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ABSTRACT

Target-oriented imaging seeks to localize inhomogeneities within a medium from mea-

surements of the waves that scatter off them. Conventionally, this requires both knowledge

and control of the sources used to illuminate the scattering targets. In this thesis, I explore

and develop methods for imaging arbitrarily complex acoustic scatterers that require neither

knowledge nor control of the sources of illumination.

Inspired by random-illumination imaging experiments in optics, I first provide a geomet-

rical explanation of the memory effect, a phenomenon in which the interference of scattered

waves from a random medium preserves information carried by the wave incident to the

medium. I simulate the time dependence of the memory effect using short-duration impulses

that transmit through a collection of random point scatterers.

Next, I demonstrate the ability to image strongly scattering targets in the presence of

unknown and uncontrolled random sources. The linear sampling method is used to invert

the total recorded waveforms and obtain an image of the targets. Successful imaging under

such conditions requires the persistent radiation of scattered energy that can be amplified

and detected in the recorded data.

Subsequently, I introduce an imaging method based on inverting the Lippmann-Schwinger

equation of acoustic scattering theory. I compare the proposed Lippmann-Schwinger inver-

sion with the linear sampling method and explore their physical bases. Numerical experi-

ments are performed to quantitatively assess the two methods.

Finally, I resolve the dependence of the linear sampling method on an ambiguous time

parameter and establish a physical framework for the method’s interpretation. Numerical

algorithms are given to properly and efficiently implement the method in both the time

and frequency domains. I validate the algorithms and interpretation of the method with

numerical examples.
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Martin, and Mark Eberhart. I give particular gratitude to Paul, who casually mentioned

after class one day what would ultimately become a central component of my thesis. Of

course, I am also grateful for the many fascinating conversations I had with Willy Hereman

over the years about symmetry, conservation laws, and homotopy operators. As far as I am

concerned, you are still a valued committee member and friend.

I am forever indebted to Pamela Kraus, Shingo Ishida, Michelle Szobody, Dawn Umpleby,

Joana Perez, and Debra Marrufo. Thank you for performing your magic behind the scenes

so I could focus on “PhD stuff.” Also, a huge thank you to Diane Witters and Ken Larner. I

always appreciated your warm personalities and willingness to help me improve my writing

and speaking.

xiii



Special thanks go to my close friends, Thomas and Natalya Rapstine. You set great

examples for balancing family and personal life with school. I am fortunate to have made

many fond memories with my “friends in the trenches”: Xueyi (Alex) Jia, Tuğrul Konuk,
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CHAPTER 1

WHERE WE ARE AND HOW WE GOT HERE

There is an ever-growing demand in exploration seismology for more accurate represen-

tations of the subsurface. Chief among its applications is the exploration and production

of hydrocarbons, where the effective management of economic and safety risks of a given

prospect relies heavily on the accuracy of the seismic image. At an intuitive (and grossly

simplified) level, a seismic depth image is constructed from a combination of ground vi-

brations recorded in time and a velocity model of the earth. An imaging method simply

determines how the recorded vibrations are converted to depth using the given velocity

model. Of course, the velocity model is always inaccurate, since the subsurface is unknown.

Moreover, the subsurface is not characterized by velocity alone. The earth is (an)elastic,

full of cracks, faults, fluids, and inhomogeneities, and both linear and nonlinear material

properties can affect wave propagation (Aki and Richards, 2002; Fu and Ogden, 2001; God-

dard, 1990; Guyer et al., 1995; Johnson and Rasolofosaon, 1996). At best, we can only hope

to obtain an approximation of the subsurface that is “good enough” for the intended appli-

cation. To make the goal of obtaining a seismic image tangible, we approximate both the

material properties of the subsurface and how waves propagate through it. Consequently,

a primary source of uncertainty in the seismic image is the simplified physics employed in

the model-building and imaging workflows (Gouveia and Scales, 1998; Michelioudakis et al.,

2018; Osypov et al., 2013; Thore et al., 2002). What, then, has been done to improve the

accuracy of the seismic image?

For decades, seismic imaging methods have relied on a single-scattering approximation to

model the interaction of waves with the subsurface (Baysal et al., 1983; Beylkin, 1985; Bleis-

tein, 1987; French, 1975; Gray, 2005; Gray and Bleistein, 2009; Hill, 1990, 2001; McMechan,

1983; Schneider, 1978; Whitmore, 1983). Such a linearized approximation is often sufficient
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when the impedance contrast of the medium is relatively weak. In cases where the impedance

contrast is strong, however, multiply scattered waves (often simply called “multiples”) can

constitute much of the recorded waveforms. Because these linearized imaging methods will

incorrectly position multiples in depth, preprocessing efforts are made to remove them from

the data. One example of a multiple elimination technique is the inverse scattering series

(Luo et al., 2011; Prosser, 1969; Snieder, 1990; Weglein et al., 2003, 1997), which iteratively

solves for a series expansion of the total wave field that can then be used to identify and at-

tenuate multiples. Another approach is to devise an imaging method that correctly handles

multiple scattering in the first place. Marchenko redatuming and imaging uses reciprocity

relations to reposition the acquisition surface within the medium, where (it is hoped) only

single-scattered waves exist between the redatumed surface and the target interfaces below

(Broggini and Snieder, 2012; Broggini et al., 2012, 2014; Jia et al., 2018; Singh et al., 2015;

Slob et al., 2014; Wapenaar et al., 2013, 2014). In the separate but related problems of veloc-

ity estimation and monitoring, techniques such as full-waveform inversion (Tarantola, 1984;

Virieux and Operto, 2009) and coda wave interferometry (Grêt et al., 2006; Sens-Schönfelder

and Wegler, 2006; Snieder, 2006; Snieder et al., 2002) exploit multiply scattered waves to

achieve greater accuracy of the estimated velocity model, owing to their repeated sampling

of the medium (and therefore, higher sensitivity to its velocity structure compared to that

of single-scattered waves).

What can be learned from other disciplines in the broader field of imaging science that

may be applicable to seismic exploration? As it happens, quite a lot. In optics, “super-

resolution” focusing and imaging are made possible by exploiting the ability of a wave to

locally oscillate faster than its fastest frequency component (Berry, 1994; Berry and Popescu,

2006; Huang and Zheludev, 2009; Rogers and Zheludev, 2013). “Ghost imaging” uses a

combination of two independent intensity measurements to image obstacles: one light beam

interacts with a target but hits a detector with no spatial resolution, while another beam

hits a high-resolution detector but does not interact with the target. Only through their
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correlation can these two measurements yield an image of the obstacle (Bromberg et al.,

2009; Cheng, 2009; Erkmen and Shapiro, 2010; Ferri et al., 2005; Meyers et al., 2008; Shapiro,

2008; White et al., 1998). Meanwhile, statistical correlations of random interference patterns,

known as “memory effects”, have given rise to such spectacular developments as “see-through”

and “around-the-corner” imaging of visually opaque scattering materials (Bertolotti et al.,

2012; Katz et al., 2014, 2012). In the classical fields of acoustic and electromagnetic imaging,

emerging techniques are finding new ways of exploiting the full solution to the wave equation

to reduce the prior information needed to image an unknown target (Cakoni and Colton,

2014; Cakoni et al., 2012; Colton et al., 2000; Colton and Haddar, 2005; Colton et al., 2003;

Colton and Kress, 2013).

At the heart of these technological developments lie new physical insights into complex

wave phenomena. Our improved understanding of how waves behave and interact in var-

ious types of media has led to a paradigm shift in the way we design imaging algorithms.

Rather than attempting to simplify the modeled wave behavior, the new idea is to embrace

and exploit these complex wave phenomena whenever possible. Perhaps surprising, these

newer imaging methods can have simpler formulations than their conventional counterparts,

imposing fewer constraints or assumptions on the model and data. For example, the “see-

through” imaging method demonstrated by Bertolotti et al. (2012) removes the requirement

that a detector be placed behind an imaging target on the other side of a scattering medium.

Moreover, the illumination on the concealed target need not be known, so a model of the

scattering medium is unnecessary. Amazingly, an image of the target is recovered from the

one-sided intensity measurements alone. Emerging imaging techniques are demonstrating

what was once thought impossible to be within the grasp of tomorrow’s practice.

Is it possible to localize inhomogeneities in the subsurface from the direct inversion

of recorded waveforms using random and unknown illumination, as in the experiment of

Bertolotti et al. (2012)? In this thesis, I address this question by investigating modern meth-

ods from acoustic inverse scattering theory. While I have restricted the investigations to two-

3



dimensional acoustic media for simplicity, the imaging methods hold for three-dimensional

elastic media as well. The common theme of each chapter is the exploitation of multiple

scattering to remove the dependence of an imaging procedure on the sources used to illu-

minate an imaging target. By and large, the ultimate goal put forward in this thesis to

image arbitrary scatterers using unknown and uncontrolled random illumination. I believe

this thesis demonstrates a sizable step in this direction, and may hopefully find its use in

future seismic imaging applications.

With the exception of Chapter 2, I have chosen to present the body of this thesis in

reverse chronological order. The reason is my desire to address the main thesis objective

sooner rather than later. Coincidentally, I believe this decision also results in the improved

readability of the thesis: physical intuition is stressed more in my chronologically later

work, whereas theoretical issues are the focus of my earlier work. As a result, the thesis

is presented as an overarching story of “discovery and enlightenment” through continued

investigation: the interesting applications and imaging capabilities are demonstrated first,

prompting a question of how all this is possible; physical insights and clues are gradually

obtained through further inquiry; and a unifying explanation is saved for the finale. In any

case, I believe this approach reflects the natural way in which we experience and learn the

world around us.

1.1 Memory effect

To understand how the see-through imaging experiment of Bertolotti et al. (2012) was

achieved, I investigate the so-called “memory effect” in Chapter 2. The memory effect refers

to the tendency of a scattered wave to preserve the directionality of an incident wave. The

terminology stems from an anthropomorphism, endowing a wave that has scattered multiple

times with “memory”. That is, a multiply scattered wave “remembers” its original direction

of propagation (Feng et al., 1988; Freund et al., 1988).

The memory effect has largely been studied in optics, where monochromatic (single fre-

quency) sources such as lasers are used to investigate different types of random, disordered
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materials. The superposition of all the scattered waves that transmit through or reflect off

a disordered medium produces a complex, seemingly random interference pattern known as

“speckle” (Goodman, 1975). The degree to which the memory effect can be observed from

a given medium is measured by means of a correlation. The correlation is taken between

a designated reference speckle pattern and another speckle pattern produced by perturbing

the incident laser beam. For example, such a perturbation might be the change in angle of

incidence of the beam or a small translation of the beam across the surface of the medium

(Judkewitz et al., 2015). Recently, a generalized memory effect has been shown to include

both tilt and shift correlations through media of arbitrary geometry (Osnabrugge et al.,

2017).

Previous studies have explained the memory effect using factorized Feynman diagrams

(Feng et al., 1988), “real-space” approaches considering solutions to the diffusion equation

(Berkovits et al., 1989), and Fourier transforms of random transmission matrices (Judkewitz

et al., 2015). In Chapter 2, I appeal to geometrical intuition and a simple conservation

argument to explain the memory effect. Intuitively, a speckle pattern is nothing more than

the interference of a large number of scattered waves. To preserve this interference pattern,

the phase relationships between each of these scattered waves must be conserved. From

these simple considerations emerge the scattering trajectories through a random medium

that contribute to the memory effect. I demonstrate the time dependence of the memory

effect based on these scattering trajectories by simulating the transmission of short-duration

impulses through a collection of random, isotropic point scatterers.

1.2 Target-oriented imaging in the presence of unknown and uncontrolled ran-
dom sources

Conventional imaging techniques assume that the sources used to interrogate a medium

are known. Examples of such techniques include the migration methods found in exploration

seismology (Etgen et al., 2009). In these methods, it is assumed that both the source locations

and their time dependence are known (or can be well approximated). On the other hand,
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ambient-noise seismology relies on using scattered energy from the subsurface generated

by unknown and uncontrolled sources, such as ocean waves, city traffic, factory plants,

microearthquakes that surround the domain to be investigated, etc (Curtis et al., 2006;

Larose et al., 2006; Shapiro and Campillo, 2004; Shapiro et al., 2005; Snieder and Larose,

2013). In such cases, neither the time dependence nor the locations of the sources are known.

Despite this absence of knowledge, techniques such as coda wave (or seismic) interferometry

(Snieder, 2006; Wapenaar et al., 2010a,b) can be applied, provided the ambient sources are

uniformly distributed around the receivers and are either temporally repeatable or spectrally

“white” within the used frequency band (Draganov et al., 2004; Halliday and Curtis, 2008;

Sens-Schönfelder and Wegler, 2006).

In Chapter 3, I investigate the feasibility of imaging localized scattering targets within

an acoustic medium when the ambient sources not only surround the receivers in the exterior

of the imaging domain, but are interspersed amongst the receivers and scattering targets

themselves. I apply the linear sampling method (Chen et al., 2010; Colton and Kirsch,

1996; Colton et al., 1997; Guo et al., 2013; Haddar et al., 2014; Prunty and Snieder, 2019b) –

discussed in detail in Chapter 5 – as a candidate imaging method, owing to the fact that no

source information is used in the algorithm to construct an image of the medium. To boost

the energy of scattered waves present in the recorded data, I apply a running-absolute-mean

normalization (Bensen et al., 2007). I show that successful imaging under such circumstances

requires the persistent radiation of scattered energy that can be amplified and detected in the

recorded data. Consequently, only strongly scattering targets can be imaged in the presence

of unknown and uncontrolled random sources.

1.3 Lippmann-Schwinger inversion

Of fundamental importance to understanding the full behavior of a scattered wave is

the Lippmann-Schwinger equation (e.g., Lechleiter and Monk (2015)). It gives the exact

solution to the acoustic wave equation for an arbitrarily complex medium in terms of a

weighted superposition of the impulse response of the background medium over the region
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containing the scatterer. The weights of the superposition are determined by the physical

properties of the scatterer, and also by the total field incident to the scatterer. Previous

attempts at using the Lippmann-Schwinger equation for imaging have often relied on a weak

scattering approximation or a re-normalization process (Caorsi et al., 2001; Kouri and Vijay,

2003; Yao et al., 2016).

