marchenko image of the same area in Figure 5.14.

Both images are produced with the same surface dataset that is discussed above and a same

smooth velocity model (Figure 5.1a). These two images are comparable and consistent for the

most parts - the positions of the reflectors and the phases of the reflectors in the shallow parts

of the model match adequately. In Figure 5.13, green arrows indicate the ghost reflectors

due to internal multiples and red arrows indicate the true subsurface reflectors. We interpret

the reflectors indicted by the red arrows as real geologic reflectors because they are flat,

continuous and consistent in both images. The dipping structures pointed by the green

arrows are interpreted as multiple artifacts as these events destructively intersect with the

real flat reflectors, causing discontinuities and cross-talks. These artificial dipping events are
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Figure 5.11: A 2-sided shot gather after data regularization with the work flow in Figure 5.10.
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clearly eliminated in the Marchenko image in Figure 5.14. The blue arrow in Figure 5.13

points at another location where dipping artifacts caused by the internal multiples show in

the RTM image. We also remove these artifacts in the Marchenko image (Figure 5.14).

Seabed

True reflector

Figure 5.12: RTM image of the whole field. The red box denotes a target area that is
compared with a Marchenko image.

5.6 Conclusions

We show the capacity of the Marchenko method for sub-basalt imaging with an offshore

Brazil field dataset. In this field example, strong internal multiples are generated by the

seabed and volcanic intrusions. Reverse Time Migration produces nonphysical interfaces due

to the incorrect handling of these internal multiples. These artifacts are clearly attenuated

in the image produced with Marchenko imaging. Meanwhile, we demonstrate the poten-

tial of the Marchenko method to reconstruct horizontally propagating waves and propose a

practical workflow for the regularization and pre-processing of typical marine streamer data.

Conventional internal multiple attenuation methods typically require accurate information
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(a)

Figure 5.13: Field data RTM image inside the red box of Figure 5.12.
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(a)

Figure 5.14: Field data Marchenko image inside the red box of Figure 5.12.
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of multiple generators and eliminate internal multiples with an adaptive subtraction. Ob-

taining the horizons of multiple generators and subtracting the predicted multiples are both

labor-intensive processes and often provide sub-optimal results when the primaries intervene

with the internal multiples. With application to the offshore Brazil field data, we show that

the Marchenko method works effectively for multiple-free imaging of complex sub-basalt

structures without performing adaptive subtraction.
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CHAPTER 6

GENERAL CONCLUSIONS AND FUTURE RESEARCH

In this Chapter, I provide a brief and general conclusion to this dissertation and make

recommendations for future research. Readers are referred to the individual conclusions in

Chapters 2 through 6 for the specific conclusion associated with each chapter.

The most significant contribution of my dissertation to the field of seismic imaging is

the development and implementation of the 2D and 3D Marchenko framework for field data

applications. The Marchenko framework consists of 1) Marchenko redatuming, a method that

creates virtual seismic wave forms that are generated by a point source in the subsurface and

recorded at the surface, and 2) Marchenko imaging, a method that produces multiple-free

seismic images using the redatumed seismic waves by Marchenko redatuming. I research on

the practical aspects of this elegant theoretical framework and investigate how to make it

applicable for the real seismic data.

I elucidate the specific requirements of the two inputs, surface reflection data and the

background velocity model, needed by the Marchenko redatuming and imaging algorithms

in Chapter 3. I show that Marchenko redatuming simply requires a smooth velocity model

and this redatuming approach is robust with respect to errors in the velocity model. I

emphasize that regularization and interpolation for the surface reflection data are the key

to a successful implementation of Marchenko redatuming. I consider and compare several

forward interpolation methods, demonstrating that for realistic acquisition geometries, for-

ward interpolation methods are sufficiently accurate for 2D and 3D Marchenko redatuming.

Modern seismic processing and imaging techniques benefit from utilizing 3D seismic data.

In Chapter 4, I present an efficient 3D Marchenko redatuming numerical implementation,

in which I resolve the associated computational optimization and memory issues. With the

limited computational and data resources available in an academic environment, I cannot
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fully demonstrate the potential for 3D Marchenko imaging to the extensive datasets that

are currently acquired in the petroleum industry. I discuss future work along this path and

make recommendations later in this chapter.

Internal multiples contaminate seismic images in two ways: by producing false negatives

through destructively interfering with primaries or by creating false positives through fo-

cusing energy at nonphysical interfaces. In the first scenario, the destructive interference of

internal multiples and primaries cause subsurface reflectors to be discontinuous or unsmooth

in conventional seismic images. In Chapter 2, with a Gulf of Mexico field dataset, I show

that the discontinuities caused by the destructive interference between internal multiples

and primaries can be resolved by applying Marchenko imaging, where I produce a cleaner

and more continuous image compared to the image produced by RTM for the same sub-salt

area. In most cases, with conventional imaging methods, internal multiples are focused at

nonphysical locations, generating artificial reflectors. The reduction of the nonphysical in-

terfaces due to incorrectly handled multiples is my main focus in the data example using

an offshore Brazil dataset. In Chapter 5, I show that Marchenko imaging is able to elim-

inate the nonphysical interfaces related to the strong internal multiples that are generated

from basaltic intrusions in the overburden and produce a superior sub-basalt seismic image

compared to the image produced by Reverse Time Migration.