In Chapter 4, I present a new procedure for the direct inversion of the Lippmann-

Schwinger equation without any weak scattering assumptions, giving full access to the time

and space dependence of the source of the scattered field. I compare the proposed Lippmann-

Schwinger inversion with the linear sampling method and explore their physical bases using

numerical experiments.

1.4 Linear sampling method

The main body of this thesis concludes with a dedicated investigation into the theoretical

underpinnings of the linear sampling method. Originally put forward in 1996 as a means

to image obstacles from measurements of the far-field pattern of scattered monochromatic

waves (Cakoni and Colton, 2014; Colton and Kirsch, 1996; Colton and Kress, 2013; Colton

et al., 1997), the method has proven to be a remarkably rich area of research.

The linear sampling method posits a relation between the observed scattered waves and

an impulse response of the host medium in which the scattering object is embedded. This

relation is formalized by an ill-posed integral equation, the solution to which exhibits a

characteristic blowup behavior : the norm of the solution becomes arbitrarily large whenever

the impulse response is generated from a point outside the scatterer. This behavior has been

studied and rigorously proven for the far-field case (e.g., Arens (2003); Arens et al. (2009),

and the references therein).

More recent efforts aimed at improving the spatial resolution of the linear sampling

method have investigated the use of band-limited signals in the time domain (Chen et al.,

2010; Guo et al., 2013; Haddar et al., 2014). With the time-domain approach, however, came

an ambiguous time parameter that influenced the ability of the method to reliably image the
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scatterer. The literature to date indicates that “an appropriate time shift” must be chosen to

obtain an image of the scatterer, yet no information is offered on how this parameter should

be chosen.

In Chapter 5, I give a simple proof of the blowup behavior, and show that a proper for-

mulation of the linear sampling method can be obtained without introducing an ambiguous

time parameter. Detailed numerical algorithms are given to properly and efficiently imple-

ment the linear sampling method in both the time and frequency domains. I validate the

improved algorithms with several numerical examples.
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CHAPTER 2

DEMYSTIFYING THE MEMORY EFFECT: A GEOMETRICAL APPROACH TO

UNDERSTANDING SPECKLE CORRELATIONS

Modified from a paper published in The European Physical Journal Special Topics1

Aaron C. Prunty2,3 and Roel K. Snieder3

2.1 Summary

The memory effect has seen a surge of research into its fundamental properties and appli-

cations since its discovery by Feng et al. (1988). While the scattering trajectories for which

the memory effect holds are hidden implicitly in the diffusion probability function (Berkovits

et al., 1989), the physical intuition behind the memory effect has often been masked by rather

complex and sophisticated derivations. In this paper, we appeal to geometrical constraints

and a conservation argument to explicitly derive the scattering trajectories through a ran-

dom medium for which the memory effect holds. We illustrate the time-domain effects of

these geometrical constraints using numerical simulations of short-duration pulse transmis-

sion through a collection of random, isotropic point scatterers. The results of our derivation

and numerical simulations are consistent with established theory and experimentation.

2.2 Introduction

Coherent wave transmission through a highly random medium, or reflection off a rough

surface, results in an interference pattern known as speckle (Goodman, 1975). The memory

effect is a phenomenon of wave propagation in which variations in the illumination, or in-

cident wave, are preserved in the reflected or transmitted wave produced from the random

1Reproduced under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0). Eur. Phys. J. Spec. Top. (2017) 226: 1445.
DOI: https://doi.org/10.1140/epjst/e2016-60254-0

2Primary researcher and author.
3Department of Geophysics, Colorado School of Mines, Golden, Colorado, United States of America.
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medium, provided the variations are not too large. Thus, what was once thought to be a

hopelessly complicated relation between the incident wave and the scattering medium, the

complex and seemingly random speckle pattern has, in fact, a predictable behavior owing

to the memory effect. The degree to which the changes in illumination are preserved in

the reflected or transmitted wave is measured by means of a correlation. The correlation is

taken between a designated reference speckle pattern and another speckle pattern produced

by perturbing the incident wave. For example, such a perturbation might be the change in

angle of incidence of the incoming wave.

The memory effect was originally derived by applying a diagrammatic perturbation ex-

pansion to the intensity-intensity correlation function for optical wave transmission through

random media (Feng et al., 1988). What was to be termed the “memory effect” was the

leading order correlation term in this perturbation expansion (this term is also commonly

referred to as the short-range angular correlation, memory correlation, or memory correlation

function). The distinctive property of the memory correlation function is that it is present

only if the change in angle of the outgoing wave matches the change in angle of the incident

wave. This property causes the random speckle pattern to track the motion of the incident

wave without decorrelating. For an incident wave with wave vector k that transmits through

a random medium of thickness D, the diagrammatic calculation of Feng et al. (1988) deter-

mined that the memory correlation function should asymptotically fall off for changes in angle

of incidence greater than 1/kD, after which the speckle pattern changes. The predictions of

this derivation were first experimentally verified by Freund et al. (1988), who also extended

the theory to include memory correlations for reflections off rough surfaces. Berkovits et al.

(1989) showed the physical basis of the memory effect to be the diffusive probability of a

photon that enters the scattering medium at one point and exits the scattering medium at an-

other. The diffusion probability function is maximized when the photon enters and exits the

scattering medium from points near the mean scatterer position along the line of sight. This

result was derived by considering the interference of all possible photon trajectories through
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the random medium. An important conclusion of this derivation was that the memory effect

is independent of the phases acquired by the waves through the multiple scattering process.

Much research has since been done on the fundamental properties and applications of the

memory effect, including its generalization to polarized waves, incorporation of the effects of

internal reflections and absorption within the scattering medium, and noninvasive imaging

experiments (Berkovits and Feng, 1994; Berkovits and Kaveh, 1990a,b,c,d; Bertolotti, 2015;

Bertolotti et al., 2012; Freund and Berkovits, 1990; Freund et al., 1989; Judkewitz et al.,

2015; Katz et al., 2014, 2012; Kurita et al., 1999; Vellekoop and Aegerter, 2010).

In this paper, we offer a simple derivation which shows explicitly the trajectories through

the random medium for which the memory effect holds. We derive the memory effect for

the case of a point source using geometrical arguments only, without the need to invoke

diagrammatic methods or special functions. The emphasis of our derivation is on the phases

of the scattered waves, showing that the necessary conditions for the memory effect to hold

can be found by considering path differences and a conservation argument. Additionally,

while previous treatments of the memory effect have been given in the frequency domain

assuming a monochromatic, continuous-wave source, we demonstrate the memory effect in

the time domain using a band-limited pulse source by performing two-dimensional numerical

simulations. Although our source is band-limited, we continue to refer to the simulated

interference pattern as “speckle” for consistency with the literature.

2.3 Theory

A speckle pattern is produced by the superposition of many different scattered waves

that interfere with effectively random phases. Because the memory effect is an interference

phenomenon, it can manifest in any solution to a linear wave equation. As we show later

in this section, the backbone of the memory effect is simply the superposition principle,

together with a few geometrical arguments.

The key idea behind the memory effect is that a given speckle realization is the result of

waves that interfere with particular phase differences. That is, the random but unique phase
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differences between the different scattered waves are what produce a particular speckle pat-

tern. Intuitively, to observe the same speckle pattern after we change the angle of incidence

of the incoming wave, our first condition to impose is that the phase differences amongst the

different scattered waves be conserved. This conservation argument imposes the geometrical

constraints on the scattered waves that contribute to the memory effect, as we illustrate

below.

Suppose a point source (denoted by a star in Figure 2.1) generates a pulse that transmits

through a random medium consisting of a finite number of isotropic point scatterers. On

the other side of the random medium, we observe the produced speckle pattern at a point

r0 (the point of observation denoted by an inverted triangle in Figure 2.1). By linearity of

the wave equation, this speckle pattern is the superposition of an unperturbed wave and

all scattered waves. For a fixed wave number k, the speckle pattern at the point r0 can

be written as a summation over all possible scattering trajectories p through the random

medium (Groenenboom and Snieder, 1995):

ψ(r0) =
∑

p

Ape
ikLp =

∑

p

Ape
ik(L0+∆Lp). (2.1)

Here, Ap is the complex amplitude and Lp is the path length traversed by a wave along

path p. The unperturbed wave traverses the line of sight between the point source and the

point of observation r0. Denoting the length of the line of sight trajectory by L0, the path

difference ∆Lp = Lp − L0 is used to determine the phase difference between any scattered

wave and the unperturbed wave.

Let us denote by ∆Lp the path difference before the incident wave is perturbed, and

by ∆̃Lp the path difference after the incident wave is perturbed. Then, according to our

conservation argument, we must impose the condition ∆̃Lp = ∆Lp to obtain the memory

effect. It remains to determine which paths p satisfy this condition.

Figure 2.1 illustrates the geometry of the problem. We assume a frame of reference

with an origin at the location of the point source. The path of the unperturbed wave is

characterized by the unit wave vector k̂0, which points along the line of sight r0.
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A major simplification arises when we consider the fact that a perturbation in the path

length of any given trajectory through the random medium depends only on the variations

in length from the source to the first scatterer and from the last scatterer to the point of

observation; that is, perturbing the incident wave does not change the multiple scattering

trajectories occurring between the first and last scattering events along a given path. This

observation allows us to relegate the total phase contribution of these multiple scattering

trajectories to a constant ϕp for each path. Thus, to determine the path length of a scattering

trajectory p, we need the path vector from the point source to the first scatterer, denoted by

rip, and the path vector from the last scatterer to the point of observation, denoted by rtp.

Using the standard dot product, we may determine the incidence and transmission angles θip

and θtp, respectively, formed between any trajectory and the line of sight (see Figure 2.1).

bk0

�r rip rtp

✓ip
✓tp

'p/k

r0rx

�✓i

�✓tp
�✓ip

Figure 2.1: Definition of the problem geometry for a point source. The solid lines indicate the
original incident and transmitted waves. The dashed lines indicate the perturbed incident
and transmitted waves. Arbitrary multiple scattering is represented by the wiggly line.

With these considerations, the path difference before perturbing the incident wave ∆Lp

is given by

∆Lp = (k̂0 · rip) sec θip + (k̂0 · rtp) sec θtp + ϕp/k − k̂0 · r0. (2.2)

How may we determine the path difference ∆̃Lp after perturbing the incident wave? For

a point source, we can change the angle of incidence of the incoming wave by perturbing
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the location of the source in a direction perpendicular to the line of sight (we could, in fact,

perturb the source position in any arbitrary direction, but only the component orthogonal

to the line of sight affects the path difference). Let δr denote a perturbation in the source

position perpendicular to the line of sight, so that k̂0 · δr = 0. For a scattered wave, such a

perturbation in the source position results in a change in angle of incidence ∆θip to the first

scatterer. As stated above, the multiple scattering trajectories between the first and last

scattering events do not change as a result of the perturbation δr. Therefore, any variations

in path length caused by a change in the angle of incidence must be compensated for by a

change in the angle of transmission ∆θtp from the last scatterer to a new point of interference.

Keeping in mind that we need to preserve the phase difference between the scattered and

unperturbed waves after moving the source position, we must also require the line of sight

to rotate through some angle ∆θi; however, it is not yet clear about which point the line of

sight must rotate. We denote this unknown rotation point by rx in Figure 2.1.

By analogy with equation (2.2), the path difference after perturbing the incident wave

∆̃Lp is given by

∆̃Lp = (k̂0 · rip) sec(θip + ∆θip) + (k̂0 · rtp) sec(θtp + ∆θtp) + ϕp/k − (k̂0 · r0) sec ∆θi. (2.3)

Upon setting ∆̃Lp = ∆Lp, we observe the phase constant ϕp/k cancels, in agreement with the

analysis of Berkovits et al. (1989). This reaffirms that the memory effect is independent of the

phases acquired through the multiple scattering process. Another important characteristic

is the general form of the path difference in equations (2.2) and (2.3). In particular, the

path difference depends upon sec θ, which grows very large as θ deviates from 0◦, causing the

complex exponential in equation (2.1) to rapidly oscillate. Thus, expression (2.1) amounts to

summing over angles θ, and its dominant contribution comes from incidence and transmission

trajectories nearly parallel to the line of sight (Bleistein, 2012). We therefore assume the

angles in equations (2.2) and (2.3) are close to 0◦, and approximate the secant function by

a second-order Taylor expansion.
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Since rip and rtp are now assumed to be nearly parallel to k̂0, we see that they are

approximately scaled versions of r0. That is, our problem is effectively one dimensional, and

we drop the boldface vector notation and use the scalar equivalent. We introduce scalars

αp, βp ∈ [0, 1] such that rip ≈ αpr0 and rtp ≈ βpr0. With these small angle approximations,

we can write the condition for the memory effect ∆̃Lp = ∆Lp using equations (2.2) and (2.3)

as

αp∆θ
2
ip + βp∆θ

2
tp = ∆θ2

i . (2.4)

In equation (2.4), the change in angle ∆θi of the unperturbed wave along the line of sight is

a fixed, but unknown constant. On the other hand, the change in incidence and transmission

angles ∆θip and ∆θtp vary with scatterer position along the line of sight. Assuming we know

the location of our point source and all the scatterers, we could, in principle, determine

each of the changes in angle of incidence ∆θip along the line of sight. Thus, we have one

equation and two unknowns: ∆θi and ∆θtp. We would like to solve for the change in angle

of transmission, ∆θtp, and we may do so using the following constraint. Under our current

approximations and assumptions, the first and last scattering events lie along the line of

sight. Is there a single point along this line such that the change in angle of incidence ∆θip is

nearly constant, i.e., independent of the path p? If so, then it must be the unknown rotation

point rx about which the unperturbed wave rotates, since we are asking for the point along

the line of sight about which all waves incident to the medium rotate. It follows that, given

k̂0 · δr = 0, we have ∆θi ∼ δr/rx and ∆θip ∼ δr/(αpr0) (see Figure 2.1). We seek the point

rx along the line of sight such that the change in angle of incidence of the unperturbed wave

∆θi is as close as possible to the change in angle of incidence of the scattered wave ∆θip for

the most paths p. This occurs when rx minimizes

S(rx) =
1

2

∑

p

(αpr0 − rx)2, (2.5)

which has the solution rx = αavr0, where αav is the average value of αp along the line of

sight. That is, the memory effect must hold only for those waves incident to the random
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medium that rotate about the average scatterer position along the line of sight through the

medium. For paths p such that rip ≈ rx, we have ∆θip ≈ ∆θi, and from equation (2.4) we

find

∆θtp =

√
1− αav
βp

∆θi. (2.6)

Let D be the thickness of the scattering region along the line of sight and ε = D/L0. Then,

for all paths p such that 1− (αp + βp) ≤ ε, we have ∆θtp−∆θi = O(ε), which goes to 0 as ε

goes to 0. In other words, the memory effect occurs only for a very small subset of trajectories

through the random medium where the first and last scattering events occur near the mean

scatterer position along the line of sight. The dependence upon the thickness of the random

medium is explicit via the parameter ε, which suggests the memory effect is most pronounced

for thin scattering layers (e.g., Bertolotti et al. (2012); Freund et al. (1988)). Also, note that

our result does not impose any restrictions on the random scattering trajectories occurring

between the first and last scattering events. That is, for the memory effect, much of the

scattering that goes on inside the random medium is completely arbitrary (see Figure 2.2).

Next, we consider the temporal effects of a pulse source (i.e., a source of finite duration).

In this case, the transmitted speckle pattern is a time varying function of path length. While

we have shown the memory effect to hold in general for any trajectory that satisfies α+β ≈ 1,

only for paths p that also satisfy the condition ∆Lp < λ/4, where λ is the wavelength, will

the scattered waves interfere coherently in time. That is, forward-scattered waves that pass

through the first Fresnel zone will interfere with the unperturbed wave, whereas multiply

scattered waves that perform a random walk through the medium will not. For a pulse

source, therefore, only the ballistic waves contribute to the shift in the speckle pattern. In

the steady-state case produced by a continuous-wave source (e.g., a laser), any scattered

wave path satisfying the condition α+ β ≈ 1 contributes to the shift in the speckle pattern.

If one assumes the distribution of scatterers to be uniform, the maximum change in angle

of incidence (and consequently the maximum change in angle of transmission) for which the
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path vectors rip and rtp remain within the same Fresnel zone is

∆θmax ∼
WF

D
, (2.7)

where WF is the width of the Fresnel zone determined by

WF =

√
λL0αβ

2
. (2.8)

As the change in angle of incidence increases past ∆θmax, the path vectors rip and rtp begin

to pass through a different Fresnel zone – where the waves interact with different scatterers

– and the resulting speckle pattern changes.

The extension of the memory effect to the case of an incident plane wave can be made

by considering the limit in which the point source is placed infinitely far from the scattering

medium. Then, by definition, all incidence angles are the same, and the memory effect will

hold for any line of sight through the medium.

2.4 Numerical Simulations

To test the validity of our derivation, we model the transmission of short-duration im-

pulses in a two-dimensional Cartesian geometry using the method described by Groenenboom

and Snieder (1995). To simulate the scattering medium, we place 100 isotropic point scat-

terers randomly within a 1000 m × 800 m region. The background medium has constant

velocity (c = 2000 ms−1). A point source is placed at the origin of our coordinate system,

8000 m to the left of the scattering region (Figure 2.3). A set S of 101 receivers is placed

along a vertical line behind the scattering region between the coordinates (9500 m, ± 200 m)

at 4-meter spacing. The point source emits a single pulse in the frequency band of 10 Hz to

80 Hz with a peak frequency ν0 = 45 Hz (dominant period T0 = 2.2× 10−2 s). We perturb

the source in the vertical direction in ±100 m increments up to a maximum displacement of

δr = ±1400 m. For each value of δr, the source emits a pulse which transmits through the

scattering medium, producing multiply scattered waves that are recorded at each receiver

for 8 seconds.
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Figure 2.2: A schematic illustrating two possible tracjectories through a random medium,
shown as the shaded region, that contribute to the memory effect. The interference of the
direct and scattered waves produce a speckle spot, shown as the dashed ellipse. The simplest
forward-scattering trajectory is shown as the green dashed arrow. A random walk trajectory
is shown as the purple dashed arrow. Both trajectories satisfy α + β ≈ 1.
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Figure 2.3: A homogeneous velocity model with 100 isotropic point scatterers randomly
embedded in a 1000 m × 800 m region. The point source is located at (x, z) = (0 m, 0 m).
A line of 101 receivers extends from (9500 m, ± 200 m) at 4-meter spacing.

With this model geometry, the mean scatterer position rx along the line of sight between

the origin and the midpoint of the receiver line is approximately located at (8700 m, 0 m).

Using equation (2.8), the width of the Fresnel zone is WF ≈ 128 m, leading to a maximum

change in angle of incidence ∆θmax ≈ 7.3◦. We therefore expect the memory effect to break

down when |δr|/rx ∼ ∆θmax, or |δr| ≈ 1100 m.

To measure the similarity of the transmitted wave fields produced for each δr, we compute

time-shifted cross-correlations between the reference (δr = 0) and perturbed (δr 6= 0) wave

fields ψ and ψ̃ at each receiver position. Furthermore, we apply three different time windows

to measure the range of the memory effect in various parts of the (time-domain) wave field:

the full waveform (i.e., the entire wave field recording), the ballistic wave (window length

= 11 T0), and the coda (window length = 130 T0). These time windows are illustrated in

Figure 2.4. The correlation coefficient Cδr
ij (τ) is given by

Cδr
ij (τ) =

∫
ψi(t)ψ̃j(t+ τ) dt√∫
ψ2
i (t) dt

∫
ψ̃2
j (t) dt

, −1 ≤ Cδr
ij (τ) ≤ 1, (2.9)

19



FW

B C

Figure 2.4: A typical wave field recorded at one of the receivers. Forward-scattered waves
that arrive early in the waveform constitute the ballistic arrival (time window B). Multiple-
scattered waves that arrive later in the waveform constitute the coda (time window C). The
full waveform is indicated by FW.

where the integration is over the time window under consideration. For each receiver pair

(i, j), we plot the correlation coefficient at the time shift τ ∗ for which Cδr
ij (τ ∗) attains its

maximum value. In the special case δr = 0 m, C0
ij(τ

∗) = 1 when i = j (i.e., the auto-

correlation). We define the mean correlation coefficient 〈C〉 and mean speckle shift 〈δs〉 for

each value of δr as

〈C〉 :=
1

|S|
∑

i∈S

max({Cδr
ij (τ ∗) : j ∈ S}),

〈δs〉 :=
∆z

|S|
∑

i∈S

(
arg max

j
Cδr
ij (τ ∗)− arg max

j
C0
ij(τ

∗)
)
,

(2.10)

where |S| is the number of receivers and ∆z is the receiver spacing.

2.5 Discussion

Examples of the correlation (2.9) are shown in Figure 2.5 for the full waveform, ballistic,

and coda time windows, respectively, for δr = 0 m and δr = 500 m. Within each plot,

the rows represent receiver i measuring the reference wave field ψ, the columns represent
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receiver j measuring the perturbed wave field ψ̃, and the color values represent Cδr
ij (τ ∗). The

correlation plots for the full-waveform and ballistic time windows are nearly identical, and

simply illustrate that the observed interference pattern shifts (or translates) across receivers

as δr changes. The correlation plot for the coda time window, however, is different from

those for the full-waveform and ballistic time windows. In particular, there is no coherent

shift in the correlation of the coda window as δr is changed; rather, we see the values of the

correlation function randomly fluctuate as δr changes.

The mean correlation coefficient and mean speckle shift as functions of δr (equation 2.10)

are shown in Figure 2.6. The full-waveform, ballistic, and coda time-windowed correlations

all show that the mean correlation coefficient 〈C〉 decays to an average background value

as |δr| is increased. Note that the decay of 〈C〉 for the full-waveform and the ballistic

correlations is not symmetric about δr = 0 m, but the decay of 〈C〉 for the coda correlation

is almost perfectly symmetric.

A simple explanation for this observation is the nonuniform scatterer density of our

model (Figure 2.3); that is, the perturbations in the wave field when δr > 0 are different

than those when δr < 0. Thus, the scatterer density appears to affect the rate of decay of

the memory effect with increasing δr (increasing ∆θ), suggesting the relation (2.7) does not

hold when there are significant variations in scatterer density. In a medium with a uniform

density of scatterers, however, we expect the decay of the memory effect to be approximately

symmetric about δr = 0 m (∆θ = 0◦). The symmetry in the falloff of the coda correlation

can be attributed to the fact that nonballistic waves traverse much longer paths through the

scattering medium, thereby averaging out variations in the density of scatterers.

The right hand column of Figure 2.6 shows the mean speckle shift 〈δs〉 versus δr for the

full-waveform, ballistic, and coda correlations. The negative slope about δr = 0 m for the

full waveform and ballistic correlations confirms that the transmitted speckle pattern shifts

in the direction opposite to the source perturbation. The value of δr at which the slope

changes from negative to positive indicates the maximum range of the memory effect. Note
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Figure 2.5: Cross-correlation plots showing Cδr
ij (τ ∗) for the full waveform FW, ballistic B,

and coda C time windows. Plots are shown for δr = 0 m (left column) and δr = 500 m
(right column).
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Figure 2.6: Mean correlation coefficient 〈C〉 (left column) and mean speckle shift 〈δs〉 (right
column) as functions of δr for the full waveform FW, ballistic B, and coda C time-windowed
correlations.
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how the slope becomes positive near δr = 1100 m in the plot for the full waveform correlation,

in agreement with our prediction. The near-horizontal slope in the coda correlation about

δr = 0 m confirms that there is no coherent speckle shift for the coda waves.

2.6 Conclusions

We have shown that the memory effect can be derived by requiring the phase differences

of scattered waves to be conserved after a perturbation in the wave incident to a random

medium. From this conservation argument, we found the memory effect holds for any scat-

tering trajectory through a random medium where the first and last scattering events occur

near the mean scatterer position along the line of sight, as illustrated in Figure 2.2. Thus,

the memory effect is independent of the phases acquired through the multiple scattering

process, in agreement with established theory (Berkovits et al., 1989). Our numerical simu-

lations of short-duration pulse transmission through a collection of random, isotropic point

scatterers illustrate the time dependence of the memory effect. Our results suggest that

imaging through thin, random media with a pulse source can be achieved by exploiting the

ballistic component of the transmitted wave field.
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CHAPTER 3

TARGET-ORIENTED IMAGING OF ACOUSTIC MEDIA USING UNKNOWN AND

UNCONTROLLED RANDOM SOURCES

A paper to be submitted to The Journal of the Acoustical Society of America

Aaron C. Prunty1,2, Roel K. Snieder2, and Christoph Sens-Schönfelder3

3.1 Summary

We investigate the linear sampling method as a means to image localized scatterers

within an acoustic medium using unknown and uncontrolled random sources. We use Monte

Carlo simulations to generate independent realizations of band-limited “white noise” sources,

which are randomly distributed in both time and space. The full recorded waveforms are

used in the inversion, with no preprocessing of the data other than normalizing amplitudes to

boost the energy of multiply scattered waves. Despite the unknown and random character

of the illumination on the concealed scattering targets, we show that the linear sampling

method can obtain reasonable reconstructions of the unknown scatterers. We benchmark

the obtained images against the ideal case of imaging with the scattered field only due to

known and controlled “impulsive” sources.

3.2 Introduction

Imaging concealed targets within an acoustic medium requires the presence of sources

that illuminate the targets with energy. We refer to “primary” sources as those that create

acoustic energy and to “secondary” sources as those that redistribute acoustic energy (e.g.,

a scatterer). Additionally, we refer to a source as “known” when both its space and time

1Primary researcher and author.
2Department of Geophysics, Colorado School of Mines, Golden, Colorado, United States of America.
3Helmholtz Centre Potsdam–GFZ German Research Centre for Geosciences, Potsdam, Germany.
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dependence are known or directly observable, and to a source as “unknown” when neither of

these information is known or directly observable.

Conventional imaging methods assume that the sources used to interrogate a medium are

known. Examples of such techniques include the migration methods found in exploration

seismology: Kirchhoff migration (Beylkin, 1985; Bleistein, 1987; French, 1975; Schneider,

1978), beam migration (Gray, 2005; Gray and Bleistein, 2009; Hill, 1990, 2001), reverse-time

migration (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983), etc. In these methods, it

is assumed that both the source locations and their time dependence are known (or can be

well approximated). In a separate but related problem, velocity estimation techniques such

as full-waveform inversion (Tarantola, 1984; Virieux and Operto, 2009) also assume the time

dependence of the sources is known. A concise overview of imaging methods in exploration

seismology is given by Etgen et al. (2009).

How is imaging achieved when the sources are unknown? There are many applications in

which this may be the case. In exploration seismology, it is significantly more cost-effective

to record a seismic survey with multiple sources (e.g., air guns for marine surveys or vibroseis

trucks for land surveys) going off simultaneously; however, the interference of the reflected

waves due to the multiple sources causes strong artifacts in the obtained images (Beasley

et al., 1998). To mitigate these artifacts, preprocessing techniques such as signal separation

(or “deblending”) and constrained least-squares migration are usually needed (Chen et al.,

2017, 2014, 2015; Xue et al., 2017, 2015).

As another example, ambient-noise seismology relies on using scattered energy from the

subsurface generated by unknown and uncontrolled sources, such as ocean waves, city traffic,

factory plants, microearthquakes that surround the domain to be investigated, etc (e.g.,

Artman (2006); Curtis et al. (2006); Girard and Shragge (2019a,b); Larose et al. (2006);

Shapiro and Campillo (2004); Shapiro et al. (2005); Snieder and Larose (2013)). Despite

this absence of knowledge, techniques such as coda wave (or seismic) interferometry (Snieder,

2006; Snieder et al., 2002; Wapenaar et al., 2010a,b) can be applied, provided the ambient
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sources are uniformly distributed around the receivers and are either temporally repeatable

or spectrally “white” within the used frequency band (Draganov et al., 2004; Halliday and

Curtis, 2008; Sens-Schönfelder and Wegler, 2006). When these assumptions are satisfied,

interferometric techniques can be used to obtain the impulse response of an unknown medium

between a pair of receivers by using the ambient energy that propagates between them. The

obtained impulse response can then be used to construct an image of the medium (for

example, by using one of the migration methods referenced above).