6.1 Future research

There are a variety of directions for innovative open research under the Marchenko frame-

work. Theoretical and methodological pathways include developing a model-free Marchenko

method, updating velocity models for a localized or target subsurface area, time-lapse moni-

toring, and incorporating anisotropy and attenuation into the Marchenko framework. Some

of these topics are discussed in the last chapters of the dissertations of Broggini (2013)

and Singh (2016). In the following discussion, I focus on the practical challenges along the

path of the field data application of the Marchenko framework and make recommendations

accordingly for future research.

128



1 Application to the ocean bottom seismic data and the land seismic data

The use of ocean bottom seismic (OBS) data, including ocean bottom cables (OBC)

data and ocean bottom nodes (OBN) data, generally has improved signal-to-noise ratios

compared to streamer seismic data. Moreover, OBS acquisition technology provides multi-

component data and offers more flexibility for the source-receiver geometry, allowing for the

acquisition of data with full azimuth and/or longer offsets compared to the streamer data.

To apply Marchenko imaging to OBS data, however, we need to undertake the problem that

the sources and receivers are located at different depths. We can redatum the receivers of

the OBS data to the acquisition surface. But since the Marchenko framework also involves

redatuming, is it possible to modify the Marchenko algorithm and make it directly applicable

to the OBS data? Another challenge with OBS data is that receivers are irregularly and

sparsely distributed over a small area because of the expense of placing receivers on the ocean

floor. Various techniques have been developed to overcome the sparsity problem associated

with the recorded OBS data (Abma & Kabir, 2006; Berkhout & Verschuur, 2006; Curry

& Shan, 2010; Ramı́rez & Weglein, 2009). Strategies for incorporating these interpolation

methods with OBS data and produce the dense and regularized data required by Marchenko

redatuming need further investigation.

Land seismic data processing and imaging increasingly attracts attention because of the

rapid development of unconventional oil and gas exploration and production. Strong internal

multiples are often generated by the complex near-surface heterogeneity from land seismic

data. The land seismic data processing itself, however, faces several unique challenges, such

as source signature related issues and severe and incoherent noise in the data. Other than the

challenging issues of data regularization and source de-signature, near-surface heterogeneity,

such as Karst stuctures, can be severe, which violates the up/down decomposition of the

seismic wavefield that is used in current formulations of Marchenko imaging. How can we

effectively resolve these problems for the land data application of the Marchenko method?

2 Selection of the calibration and stabilization parameters
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We need to calibrate the amplitude surface reflection seismic data with an appropriate

calibration parameter or scaling factor. The value of the calibration parameter is currently

determined empirically. So is the stabilization parameter which is used in the calculation of

multi-dimensional deconvolution. The value of the stabilization parameter not only affects

the resolution of the image, but also plays a key role in determining the phase of the reflectors

in Marchenko images. The phase information of the reflector is important for geologic inter-

pretation, and interpreters demand the phases of the interfaces in seismic images produced

with the Marchenko method to be consistent with the images produced with other conven-

tional imaging approaches. Strategies for a automatic or systematical determination of the

ad-hoc values for the calibration and stabilization parameters need further investigation.

3 Reduction of computational cost

Large 3D seismic data processing algorithms have become feasible thanks to the develop-

ment of CPU and GPU clusters for high performance computing. Surface Related Multiple

Elimination (SRME) with 3D field data has become a standard step in the seismic data pro-

cessing work flow. The Marchenko redatuming algorithm involves similar computations as

SRME, including trace-by-trace convolution and integration over a surface area. Marchenko

redatuming, however, is performed in a iterative fashion, and approximately ten iterations

are needed to ensure the convergence of the Marchenko redatuming algorithm for complex

structures. The reduction of the computational cost of 3D Marchenko redatuming and imag-

ing is an urgent issue to solve for commercializing the Marchenko method for hydrocarbon

exploration. Avoiding redundant trace-by-trace convolution/cross-correlation during the re-

trieval of the Green’s functions of adjacent subsurface points is one opportune direction.

4 Incorporation of horizontal propagating energy in Marchenko redatuming with

two-way representation theorems

The Marchenko equations are derived using one-way representation theorems, which re-

strict the retrieval of the Green’s function to the propagation paths that are not horizontal or
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near horizontal. Two-way formulations of the representation theorems exist and can include

horizontally propagating events (Wapenaar, 1996). The current one-way formulation of the

Marchenko framework limits the ability of Marchenko imaging to resolve the internal multi-

ple artifacts associated with steeply dipping interfaces. An ansatz to this problem would be

incorporating horizontal propagating energy by re-deriving the Marchenko equations with

two-way wavefields.

My PhD dissertation takes one of the first steps in the application of Marchenko imaging

for complex subsurface structures with field data. I am dedicated to further address this

problem in the future.
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