Is it possible to localize inhomogeneities within a medium if the unknown sources are

randomly distributed everywhere in the medium? That is, the ambient sources not only

surround the receivers in the exterior of the imaging domain, but are interspersed amongst

the receivers and imaging targets themselves. Moreover, can we image the targets directly

from the recorded waveforms, without first performing any signal separation or extracting the

medium’s impulse response? To answer these questions, we investigate the linear sampling

method (Chen et al., 2010; Colton and Kirsch, 1996; Colton et al., 1997; Guo et al., 2013;

Haddar et al., 2014; Prunty and Snieder, 2019b) as a candidate imaging technique. The linear

sampling method is a target-oriented imaging procedure for localizing concealed scatterers

within a known background medium. The method requires no prior knowledge of the physical

properties of the unknown scatterers, and therefore handles arbitrarily strong (or weak)

scattering. Physically, the linear sampling method solves for the space and time dependence

of an inverse source function that cancels the effects of a scatterer at various points in the

medium (Catapano et al., 2007; Prunty and Snieder, 2019a,b). Consequently, the space and

time dependence of the illumination on the scattering targets need not be known, and no

source information (whether known or not) is used in the inversion. This observation makes

the linear sampling method an appealing candidate for imaging in the presence of unknown

and uncontrolled random sources. To our knowledge, the linear sampling method has never

been tested on data acquired under such conditions.
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In this paper, we demonstrate the feasibility of imaging localized scattering targets within

an acoustic medium using unknown and uncontrolled random sources. We present the es-

sential information needed to formulate the linear sampling method for the case of random-

source data in Section 3.3 and demonstrate the method with numerical experiments in Section

3.4. We conclude with a discussion of the method and remaining challenges in Section 3.5.

3.3 Methodology

Our goal is to image an unknown, arbitrary scatterer embedded within a known back-

ground medium (not necessarily homogeneous) using unknown and uncontrolled random

sources. Our strategy is to apply the linear sampling method to image the scatterer directly

from the total recorded waveforms, without first performing any signal separation or extract-

ing the perturbed medium’s impulse response. Our only assumption about the sources is that

they are transient on the time scale of the recording period of the experiment. Otherwise,

the space and time dependence of the sources are completely arbitrary.

Suppose we make a number of recordings of the total pressure field in an acoustic medium

in which ambient, unknown sources go off randomly in time and space. The total observed

pressure field will consist of direct waves that propagate between the random sources and

the receivers, as well as scattered waves that are radiated by the presence of inhomogeneities

within the medium. These scatterers act as secondary sources, whose time dependence varies

with that of the random illumination. Whereas the random sources go off unpredictably in

time and space, the scatterers radiate energy consistently from their fixed locations. As we

show momentarily, this fact is key for the linear sampling method to localize the concealed

scattering targets.

Let pj denote the discretized pressure field measured in record j at receiver positions xi,

where i = 1, . . . , Nr and Nr is the number of receivers. In the linear sampling method, we

create a search domain (or imaging domain) in which we attempt to reconstruct the shape of

the unknown scatterers (Colton and Kirsch, 1996; Colton et al., 1997). To do this, the linear

sampling method posits a relation between the recorded data pj and an impulse response
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of the background medium from each point z in the search domain. Formally, this relation

is realized as an ill-posed linear system of equations. Let Ψz denote the discretized impulse

response of the background medium observed at the receivers xi from a given point z in the

search domain. We seek an approximate solution to this ill-posed system of equations by

minimizing the least-squares objective function

min
ϕz

{‖Nϕz −Ψz‖2 + α‖ϕz‖2}. (3.1)

Here, N is a linear, convolutional operator whose matrix-vector product is given (in the

frequency domain and for an arbitrary vector g) by

Ng =
∑

j

pj(xi,ω)g(j,ω), (3.2)

where ω denotes the angular frequencies of the data and α ≥ 0 is a regularization parameter.

Physically, the least-squares solution ϕz to equation (3.1) is an estimate of the inverse source

that cancels the effects of a scatterer at the point z, and exhibits a peculiar “blowup behavior”

that is useful for imaging (Colton and Kirsch, 1996; Colton et al., 1997; Prunty and Snieder,

2019b): the norm of the inverse source ‖ϕz‖ becomes arbitrarily large whenever z is outside

the scatterers. Intuitively, this is because the inverse source cannot exist at points where there

is no physical source of scattered energy. This “law of causality” manifests as a blowup in the

norm of the obtained solution to equation (3.1) (Prunty and Snieder, 2019b). Consequently,

we may define the image at each point in the search domain by

I(z) =
f(z)−min f(z)

max f(z)−min f(z)
,

where

f(z) =
1

‖ϕz‖
.

That is, the value of the image at a point is defined to be a number between 0 and 1, where

a value close to 1 indicates the point is likely inside the scatterer and a value close to 0

indicates otherwise.
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Note that the operation in expression (3.2) involves a summation over data records j. This

means that the linear sampling method sifts through the data records looking for waveforms

that could have been produced from the specified search point z. Because the random sources

go off unpredictably in space and are unlikely to repeat from one data record to the next, the

contribution from any random source that happens to be located at the point z will in general

be averaged out by the operation (3.2). An exception is when no other sources of waves are

present besides the random source, since there are no other contributions in the data records

to be averaged. However, the scattered waves radiated by the inhomogeneities are present

in every data record. Therefore, search points inside the scatterer will be reinforced by the

operation (3.2), resulting in an image of the concealed target.

In a least-squares sense, the linear sampling method will scan through the data records

looking for signals with the largest amplitudes (i.e., signals produced by sources with the

most energy). This means that in a random-source experiment, in which direct arrivals

between the random (primary) sources and receivers dominate the recorded waveforms, the

linear sampling method will first and foremost attempt to image the random sources and not

the scatterers of interest. Any efforts to separate and remove the direct arrivals caused by the

random sources are unlikely to be successful (because the sources are random and unknown).

To overcome this problem, we appeal to the fact that the linear sampling method does not use

the source information in the inversion. However, for the method to “see” the scattered waves

while scanning through the data records, it is necessary to boost their amplitudes relative

to those of the direct waves. Using the fact that the direct waves are of large amplitude but

relatively short duration (in contrast to the scattered waves which are weak but persistent in

time), we apply a running-absolute-mean normalization (Bensen et al., 2007) to each receiver

trace, according to

p̃j(xi, tn) = pj(xi, tn)/wn,

where

30



wn =
1

2N + 1

n+N∑

k=n−N

|pj(xi, tk)|.

We set the window length 2N + 1 to be the maximum period of the observed signal. Thus,

as the sole preprocessing step in our methodology, we replace p in expression (3.2) with the

normalized data p̃.

3.4 Numerical experiments

In this section, we model the scattering of pressure fields in a two-dimensional acoustic

medium of constant density and variable velocity. The imaging target is the “CWP” logo of

the authors’ research group, which is embedded within a homogeneous background medium

of constant wave speed 2 m/s. The total pressure field is measured at 50 receivers placed

along a circle enclosing the target, and the recording period for the experiments is 4 seconds.

We image the medium in the search domain [−0.6 m, 0.6 m]×[−0.4 m, 0.4 m] within the

xy-plane. The search domain is discretized into a 37× 25 point regularly sampled grid. We

model the impulse response Ψ from each grid point using a 30 Hz Ricker pulse. Figure 3.1(a)

shows the general setup of the experiments.

We model and generate independent realizations of the random sources using a Monte

Carlo approach. The number of sources present in a given recording period is a random

integer uniformly distributed between 2 and 10. The locations of the sources are uniformly

distributed within the domain of the model. Each source emits a distinct “white noise” in the

frequency band of 5 Hz to 60 Hz. The duration of a noise source is uniformly distributed be-

tween 10% and 20% of the recording period. The time at which a source goes off is uniformly

distributed between 5% and 60% of the recording period (that is, the sources emit different

noise realizations, of different durations, at different times, and from different points in the

medium). An example noise source is shown in Figure 3.1(b). The corresponding minimum

and maximum wavelengths contained in the noise are shown for scale in Figure 3.1(a).

We conduct our random-source experiments as follows:
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Figure 3.1: (a) Experimental setup of the imaging problem. Random sources are shown as
white dots, receivers as red dots, and the imaging domain by the black dashed line. In this
example, about 630 sources were generated during the experiment. The model shown is for
the strong velocity contrast. (b) A typical noise source simulated in the experiment. The
minimum and maximum wavelengths contained in the noise are shown as λmin and λmax,
respectively, in panel (a).
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1. Specify the number of recordings M for the given experiment.

2. Run M independent Monte Carlo simulations to generate and record the wave fields

from random sources as described above.

3. Apply running-absolute-mean normalization to each data record.

4. Apply the linear sampling method to the resulting data set.

In what follows, we perform four independent random-source experiments, wherein the

number of recordings M = 25, 50, 75, and 100. Consequently, for the experiment with

100 data records, the total number of sources generated during the experiment is anywhere

between 200 and 1,000. To test the ability of the linear sampling method to image both weak

scatterers and strong scatterers in the presence of random sources, we model two cases for

the velocity of the scattering target. In the weak scattering case, the velocity of the scatterer

is set to 2.2 m/s (a 10% increase from the background velocity). In the strong scattering

case, the velocity of the scatterer is set to 0.2 m/s (a 90% decrease from the background

velocity).

3.4.1 Benchmarking against controlled-source analogues

Below we present the images obtained from the random-source experiments. It is in-

structive to compare the images obtained from these experiments with those that would

have been obtained from a controlled-source experiment using the linear sampling method.

To do this, we co-locate a source with each receiver and excite the medium with a 30 Hz

Ricker pulse. The unperturbed pressure field is subtracted from the total pressure field at

the receivers and the inversion is done with the recorded scattered field only. To make a

truly fair comparison with the random-source experiments, we apply running-absolute-mean

normalization to the recorded scattered field as well.
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3.4.2 Case I: Weak velocity contrast

Figure 3.2(a) shows a typical data record from a random-source experiment in the weakly

scattering medium. In this example, a number of direct arrivals are superimposed on top

of one another at various times in the data record. Figure 3.2(b) shows the same data

record after running-absolute-mean normalization. A comparison between Figure 3.2(a) and

Figure 3.2(b) suggests that very little scattered energy is present in the original data, as few

scattered arrivals become apparent after normalization at times proceeding the direct waves.
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Figure 3.2: (a) A typical data record from a random-source experiment in the weakly scat-
tering medium. (b) The same data record after normalization.

For comparison, Figure 3.3 shows a “shot record” of the scattered pressure field from the

analogous controlled-source experiment in the weakly scattering medium before and after

normalization. Because we know the location of the source relative to the receivers, we can

interpret the arrival shown in Figure 3.3(a) – observed approximately at receivers 30 through

50 – as a transmitted wave. Very little to no visible arrivals are present elsewhere in the shot

record. This seems reasonable: since the velocity contrast is weak, most of the wave energy

transmits through the scatterer, while little is back-scattered in the direction of the source.

Figure 3.3(b) shows the same shot record after normalization. Here, both back-scattered
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arrivals as well as multiple arrivals occurring at later times are now apparent.
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Figure 3.3: (a) A “shot record” showing the scattered wave from the weakly scattering
medium due to a known and controlled impulsive source, shown as the cyan star in the map
above. Receiver indexing increases counterclockwise from the negative x-axis. (b) The same
shot record after normalization.

Figure 3.4 shows the images obtained by the linear sampling method for the different

random-source experiments in the weakly scattering medium, as well as the benchmark

images from the analogous controlled-source experiment. In all of the random-source ex-

periments, the method failed to image the CWP logo, but identified a few of the random

sources present within the imaging domain (shown as the bright spots in Figure 3.4(a-d)).
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This is not surprising, as there is little to no scattered energy in the original data that could

be amplified from the normalization.

In Figure 3.4(e-f), the benchmark images obtained from the controlled-source experiment

more clearly reconstruct the CWP logo. Here, the image obtained using the normalized

scattered field is inferior to the image obtained using the unnormalized scattered field. We

speculate this is due to nonphysical effects caused by the normalization, and discuss this

issue further in Section 3.5.

3.4.3 Case II: Strong velocity contrast

Figure 3.5 shows a data record from a random-source experiment in the strongly scat-

tering medium before and after normalization. Here, the amplification of multiply scattered

waves at times proceeding the direct arrivals is apparent.

Figure 3.6 shows a shot record of the scattered pressure field from the analogous controlled-

source experiment in the strongly scattering medium before and after normalization. In this

case, both transmitted and back-scattered waves are apparent in the original data. Fig-

ure 3.6(b) shows a long coda of multiple arrivals that manifests after normalization.

Figure 3.7 shows the images obtained by the linear sampling method for the different

random-source experiments in the strongly scattering medium, as well as the benchmark

images from the analogous controlled-source experiment. Unlike for the case of the random-

source experiments in the weakly scattering medium, here the method was able to reconstruct

a rough estimate of the CWP logo from the normalized data. In this case, however, the

random primary sources are not imaged. This is due to the fact that the random sources do

not repeat, and are subsequently averaged out by summing over data records (see expression

3.2). Conversely, the scattered waves radiated by the CWP logo are present in every data

record, so the letters are reinforced.

Interestingly, the benchmark images shown in Figure 3.7(e-f) obtained from the controlled-

source experiment show the CWP logo less clearly than those obtained from the random-

source experiments shown in Figure 3.7(a-d). For the benchmark image obtained using the
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(e) Benchmark: Unnormalized scattered field
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Figure 3.4: (a-d) Reconstructions of the CWP logo obtained for the random-source experi-
ments in the weakly scattering medium. (e-f) Benchmark images obtained for the controlled-
source experiment before and after normalization. The value of the regularization parameter
α is indicated above each plot.
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Figure 3.5: (a) A typical data record from a random-source experiment in the strongly
scattering medium. (b) The same data record after normalization.

unnormalized scattered field, the linear sampling method appears to detect only the outer-

most boundaries of the letters. Physically, this is likely due to weak transmission caused by

the strong velocity contrast: most of the energy approaching from the exterior of the letters

does not transmit through the letters. In this case, the linear sampling method is primarily

imaging with the much stronger back-scattered waves produced from the boundaries. When

the scattered field is normalized, the weak transmitted waves are amplified and the inter-

nal structure of the CWP logo is more clearly imaged. Finally, there is the fact that our

random-source experiments contain many more sources of energy than do our controlled-

source experiments. Consequently, the CWP logo is illuminated with more energy in the

random-source experiments than in the controlled-source experiments, a fact which certainly

impacts the quality of the image.

3.5 Discussion & Conclusions

We have shown that it is possible to image strongly scattering targets in the presence of

unknown and uncontrolled random sources using the linear sampling method. The success

of our approach lies in the fact that multiply scattered waves present in the recorded data
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Figure 3.6: (a) A “shot record” showing the scattered wave from the strongly scattering
medium due to a known and controlled impulsive source, shown as the cyan star in the map
above. Receiver indexing increases counterclockwise from the negative x-axis. (b) The same
shot record after normalization.

are persistent in time, whereas the direct arrivals from the random sources (although much

larger in amplitude) are of relatively short duration. When the medium is weakly scattering,

however, there are no multiply scattered waves to amplify and the scattering target cannot

be imaged. While the images we have presented are not “crystal clear,” they are encouraging.

The CWP logo is structurally complex, and the sources used to illuminate it were completely

random and uncontrolled. At present, we are not aware of any other imaging method that
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(e) Benchmark: Unnormalized scattered field
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Figure 3.7: (a-d) Reconstructions of the CWP logo obtained for the random-source ex-
periments in the strongly scattering medium. (e-f) Benchmark images obtained for the
controlled-source experiment before and after normalization. The value of the regularization
parameter α is indicated above each plot.
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could produce comparable results under such challenging conditions. In any case, the ap-

proach we have taken here is straightforward and unsophisticated. We are optimistic that

improvements to our methodology can be made to obtain better images.

In our random-source experiments, the image quality generally improves as the number of

data records increases. This is due to the averaging property of the linear sampling method

implicit in expression (3.2): the more data records we supply containing the scattered waves,

the more the image points inside the scatterer are reinforced and the more the image points

corresponding to random sources outside the scatterer are averaged out. Intuitively, if we

keep the number of data records fixed but vary the number of sources present during the

experiment, we expect the image quality to deteriorate as the number of sources decreases,

since we are reducing the amount of illumination on the scattering target. We speculate this

is likely the case for the images shown in Figure 3.7(b) and Figure 3.7(f) of the random- and

controlled-source experiments, respectively. In particular, both images are obtained with

the same number of data records, but the number of sources present in the random-source

experiment is much greater than that in the controlled-source experiment.

There are other scenarios in which we believe imaging with random sources using our

current methodology would fail. The simplest case that comes to mind is the presence of

continuous sources, such as the “hum” of a factory plant. Unlike the transient noise sources

of our numerical experiments, continuous sources generate energy throughout the recording

period and drown out other waveforms present in the data. In some cases, continuous sources

can be filtered out if they lie outside the frequency band of interest, for example. However,

if the purpose of the experiment is to image a scattering target using a continuous “hum,”

we do not see a way to do this with our current methodology.

It should be noted that any normalization we apply to the data renders the resulting

amplitudes nonphysical: any amplitude loss caused by transmission, multiple scattering, or

geometrical spreading is undone by the normalization process. In effect, all wave arrivals are

artificially made to have the same energy. The energy of the source needed to produce such
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“lossless” signals would indeed need to be quite large. As discussed in Section 3.2, the linear

sampling method seeks to estimate the inverse source of the observed waveforms at each

image point. When imaging with unnormalized data, the inverse source is bounded when

the image point is inside the scatterer. This is because the energy of the scatterer is bounded.

When imaging with normalized data, the inverse source becomes increasingly large, even for

image points inside the scatterer. This is because the energy of the scatterer increases to

produce the “lossless” signal. Essentially a binary mapping, the linear sampling method

images the scatterer by plotting where the solution to equation (3.1) is “large” and “small.”

An unfortunate consequence of normalizing the data is that the difference in the norm of the

solution for a point inside the scatterer and that for a point outside the scatterer becomes

less significant. This leads to deteriorated image quality. It therefore makes sense that the

regularization parameter needed to bound the solution when imaging with normalized data

is correspondingly large.
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CHAPTER 4

AN ACOUSTIC LIPPMANN-SCHWINGER INVERSION METHOD: APPLICATIONS

AND COMPARISON WITH THE LINEAR SAMPLING METHOD

A paper submitted to Inverse Problems

Aaron C. Prunty1,2 and Roel K. Snieder2

4.1 Summary

We introduce an imaging method based on solving the Lippmann-Schwinger equation

of acoustic scattering theory. We compare and contrast the proposed Lippmann-Schwinger

inversion with the well-established linear sampling method using numerical examples. We

demonstrate that the two imaging methods are physically grounded in different but related

wave propagation problems: Lippmann-Schwinger inversion seeks to reconstruct the space

and time dependence of a scatterer based on the observed scattered field in a performed

physical experiment, whereas the linear sampling method seeks to focus wave fields in a

simulated virtual experiment by estimating the space and time dependence of an inverse

source function that cancels the effects of the scatterer at a specified focusing point. In both

cases, the medium in which the waves propagate is the same. However, neither method

requires prior knowledge or assumptions on the physical properties of the unknown scatterer

– only knowledge of the background medium is needed. We demonstrate that the linear

sampling method is preferable to Lippmann-Schwinger inversion for target-oriented imaging

applications, as Lippmann-Schwinger inversion gives nonphysical results when the chosen

imaging domain does not contain the scatterer.

1Primary researcher and author.
2Department of Geophysics, Colorado School of Mines, Golden, Colorado, United States of America.
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4.2 Introduction

Imaging is a qualitative inverse scattering problem that seeks to localize the boundaries

between media of different physical properties. In this paper, we restrict our attention to

imaging acoustic media, in which scalar pressure fields propagate and the scattering is caused

by variations in the bulk modulus and mass density of the media. Imaging the boundaries

of such variations is challenging due to imprecise (or altogether absent) knowledge of the

medium. If the impedance contrast is sufficiently strong, much of the wave energy that is sent

into a medium can become localized amongst the inhomogeneities, where it is scattered and

redirected multiple times, before finally being recorded at a receiver. Such strong multiple

scattering makes it difficult to interpret where the observed scattered fields originated.

To construct accurate images, it is necessary for imaging algorithms to properly account

for the multiple scattering undertaken by a wave field as it propagates through a medium.

Of fundamental importance to scattering theory is the Lippmann-Scwhinger equation (e.g.,

Lechleiter and Monk (2015)), which explains not only primary (or single) scattered waves,

but all multiply scattered waves as well. The Lippmann-Schwinger equation provides an

exact representation of the scattered field in terms of a weighted superposition of the impulse

response of the background medium over the region containing the scatterer. The weights

of the superposition are determined by the physical properties of the scatterer (e.g., the

variations in the acoustic impedance), and also on the total field incident to the scatterer.

Naturally, the Lippmann-Schwinger equation forms the basis of many quantitative inversion

schemes that seek to recover some of the physical properties of a scatterer (e.g., Giorgi et al.

(2013); van den Berg and Kleinman (1997); van den Berg et al. (1999)).

The Lippmann-Schwinger equation has been investigated for imaging purposes as well.

However, previous attempts at using the Lippmann-Schwinger equation for imaging have of-

ten relied on a weak-scattering approximation (e.g., Caorsi et al. (2001)) or a re-normalization

of the Lippmann-Schwinger equation to obtain an absolutely convergent series which can then

be inverted (e.g., Kouri and Vijay (2003); Yao et al. (2016)). In this paper, we introduce a
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noniterative technique for inverting the Lippmann-Schwinger equation without making any

weak-scattering approximations. The obtained solution approximates the spatiotemporal

dependence of the scatterer needed to reconstruct the observed scattered field.

The linear sampling method is another imaging technique that has garnered considerable

attention (Chen et al., 2010; Colton and Kirsch, 1996; Colton et al., 1997; Guo et al., 2013;

Haddar et al., 2014; Prunty and Snieder, 2019b). To demarcate the boundary of a scatterer,

the method relies on a characteristic blowup behavior of the solution to an ill-posed integral

equation. The method works by attempting to estimate the spatiotemporal dependence of

an inverse source that cancels the effects of the scatterer at a given point in the medium.

Such a process has a physical solution with finite energy only when the given point lies inside

the scatterer. Clearly, the inverse source cannot exist for any point outside the scatterer,

and numerically this “law of causality” manifests as a blowup in the norm of the solution

(Prunty and Snieder, 2019b). Consequently, an image of the scatterer can be obtained by

noting where the norm of the solution becomes arbitrarily large. More recently, it has been

shown that quantitative information about the scatterer can be extracted from the linear

sampling method (Crocco et al., 2012; Di Donato et al., 2015; Di Donato and Crocco, 2015;

Di Donato et al., 2016; Palmeri et al., 2017).

The linear sampling method has been interpreted as a focusing technique (Catapano

et al., 2007; Prunty and Snieder, 2019b). As we show in this paper, the solution obtained

from the linear sampling method corresponds to a focusing function, which is a type of

distributed source for focusing wave fields in a medium. When the specified point lies inside

the scatterer, the focusing function contains the inverse time dependence of the scatterer

needed to focus wave fields onto the specified point.

Our paper is organized as follows. We formulate the direct scattering problem to establish

the relevant physical quantities of interest in Section 4.3. Lippmann-Schwinger inversion is

introduced in Section 4.4 and compared with the linear sampling method in Section 4.5.

Numerical experiments are given in Section 4.6 and the conclusions follow in Section 4.7.
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4.3 Formulation of the direct scattering problem

We are interested in the problem of reconstructing the shape of a scatterer from mea-

surements of the scattered pressure field. We assume the scattering is due to localized

inhomogeneities, which represent variations in the bulk modulus κ and mass density ρ of

the acoustic medium. We assume the inhomogeneities have total compact support D ⊂ R3,

where we denote the boundary of D by ∂D and the closure of D by D = D∪∂D. Specifically,

we assume the acoustic medium is determined by the functions

κ(x) =

{
κ0(x), x ∈ R3 \D,
κ0(x) + κs(x), x ∈ D,

ρ(x) =

{
ρ0(x), x ∈ R3 \D,
ρ0(x) + ρs(x), x ∈ D,

where κ0, ρ0 denote the background bulk modulus and mass density and κs, ρs denote per-

turbations in the bulk modulus and mass density inside the scatterer, respectively. In this

paper, we further assume the density is continuous across the boundary of the scatterer, so

that ρs → 0 as x→ ∂D from inside the scatterer. Variations in the bulk modulus and mass

density will in general cause the pressure field to propagate at different speeds, since the

acoustic velocity varies as c =
√
κ/ρ. For a point source located at xs ∈ R3, let p denote

the total pressure field satisfying the acoustic wave equation

ρ∇ ·
(

1

ρ
∇p
)
− 1

c2

∂2p

∂t2
= −δ(x− xs)ζ(t), x ∈ R3, t ≥ 0, (4.1a)

p(x, t; xs) = 0,
∂p(x, t; xs)

∂t
= 0, x ∈ R3, t < 0, (4.1b)

where δ is the Dirac delta distribution and ζ ∈ C2(R) is a time-dependent pulse function

that describes the shape of the wave. With the background velocity given by c0 =
√
κ0/ρ0,

we define the refractive index n, the velocity contrast m, and the density ratio q as

n :=
c0

c
, m := 1− n2, q :=

ρ0

ρ
. (4.2)
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Using the definitions given in (4.2), the total pressure field can be decomposed into an

unperturbed wave p0 and a scattered wave ps such that p = p0 + ps is the unique solution to

(4.1). It follows that if the unperturbed pressure field p0 satisfies

ρ0∇ ·
(

1

ρ0

∇p0

)
− 1

c2
0

∂2p0

∂t2
= −δ(x− xs)ζ(t), x ∈ R3, t ≥ 0, (4.3a)

p0(x, t; xs) = 0,
∂p0(x, t; xs)

∂t
= 0, x ∈ R3, t < 0, (4.3b)

then the scattered pressure field ps satisfies

ρ0∇ ·
(

1

ρ0

∇ps
)
− 1

c2
0

∂2ps
∂t2

= χ(x, t; xs), x ∈ R3, t ≥ 0, (4.4a)

ps(x, t; xs) = 0,
∂ps(x, t; xs)

∂t
= 0, x ∈ R3, t < 0, (4.4b)

where χ is the contrast source function given by

χ := −
[

1

q
∇q · ∇p+

m

c2
0

∂2p

∂t2

]
. (4.5)

Expression (4.5) states that the contrast source function χ is a combination of both monopole

sources (due to velocity variations) and dipole sources (due to density variations). Note that

the time dependence of the contrast source is determined by the total pressure field p at

the scatterer. As seen from the definitions given in (4.2), the velocity contrast m and the

gradient of the density ratio ∇q are in general nonzero only inside the scatterer. It follows

that the contrast source function χ has compact support D. In deriving expression (4.5), we

have assumed that the density is smoothly varying across the boundary of the scatterer. If

the density is discontinuous across the boundary of the scatterer, the contrast source function

has an additional term proportional to the jump discontinuity in the density (Martin, 2003).

We do not address such complexities in this paper.

Let G0 denote the unperturbed Green function of the background medium satisfying

ρ0∇ ·
(

1

ρ0

∇G0

)
− 1

c2
0

∂2G0

∂t2
= −δ(x− η)δ(t), x ∈ R3, t ≥ 0, (4.6a)

G0(x, t;η) = 0,
∂G0(x, t;η)

∂t
= 0, x ∈ R3, t < 0. (4.6b)
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By linearity, the solutions to equations (4.3) and (4.4) are given by

p0(x, t; xs) =

∫

R
G0(x, t− τ ; xs)ζ(τ) dτ, (4.7)

and

ps(x, t; xs) =

∫

R

∫

D

G0(x, t− τ ;η)χ(η, τ ; xs)dη dτ, (4.8)

respectively. Expression (4.8) is the Lippmann-Schwinger equation for scattered pressure

field ps. If the contrast source (4.5) is known, we could use equation (4.8) to exactly compute

the scattered pressure field observed at any point x and at any time t. In practice, however,

the contrast source function (4.5) is unknown since we do not know the velocity or density

variations of the acoustic medium, nor the total pressure field at the scatterer.

On the other hand, suppose we know (or can estimate) the background medium without

the scatterer so that we can compute the unperturbed Green function G0. Then, provided

we can separate the scattered pressure field ps from the recorded total field p, equation (4.8)

provides a means to solve for the unknown contrast source function χ without requiring any

prior knowledge or weak-scattering approximations of the contrast source.

4.4 Lippmann-Schwinger inversion

In an imaging experiment, we record the total pressure field p at receiver locations xr,

which are typically restricted to an acquisition surface we denote by Γr. Similarly, the sources

used to generate the pressure field are restricted to points xs of an acquisition surface we

denote by Γs (possibly equal to Γr). Both surfaces Γr and Γs are assumed to be disjoint

from D. By evaluating equation (4.8) on the receiver surface Γr, we can relate the recorded

scattered field to the unknown contrast source function.

As it stands, equation (4.8) is difficult to solve for a number of reasons. For one, the un-

perturbed Green function satisfying equation (4.6) is not a known analytic expression, since

the background medium may be arbitrarily heterogeneous. In general, numerical methods

are needed to approximate the Green function. Such methods are numerically unstable when
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trying to model the impulse response of a system, but fare better when modeling a function

of finite bandwidth. As a result, what is often obtained from a numerical approximation is

not the Green function itself, but an approximation of the Green function convolved with

some band-limited time function. Second, to properly account for the spatial distribution of

the contrast source function χ, it is necessary to discretize the volume integral in equation

(4.8) using a quadrature rule. This may prove challenging and computationally expensive

when attempting to accommodate the arbitrary structure of the background medium.

To address these issues, let S ∈ C2(R) be a time-dependent function possessing the same

frequency band as the scattered pressure field ps. For an arbitrary point z ∈ R3, we define

the test function

Ψ(xr, t; z) :=

∫

R
G0(xr, t− τ ; z)S(τ) dτ, (4.9)

which represents a band-limited impulse response of the background acoustic medium that

can be effectively modeled using numerical methods. The choice of the time function S need

only be made in consideration of the frequency band of the data, and does not necessarily

need to be equal to the generating pulse function ζ (which may be unknown). Furthermore,

let Ω denote a subset of the background medium containing the scatterer, so that D ⊂ Ω.

Our imaging procedure is then based on solving the modified Lippmann-Schwinger equation
∫

R

∫

Ω

Ψ(xr, t− τ ; z)χ(z, τ ; xs) dz dτ = ps(xr, t; xs) (4.10)

for the contrast source χ. By using expression (4.9) as a proxy for the unperturbed Green

function G0 in equation (4.8), we can avoid the cost of performing a quadrature rule for

the volume integral in equation (4.10) by discretizing the domain Ω into a sufficiently dense

grid, say a few grid points per the dominant wavelength of the test function Ψ. Such an

approach effectively exploits the fact that a superposition of the band-limited test functions

will achieve sufficient smoothness in the obtained solution.

Due to the compact support of the contrast source function, we expect the solution χ

to be nonzero only for those points z ∈ D. It follows that an image of the scatterer can be
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obtained by plotting the energy of the solution to equation (4.10) over the domain Ω and

noting where the energy is greater than zero:

‖χ(z, ·,xs)‖L2(R) =

{
> 0, z ∈ D,
0, z ∈ Ω \D.

We numerically implement our proposed imaging technique as follows. Given a model of

the background medium, we discretize the imaging domain Ω into Nz distinct points using

a regularly sampled grid that covers the scatterer. Let Nr denote the number of receivers,

Nt the number of time samples, and Ns the number of sources. For each grid point zn,

n = 1, . . . , Nz, we discretize the test function observed at the receivers as

Ψ(i, k, n) := Ψ(xi, k∆t; zn),

where i = 1, . . . , Nr, k = 0, . . . , Nt − 1, and ∆t is the time sampling interval. For a general

heterogeneous background medium, numerical methods are needed to compute these test

functions. In Section 4.6, we consider the special case of a constant background medium for

which the test functions assume a simple, analytic expression. In any case, the test functions

can be efficiently computed using source-receiver reciprocity whenever the number of grid

points Nz is expected to be greater than the number of receivers Nr.

Similarly, the scattered pressure field is discretized as

p(i, k, j) := ps(xi, k∆t; yj),

where j = 1, . . . , Ns. Figure 4.1 shows a schematic in which we construct a regularly sampled

grid that covers an unknown scatterer.

Next, we discretize the modified Lippmann-Schwinger equation (4.10) into a sum over

the grid points zn. Since equation (4.10) is convolutional in time, the problem is efficiently

solved in the frequency domain. Here, we use a circumflex ˆ to denote frequency-domain

quantities and ω to denote a vector of angular frequencies. For each source j = 1, . . . , Ns,

we take the scattered pressure field p̂(·, ·, j) and solve the discretized Lippmann-Schwinger
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Figure 4.1: A schematic illustrating the discretization of an imaging domain that covers an
unknown scatterer. The scattered pressure field ps is approximated by a linear combination
of the test functions Ψ over the imaging domain.

equation

Nz∑

n=1

Ψ̂(i,ω, n)χ̂(n,ω, j) = p̂(i,ω, j) (4.11)

in a least-squares sense. An image is obtained for each source as

Ij(zn) := ‖χ̂(n, ·, j)‖2,

where the 2-norm is computed over all angular frequencies ω. The final image produced

from Lippmann-Schwinger inversion ILSI is defined as the root-mean-square of the normalized

images Ij:

ILSI(zn) :=

(
1

Ns

Ns∑

j=1

fj(zn)2

)1/2

, (4.12a)

fj(zn) :=
Ij(zn)−min Ij
max Ij −min Ij

. (4.12b)

It follows that the final image satisfies 0 ≤ ILSI(zn) ≤ 1 for all points zn in the imaging

domain Ω, where values close to one indicate a likely location of the scatterer and values

close to zero indicate otherwise.
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4.5 Comparison with the linear sampling method

The linear sampling method exploits the use of the source position xs ∈ Γs as a free

parameter in the physical experiment to design wave fields of a simulated virtual experiment

(Crocco et al., 2012). By multiplying equations (4.3) and (4.4) by a function ϕ ∈ L2(Γs×R)

and integrating over Γs × R, it follows by linearity that the functions

vϕ(x, τ) :=

∫

R

∫

Γs

p0(x, τ − t; xs)ϕ(xs, t) ds(xs) dt (4.13)

and

wϕ(x, τ) :=

∫

R

∫

Γs

ps(x, τ − t; xs)ϕ(xs, t) ds(xs) dt (4.14)

are also solutions to equations (4.3) and (4.4), respectively. The functions vϕ and wϕ are

the “unperturbed” and “scattered” fields of a virtual experiment corresponding to the unper-

turbed and scattered fields p0 and ps of the physical experiment, respectively. The depen-

dence of the functions vϕ and wϕ on the choice of ϕ is emphasized in the notation.

In the linear sampling method, we force the scattered field wϕ of the virtual experiment

to coincide with a band-limited impulse response Ψz that radiates from a fixed point z in

the imaging domain Ω, as observed on the receiver surface Γr. This amounts to evaluating

expression (4.14) on the receiver surface Γr to form the near-field equation
∫

R

∫

Γs

ps(xr, τ − t; xs)ϕ(xs, t; z) ds(xs) dt = Ψ(xr, τ ; z). (4.15)

Since the scattered field of the virtual experiment is made to radiate from a single point

z ∈ Ω, the incident field vϕz of the virtual experiment must focus onto this point. To

construct this focusing wave field, we solve the near-field equation (4.15) for the function ϕz

in a least-squares sense. We call the solution ϕz a focusing function, which is parameterized

by the focusing point z ∈ Ω. The focusing function ϕz extracts the properties of the contrast

source χ at the prescribed point z ∈ Ω from the information encoded in the scattered field ps.

Of course, this is physically possible only when the prescribed point lies inside the scatterer.

It can be shown that the focusing function ϕ is proportional to the inverse of the contrast
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source function χ (Prunty and Snieder, 2019b). In particular, the inverse of χ exists and is

bounded in the L2 norm only for points z ∈ D (where χ is strictly nonzero). Otherwise, for

points z ∈ R3 \D, the inverse of χ does not exist and the solution ϕz becomes unbounded

(due to a division by zero since χ is zero outside the scatterer). This is the so-called blowup

behavior of solutions to the near-field equation.

The discretization of the near-field equation leads to the linear system

Ns∑

j=1

p̂(i,ω, j)ϕ̂(j,ω, n) = Ψ̂(i,ω, n). (4.16)

Due to the blowup behavior of the solution ϕ̂, it is convenient to define an image as

ILSM(zn) :=
g(n)−min g

max g −min g
, (4.17a)

g(n) :=
1

‖ϕ̂(·, ·, n)‖2

. (4.17b)

As was the case for Lippmann-Schwinger inversion, it follows that the image obtained

from the linear sampling method satisfies 0 ≤ ILSM(zn) ≤ 1 for all points zn in the imaging

domain.

By comparing the discretized equations (4.11) and (4.16), we see that Lippmann-Scwhinger

inversion is reciprocal to the linear sampling method in the sense that the roles of the scat-

tered pressure fields p and the test functions Ψ have been interchanged. In equation (4.11),

we take a linear combination of the test functions over the imaging domain to solve for the

contrast source function that best reconstructs the observed scattered field at the receivers.

In equation (4.16), we take a linear combination of the observed scattered fields to solve for

the inverse source function that best reconstructs a prescribed impulse response. Thus, the

matrix operators in equations (4.11) and (4.16) perform the same actions but using opposite

kernels. From a computational perspective, this means that a generic convolutional operator

can be defined once, and the test functions Ψ or the scattered pressure fields p can be sub-

stituted as the kernel of the operator to switch back and forth between Lippmann-Schwinger

inversion and the linear sampling method, respectively.
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An important difference between Lippmann-Schwinger inversion and the linear sampling

method lies in the domain of definition of their solutions. The contrast source function

χ obtained from Lippmann-Schwinger inversion is a global solution defined over the entire

imaging domain Ω. Consequently, the image obtained from Lippmann-Schwinger inversion

depends on every point in the imaging domain. Conversely, the focusing function ϕz obtained

from the linear sampling method is defined over the acquisition surface Γs and parameterized

by a single image point z ∈ Ω. Thus, each image point obtained from the linear sampling

method depends only on the blowup behavior of the solution ϕz, and is independent of every

other point in the imaging domain.

This difference between the two methods has profound implications should the chosen

imaging domain not contain the scatterer. In particular, Lippmann-Schwinger inversion

would fail to give a physically plausible source function χ, since the least-squares solution of

equation (4.11) forces a nonzero solution over a given imaging domain. Consequently, the

resulting image cannot always be trusted. This issue is of significant practical importance

since the location of the scatterer is often not known in advance. In contrast, the image

obtained from the linear sampling method would remain unaffected by the choice of the

imaging domain, since the method relies on the blowup behavior of the solutions ϕz to

localize the scattering target. We illustrate this important difference in the next section.

4.6 Numerical experiments

In what follows, we demonstrate Lippmann-Schwinger inversion as a source reconstruction

method for the performed physical experiment and the linear sampling method as a focusing

technique for the corresponding virtual experiment. Special attention is paid to the influence

of the chosen imaging domain on the obtained images for each method. Finally, we compare

and contrast the two methods in their ability to image morphologically random scatterers.

For simplicity, we model the scattering experiments in a two-dimensional acoustic medium.

The background medium is taken to be homogeneous, characterized by a constant wave speed

c0 = 2 m/s and a constant density ρ0 = 1 kg/m3. In the following experiments, we interro-
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gate the medium using 24 sources and receivers which are placed along a circle surrounding

the scatterers. The time dependence of each source is given by the Ricker pulse

ζ(t) := [1− 2π2ν2(t− 0.1)2]e−π
2ν2(t−0.1)2 ,

where the dominant frequency ν will be specified before each example. The test function is

computed for each point zn in the background medium as

Ψ(i, k, n) =
ζ(k∆t− ‖xi − zn‖/c0)

2π
√
k2∆t2 − ‖xi − zn‖2/c2

0

(4.18)

when k∆t ≥ ‖xi − zn‖/c0 and is zero otherwise.

To generate the scattered pressure field ps at the receivers, we simulate the total pressure

field p in the presence of the scatterers by finite-difference modeling and subtract from it the

unperturbed pressure field computed using equation (4.18) with the grid points zn replaced

by the source points xs.

We use the LSMR algorithm (Fong and Saunders, 2011) and Tikhonov regularization

(Tikhonov et al., 2013) to solve equations (4.11) and (4.16) in a least-squares sense. The

value of the regularization parameter α is indicated in each example.

4.6.1 Demonstrating the physical bases of the methods

To test the physical interpretation of Lippmann-Schwinger inversion as a source recon-

struction technique and the linear sampling as a focusing technique, we consider the velocity

model shown in Figure 4.2. The model is intentionally simple, consisting of a single box-

shaped anomaly embedded within the homogeneous background medium. In this experiment,

we interrogate the scatterer using the Ricker pulse with a dominant frequency ν = 25 Hz.

The dominant wavelength λ of the Ricker pulse is shown in Figure 4.2 for scale. We apply

Lippmann-Schwinger inversion and the linear sampling method to two different imaging do-

mains: one domain that contains the scatterer and another domain that does not (Ω1 and

Ω2 in Figure 4.2, respectively). Both imaging domains are discretized into a 15 × 15 point

regularly sampled grid.
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Figure 4.2: A velocity model with the scatterer given by the box-shaped anomaly in red. 24
sources and receivers (shown as dots) are co-located in a circle surrounding the scatterer. The
imaging domains Ω1 and Ω2 are shown by the black dashed lines. The dominant wavelength
of the Ricker pulse is shown for scale.

The left column of Figure 4.3 shows snapshots of the modeled scattered pressure field

corresponding to the source shown by the red dot. The boundary of the scatterer is indicated

by the white dashed line. The right column of Figure 4.3 shows the same snapshots of the

reconstructed scattered pressure field obtained from Lippmann-Schwinger inversion applied

to the imaging domain Ω1 (shown by the yellow dashed line). In this case, the obtained

contrast source function χ correctly replicates the spatiotemporal behavior of the scatterer to

reconstruct the scattered pressure field observed at the receivers. The anomalous waveforms

seen in the reconstructed wave field are likely due to coarse receiver sampling along the

acquisition circle and could be reduced with denser acquisition.

Figure 4.4 shows the same snapshots of the modeled scattered pressure field but now

alongside the reconstructed scattered pressure field obtained from Lippmann-Schwinger in-

version applied to the imaging domain Ω2. In this case, the imaging domain does not contain

the scatterer and the obtained contrast source function χ poorly reconstructs the scattered

pressure field observed at the receivers. Interestingly, the contrast source still attempts to
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Figure 4.3: The scattered pressure field of the physical experiment corresponding to the
source shown by the red dot. Other source and receiver locations are indicated by blue dots
and the boundary of the scatterer by the white dashed line. Left column: the scattered
pressure field obtained by finite-difference modeling: the unperturbed pressure field p0 is
subtracted from the total pressure field p. Right column: the reconstructed scattered pressure
field obtained by using χ as a source function over the imaging domain (yellow dashed line).
Here, the imaging domain Ω1 contains the scatterer. The wave fields in each row are shown
at the same time step.
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reconstruct the back-scattered waves observed at the receivers at the top-left quadrant of

the acquisition circle. The imprint of the coarse receiver sampling is again obvious in the

reconstructed waveforms.

Figure 4.5 shows snapshots of the corresponding virtual experiments obtained from the

linear sampling method. The boundary of the scatterer is again shown by the white dashed

line. The left column shows the total wave field before, at, and after the time of focusing for

the case when the image point (shown as the yellow dot) lies inside the scatterer. In this case,

the obtained focusing function ϕ correctly synchronizes the sources (shown as blue dots) to

focus the incident field onto the prescribed image point. Conversely, the right column shows

the same snapshots of the total wave field for the case when the image point does not lie

inside the scatterer. Here, the obtained focusing function ϕ is nonphysical, since it could

not extract the properties of the contrast source χ at the given image point. Consequently,

focusing is not achieved.

Figure 4.6 shows the obtained images from Lippmann-Schwinger inversion (left column)

and the linear sampling method (right column) using definitions (4.12) and (4.17), respec-

tively. The top row shows the reconstructions for the imaging domain Ω1, which contains the

scatterer. Clearly, both methods accurately reconstruct the shape of the box anomaly. The

bottom row shows the reconstructions for the imaging domain Ω2, which does not contain the

scatterer. Here, Lippmann-Schwinger inversion incorrectly suggests there is a scatterer in-

side the imaging domain, whereas the linear sampling method correctly indicates there is no

scatterer. The images in the bottom row are plotted on the same scale as the corresponding

images in the top row.

4.6.2 Imaging random inclusions

We compare Lippmann-Schwinger inversion and the linear sampling method in their

ability to reconstruct morphologically random inclusions (Figure 4.7). In this experiment,

the random inclusions represent perturbations in both the model wave speed and mass

density, with c = 2.3 m/s and ρ = 1.3 kg/m3 inside the inclusions. As discussed in Section
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Figure 4.4: The scattered pressure field of the physical experiment corresponding to the
source shown by the red dot. Other source and receiver locations are indicated by blue dots
and the boundary of the scatterer by the white dashed line. Left column: the scattered
pressure field obtained by finite-difference modeling: the unperturbed pressure field p0 is
subtracted from the total pressure field p. Right column: the reconstructed scattered pressure
field obtained by using χ as a source function over the imaging domain (yellow dashed line).
Here, the imaging domain Ω2 does not contain the scatterer. The wave fields in each row
are shown at the same time step.
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Figure 4.5: The wave field of the virtual experiment before, at, and after the time of focusing.
The focusing point is shown as the yellow dot and source locations as blue dots. The
boundary of the scatterer is indicated by the white dashed line. Left column: the incident
field vϕ focuses when the focusing point is inside the scatterer. Right column: the incident
field vϕ does not focus when the focusing point is outside the scatterer. The wave fields in
each row are shown at the same time step.
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Figure 4.6: Reconstructions of the box-shaped anomaly using (left column) Lippmann-
Schwinger inversion and (right column) the linear sampling method. Top row: the imaging
domain contains the scatterer. Bottom row: the imaging domain does not contain the scat-
terer. Images in the bottom row are plotted on the same scale as the corresponding image
in the top row. The value of the regularization parameter α is indicated above each plot.
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4.3, the jump discontinuities in the density across the boundaries of the random inclusions

will contribute an additional term to the contrast source function which is not accounted for

in either Lippmann-Schwinger inversion or the linear sampling method. Still, it is instructive

to see how well these methods perform when the physics of the scattering problem cannot

be fully captured in the imaging algorithms.

We interrogate the acoustic medium using staggered sources and receivers along the

acquisition circle as depicted in Figure 4.7. Since the sources and receivers are not co-located,

we use reciprocity to add “fictitious” data to the linear system of equations and enhance our

coverage of the imaging domain. In this experiment, we interrogate the scatterers using the

Ricker pulse with a dominant frequency ν = 20 Hz. The dominant wavelength λ of the

Ricker pulse is shown in Figure 4.7 for scale. We construct an imaging domain covering the

region from 0.7 m to 1.3 m along the x-axis and from 0.2 m to 0.8 m along the y-axis with

a 31× 31 point regularly sampled grid.
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Figure 4.7: Models of the acoustic velocity (left) and density (right) for the random in-
clusions. Sources are indicated by blue dots and receivers by green dots. The dashed line
indicates the imaging domain. The dominant wavelength of the Ricker pulse is shown for
scale.

We test the imaging methods under three different scenarios. In the first scenario, the

background medium is known exactly and the scattered wave is measured noise-free. An

example shot gather for this scenario is shown in Figure 4.8(a). In the second scenario,

we test the ability of the methods to reconstruct the random inclusions in the presence of

noisy data and an erroneous background model. Here, we incorrectly assume the background
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velocity is c0 = 2.3 m/s, which is a 15% increase from the true background velocity. We add

random noise to the scattered pressure field that is uniformly distributed within the same

frequency band as the data. We set the signal-to-noise ratio (SNR) to 0.3, which is defined

as

SNR =
Psignal

Pnoise
,

where P denotes average power (i.e., the mean-square amplitude). Here, Psignal denotes the

average signal power taken over 24 traces per shot gather. A common shot gather of the

scattered pressure field with noise is shown in Figure 4.8(b).

In the third scenario, we generate the scattered pressure field ps using only the density

model shown in right panel of Figure 4.7, while the acoustic velocity is held fixed at c0 = 2

m/s everywhere in the model. Since neither Lippmann-Schwinger inversion nor the linear

sampling method accounts for the jump discontinuities in the density, both methods are

expected to fail. Figure 4.8(c) shows a typical shot gather corresponding to this limiting

case.

Figure 4.9 shows the obtained images from Lippmann-Schwinger inversion (left column)

and the linear sampling method (right column) for each of the three scenarios. The top row

shows the images obtained for the case of the exact background model and noise-free data.

Both methods clearly reconstruct the shapes of the random inclusions. This suggests that

imaging with these methods is still feasible despite jump discontinuities in the density so

long as the velocity contrast is the dominant term in the contrast source function (4.5). The

middle row shows the images obtained for the case of an erroneous background model and

noisy data. For both methods, we observe a dilation in the size and location of the random

inclusions due to the erroneous background velocity. The imprint of the noisy signal is

evident in the gritty texture of the inclusions compared with the images in the top row. The

bottom row shows the images obtained for the case in which the scatterers represent pure

density contrasts. As expected, both methods have failed to identify any coherent structure

of the random inclusions.
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Figure 4.8: (a) A noise-free shot gather showing the recorded scattered pressure field ps. (b)
The same shot gather in (a) superimposed with uniformly distributed noise lying in the same
frequency band as ps. The SNR = 0.3. Note that only the primary scattered wave is visible
at this noise level. (c) A common shot gather showing the scattered pressure field ps for the
case in which only the mass density ρ varies as shown in the right panel of Figure 4.7.
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Figure 4.9: Reconstructions of the random inclusions using (left) Lippmann-Schwinger inver-
sion and (right) the linear sampling method. (top row) Reconstructions obtained using the
correct background model and noise-free data. (middle row) Reconstructions obtained us-
ing an erroneous background velocity model and noisy data. (bottom row) Reconstructions
obtained for the case in which only the mass density varies. The value of the regularization
parameter α is indicated above each plot.
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4.7 Discussion & Conclusions

We have presented an imaging method based on solving the Lippmann-Schwinger equa-

tion of acoustic scattering theory. Compared with the linear sampling method, both tech-

niques formulate the imaging problem without using any prior knowledge or weak-scattering

approximations of the unknown scatterer. We have validated the physical interpretations of

Lippmann-Schwinger inversion as a source reconstruction method for the performed physical

experiment and the linear sampling method as a focusing technique for the corresponding

virtual experiments. Our numerical experiments show that the two imaging methods give

comparable reconstructions when the imaging domain fully contains the scatterer. Even in

the presence of noise and an erroneous background model, both imaging techniques give

reasonable reconstructions. However, only the linear sampling method gives physically con-

sistent results when the imaging domain does not contain the scatterer.

As discussed by Martin (2003), many practical applications of acoustic scattering involve

jump discontinuities in the density across the boundary of a scatterer. Unfortunately, these

jump discontinuities manifest as an additional surface integral in the Lippmann-Schwinger

equation over the boundary of the scatterer, which is not known in practical applications.

This poses a significant challenge for the inverse scattering problem of reconstructing such

jump discontinuities, especially if the scatterer is primarily caused by strong density vari-

ations. Further work on acoustic inverse scattering methods should look into possible ap-

proaches for handling strong density contrasts.
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CHAPTER 5

THEORY OF THE LINEAR SAMPLING METHOD FOR TIME-DEPENDENT FIELDS

A paper published in Inverse Problems1

Aaron C. Prunty2,3 and Roel K. Snieder3

5.1 Summary

The linear sampling method seeks to localize the unknown source of an observed, time-

dependent field. The unknown source could be, for example, a scatterer embedded within a

medium, or an impulsive excitation such as an earthquake or explosion. The source of the

observed field is localized by means of solving the so-called near-field equation and mapping

the obtained solutions through an indicator functional over a test region assumed to contain

the source. In its current formulation, however, the linear sampling method suffers from an

ambiguous time parameter that strongly influences its ability to localize the unknown source.

Our paper consists of two fundamental results central to the theoretical understanding of

the linear sampling method and its numerical implementation. First, we prove the so-called

blowup behavior of solutions to the near-field equation for a general source function that

is separable in space and time. Second, we show that the linear sampling method can be

formulated such that the ambiguous time parameter is irrelevant. We demonstrate that a

dependence of the linear sampling method on the time parameter arises from an incorrect

implementation of a convolution-type operator found in the near-field equation. When the

operator is implemented correctly, the dependence on the time parameter vanishes. We

provide detailed algorithms for efficient and proper implementations of the convolutional

operator in both the time and frequency domains. The crucial result of the improved imple-

1 c© IOP Publishing. Reproduced with permission. All rights reserved. 2019 Inverse Problems 35 055003.
DOI: https://doi.org/10.1088/1361-6420/ab0ccd

2Primary researcher and author.
3Department of Geophysics, Colorado School of Mines, Golden, Colorado, United States of America.
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mentations is that they allow the linear sampling method to be completely automated, as

one does not need to know the space-time dependence of the unknown source. We demon-

strate the effectiveness of the improved time- and frequency-domain implementations using

several numerical examples applied to imaging scatterers.

5.2 Introduction

The linear sampling method (Cakoni and Colton, 2014; Colton and Kirsch, 1996; Colton

and Kress, 2013; Colton et al., 1997) is an inverse scattering technique that aims to localize

the unknown source of an observed field. First introduced as a way to image scattering

objects using monochromatic waves, the method relates the measured far-field patterns of

the scattered waves to that of an impulse response of the host medium in which the scattering

object is embedded. The impulse response is the wave field generated by a hypothesized

source localized at a particular sampling point in the host medium. In particular, the far-field

patterns of the scattered waves and impulse response are related through an ill-posed integral

equation called the far-field equation. The effectiveness of the linear sampling method in

reconstructing the support of a scatterer relies on a characteristic blowup behavior of solutions

to the far-field equation. In particular, the norm of a solution becomes arbitrarily large

whenever the sampling point lies outside the support of the scatterer. This behavior has

been studied and rigorously proven for the far-field case (e.g., Arens (2003); Arens et al.

(2009) and the references therein).

Due to the limited spatial resolution provided by a single frequency, the quality of the

obtained reconstructions using monochromatic waves is relatively poor. Consequently, efforts

to improve the accuracy of the linear sampling method have been made more recently (Chen

et al., 2010; Guo et al., 2013; Haddar et al., 2014). By interrogating the scatterer with signals

that possess a continuous range of frequencies, the accuracy of the reconstructed targets is

significantly enhanced. In this approach, the linear sampling method relates time-domain

recordings of near-field scattered waves to an impulse response of the host medium through

the near-field equation. Although the desired blowup behavior of solutions to the near-field
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equation has yet to be rigorously proven (a task that is considerably more difficult than for

the far-field case), several numerical experiments have validated the blowup behavior (e.g.,

Guo et al. (2013); Haddar et al. (2014)). With the time-domain approach, however, came

an ambiguous time parameter that strongly influences the ability of the method to faithfully

reconstruct the support of the scatterer. In particular, the literature to date indicates that

“an appropriate time shift” must be chosen to obtain an image of the scatterer (Chen et al.,

2010; Guo et al., 2013; Haddar et al., 2014; Khaji and Manshadi, 2015), yet no information

is offered on how this parameter should be chosen. We have found that a clear and precise

analysis of the time parameter and its influence on the reconstruction process has yet to be

provided.

In this paper, we give a simple proof of the blowup behavior of solutions to the near-field

equation, and show that a proper formulation of the linear sampling method can be obtained

without introducing an ambiguous time parameter. We find that the reported dependence on

the time parameter arises when a discretized convolutional operator found in the near-field

equation is truncated. When the full convolution is implemented correctly, the dependence

on the time parameter vanishes. Moreover, we present an algorithm for solving the near-field

equation in the frequency domain, in which the recorded signals have sparse representations,

that substantially reduces computational cost compared to the time-domain approach.

In what follows, we provide a brief overview of the time-domain linear sampling method,

introducing relevant equations, definitions, and parameters (Section 5.3). We then present

a physical framework in which to formulate the linear sampling method, and in particular

to prove the blowup behavior of solutions to the near-field equation (Appendix) and analyze

the role of the time parameter (Section 5.4). Next, we provide an in-depth discussion on the

numerical solution of the near-field equation, with a particular emphasis on how to prop-

erly and efficiently implement the convolutional operator in both the time and frequency

domains (Section 5.5). Following this discussion, we present several numerical examples ap-

plied to imaging scatterers to demonstrate the effectiveness of the improved implementations
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(Section 5.6). We conclude our paper by examining a few implications of our proof of the

blowup behavior for other possible applications of the linear sampling method, as well as the

performance of the improved algorithms (Section 5.7).

5.3 Overview of the time-domain linear sampling method

In this section, we present an overview of the time-domain linear sampling method as is

typically done for the case of imaging a scatterer. For simplicity, we consider the scattering

of acoustic waves due to an inhomogeneity of compact support D ⊂ R3. The generalization

to elastic wave scattering is relatively straightforward and has been considered in reference

Khaji and Manshadi (2015), for example. We assume the inhomogeneity is modeled by a

variable wave speed c = c(x), with c(x) > 0 for all x ∈ D, and that the wave speed is a

positive constant c = c0 for all x ∈ R3 \D, where D denotes the closure of D. For a point

source located at xs ∈ R3, let u be the total wave that satisfies the initial-value problem

∇2u(x, t; xs)−
1

c2(x)

∂2u(x, t; xs)

∂t2
= −δ(x− xs)χ(t), x ∈ R3, t ≥ 0, (5.1a)

u(x, t; xs) = 0,
∂u(x, t; xs)

∂t
= 0, x ∈ R3, t < 0, (5.1b)

where δ is the Dirac delta distribution and χ ∈ C2(R) is a time-dependent function that

describes the shape of the wave.

The total wave can be decomposed into an incident wave ui and a scattered wave us such

that u = ui + us is a solution to (5.1). By defining the refractive index

n(x) :=
c0

c(x)
,

and the contrast function

m := 1− n2, (5.2)

it follows that if the incident wave ui satisfies

∇2ui(x, t; xs)−
1

c2
0

∂2ui(x, t; xs)

∂t2
= −δ(x− xs)χ(t), x ∈ R3, t ≥ 0, (5.3a)
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ui(x, t; xs) = 0,
∂ui(x, t; xs)

∂t
= 0, x ∈ R3, t < 0, (5.3b)

then the scattered wave us satisfies

∇2us(x, t; xs)−
1

c2
0

n(x)
∂2us(x, t; xs)

∂t2
= − 1

c2
0

m(x)
∂2ui(x, t; xs)

∂t2
, x ∈ R3, t ≥ 0, (5.4a)

us(x, t; xs) = 0,
∂us(x, t; xs)

∂t
= 0, x ∈ R3, t < 0. (5.4b)

The unique solution to (5.3) is given by the convolution of the free-space Green function

(i.e., the radiating fundamental solution) with the pulse function χ:

ui(x, t; xs) :=
χ(t− c−1

0 |x− xs|)
4π|x− xs|

. (5.5)

In an imaging experiment, we record the total wave field u at receiver locations xr, which

are typically restricted to an acquisition surface we denote by Γr. Similarly, the sources

used to generate the wave field u are restricted to points xs of an acquisition surface we

denote by Γs (possibly equal to Γr) such that Γs and D are disjoint. Consequently, we can

consider constructing an incident wave generated by a distribution of sources over Γs. Such

an incident wave is given by a linear combination of expression (5.5):

vϕ(x, t′) :=

∫

R

∫

Γs

χ(t′ − t− c−1
0 |x− xs|)

4π|x− xs|
ϕ(xs, t) ds(xs) dt, (5.6)

where ϕ ∈ L2(Γs×R) is a spatiotemporal density function. The definition given in expression

(5.6) defines a Herglotz wave function. Since vϕ is an incident wave, it follows by linearity

that the function

wϕ(x, t′) :=

∫

R

∫

Γs

us(x, t′ − t; xs)ϕ(xs, t) ds(xs) dt (5.7)

is a radiating solution to

∇2wϕ(x, t′)− 1

c2
0

n(x)
∂2wϕ(x, t′)

∂t′2
= − 1

c2
0

m(x)
∂2vϕ(x, t′)

∂t′2
, x ∈ R3, t′ ∈ R.
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Thus, wϕ is a scattered wave. When the scattered wave us is evaluated on the receiver

surface Γr, expression (5.7) defines the near-field operator N : L2(Γs ×R)→ L2(Γr ×R) by

setting wϕ = Nϕ.

Finally, we introduce a prescribed wave function Ψz,τ = Ψ(x, t′− τ ; z), often called a test

function, which is the impulse response of the host medium due to a point source localized

at z ∈ R3 and at time τ ∈ R:

Ψ(x, t′ − τ ; z) :=
ζ(t′ − τ − c−1

0 |x− z|)
4π|x− z| . (5.8)

Here, ζ ∈ C2(R) is a time-dependent function with compact support. The test function (5.8)

represents a wave field that can be computed based on the assumption that the host medium

(in this case, the constant wave speed c0) is known. We note that this test function is often

assigned the same time-dependent pulse function χ ∈ C2(R) as the incident wave (5.5) that

interrogates the scatterer (Chen et al., 2010; Guo et al., 2013, 2016; Haddar et al., 2014; Khaji

and Manshadi, 2015). This choice is typically valid in an active imaging experiment in which

the sources distributed over Γs are known (as opposed to a passive imaging experiment in

which unknown, ambient sources generate the interrogating waves), and is often simply made

for convenience. If the time dependence of the generating source function is unknown, then

ζ should be chosen such that it possesses the same frequency band as the observed signals

(the reason for this requirement will be explained in Section 5.5). Since we are analyzing

the linear sampling method in the context of an active imaging experiment, we assume the

sources distributed over Γs are known, and in particular that their time dependence is given

by the known function χ. Hence, we follow our predecessors and choose ζ = χ.

The linear sampling method treats the functions (vϕ, wϕ) as an incident-scattered wave

pair of an inverse focusing problem (Catapano et al., 2007). In particular, the goal of the

linear sampling method is to find a spatiotemporal density function ϕz,τ ∈ L2(Γs × R) such

that scattered wave wϕz,τ , as observed on the receiver surface Γr, coincides with a prescribed

test function Ψz,τ ; that is, we set wϕz,τ = Ψz,τ on Γr and, using the definition of the near-field
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operator N , solve the ill-posed integral equation

Nϕz,τ = Ψz,τ (5.9)

in a least-squares sense. Equation (5.9) is called the near-field equation. Provided we can

separate the scattered wave us from the total wave u recorded on Γr (via the difference

us = u−ui), we can solve the near-field equation to obtain a density function ϕz,τ such that

the constructed Herglotz wave function vϕz,τ optimally focuses onto the point z at time τ ,

and wϕz,τ = Ψz,τ is the resulting scattered wave.

An interesting comparison can be made between the time-domain linear sampling method

and the well-established time reversal method (Calvo et al., 2008; Fink, 1993; Roux and Fink,

2000) as focusing techniques. In the time reversal method, an impulsive source generates

a wave that propagates through an inhomogeneous medium and is recorded on an acquisi-

tion surface. The observed signals are then time-reversed and re-emitted into the original

medium, now acting as a source-time function distributed over the recording surface. Such

an acquisition surface is called a time-reversal mirror (TRM). In particular, the time rever-

sal method requires that the medium be invariant to time reversal, and that Γr and Γs be

coincident. Thus, the time reversal method is best suited for lossless, nonattenuating media.

By modifying how the time-reversed signals are re-emitted into the original medium, the

time reversal method can focus the observed field onto a strongly scattering target or the

location of the impulsive source. In contrast, the linear sampling method does not rely on

time-reversal invariance of the wave equation to achieve focusing, nor does it require that Γr

and Γs be coincident. Consequently, the linear sampling method can be applied to weakly

attenuating media, or even to diffusive fields. (Note that the functions vϕ and Ψz,τ – given

by expressions (5.6) and (5.8), respectively – require knowledge of the host medium for their

computation. If we mistakenly assume the host medium is lossless, then the corresponding

errors will be absorbed into the solution to the near-field equation (5.9). In this case, we

expect a degraded accuracy in the obtained reconstructions. However, if the attenuation in

a medium is so strong that no waves are observed, then clearly the linear sampling method
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will fail. In this case, we would obtain a trivial (zero) near-field operator, and every solution

to equation (5.9) would lie in its null space.) Perhaps most interesting, the focusing of the

Herglotz wave function vϕz,τ onto the sampling point z does not depend on a knowledge of

the target scatterer. This can be seen from the definition of vϕz,τ given by expression (5.6),

which depends only on the density function ϕz,τ obtained by solving equation (5.9), and the

known incident field ui that propagates through the host medium without the scatterer. We

will expand our discussion of how the Herglotz wave function focuses in Section 5.4.

We can obtain an image of the scatterer by exploiting the blowup behavior of the solutions

ϕz,τ , which is generally described by ‖ϕz,τ‖L2(Γs×R) <∞ for z ∈ D and ‖ϕz,τ‖L2(Γs×R) →∞

for z ∈ R3 \ D. In particular (Chen et al., 2010; Guo et al., 2013; Haddar et al., 2014), if

z ∈ D we have the limiting behavior

lim
z→∂D

‖ϕαz,τ‖L2(Γs×R) =∞,

where ∂D denotes the boundary of D, and for all z ∈ R3 \D we have

lim
α→0
‖ϕαz,τ‖L2(Γs×R) =∞,

where α > 0 is a regularization parameter and ϕαz,τ denotes a regularized solution to the

near-field equation (5.9). Thus, the norm ‖ϕz,τ‖L2(Γs×R) effectively behaves as a binary

indicator for the support of the scatterer. Note that since Γs and D are disjoint, the norm

‖ϕz,τ‖L2(Γs×R) remains unbounded as z approaches Γs. However, as stated in Section 5.2, it

is not well understood based on the literature to date how the norm ‖ϕz,τ‖L2(Γs×R) behaves

as τ is varied. This ambiguity in the time parameter must be addressed and corrected if the

linear sampling method is to see its use in practical applications concerning time-dependent

fields.

Traditionally, the point z in space is called a sampling point, a term used since the

inception of the linear sampling method for the scattering of monochromatic waves. In

the next section, we present a physical framework in which the time parameter τ can be

viewed as the fourth component to a four-dimensional space-time sampling point. Within
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this framework, we relate the sampling point (z, τ) to the focusing point and focusing time

of the inverse scattering problem. We provide physical arguments that set clear limitations

on the values that τ can assume based on the time interval over which the data are recorded.

5.4 Space-time, causality, and the sampling of the near-field operator

Waves are generated by sources that depend on both space and time. When the evolution

of the waves through a medium is time invariant, this statement can be written compactly

as

u = G0 ~ S, (5.10)

where G0 is the Green function of the background medium (which in general may be inho-

mogeneous), S is a source function, and ~ denotes integration over space and convolution

in time. Implicitly captured in expression (5.10) is the notion of causality, in which the

support of the wave u in space-time is determined by the support of the functions G0 and

S. Intuitively, the source function S determines from which points in space-time the waves

originate, and the Green function G0 describes how the waves propagate away from those

points.

For the purpose of illustration, consider the space-time diagram shown in Figure 5.1(a),

which shows the propagation of a wave u = ui+us in a one-dimensional medium consisting of

two scatterers (shown as the dark gray circles to the left of the space axis). The scattered wave

us (shown in green) is recorded in a time interval [t0, tf ] ⊂ R, which has length T = tf−t0. In

this example, the scatterers can be thought of as a secondary source function that generates

the scattered wave us. Using expression (5.10), we can write the scattered wave us as the wave

generated by this secondary source function, say S ′, so that us = G0 ~S ′. The support of S ′

(shown in blue) is localized in space by the locations of the scatterers, whereas the support

of S ′ in time is determined by the travel times of all the waves incident to the scatterers.

In this illustration, the total wave incident to the scatterers consists of the incident wave ui

and all the reverberations between the scatterers.
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<latexit sha1_base64="tAkTWT5mYDJihLxwTa+k/Q4DJlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/RR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1p5jdQ=</latexit><latexit sha1_base64="tAkTWT5mYDJihLxwTa+k/Q4DJlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/RR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1p5jdQ=</latexit><latexit sha1_base64="tAkTWT5mYDJihLxwTa+k/Q4DJlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/RR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1p5jdQ=</latexit><latexit sha1_base64="tAkTWT5mYDJihLxwTa+k/Q4DJlQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/RR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1p5jdQ=</latexit>

us
<latexit sha1_base64="TTLCq0rZ9Q4att72AocU5SslZTA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/TR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2mhjd4=</latexit><latexit sha1_base64="TTLCq0rZ9Q4att72AocU5SslZTA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/TR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2mhjd4=</latexit><latexit sha1_base64="TTLCq0rZ9Q4att72AocU5SslZTA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/TR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2mhjd4=</latexit><latexit sha1_base64="TTLCq0rZ9Q4att72AocU5SslZTA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+/TR9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2mhjd4=</latexit>

t0
<latexit sha1_base64="ilqQgACKn+p78Qrnn5EXoswzzYw=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfse3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AAQWjZs=</latexit><latexit sha1_base64="ilqQgACKn+p78Qrnn5EXoswzzYw=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfse3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AAQWjZs=</latexit><latexit sha1_base64="ilqQgACKn+p78Qrnn5EXoswzzYw=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfse3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AAQWjZs=</latexit><latexit sha1_base64="ilqQgACKn+p78Qrnn5EXoswzzYw=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfse3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AAQWjZs=</latexit>

tf
<latexit sha1_base64="BO0wZ37CW9/67Ry1PZKSsIwaPZQ=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsR3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AFXujdE=</latexit><latexit sha1_base64="BO0wZ37CW9/67Ry1PZKSsIwaPZQ=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsR3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AFXujdE=</latexit><latexit sha1_base64="BO0wZ37CW9/67Ry1PZKSsIwaPZQ=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsR3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AFXujdE=</latexit><latexit sha1_base64="BO0wZ37CW9/67Ry1PZKSsIwaPZQ=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfsR3236tW8ucgq+AVUoVCj7371BgnLYq6QSWpM1/dSDHKqUTDJp5VeZnhK2ZgOedeiojE3QT5fdUrOrDMgUaLtU0jm7u+JnMbGTOLQdsYUR2a5NjP/q3UzjK6DXKg0Q67Y4qMokwQTMrubDITmDOXEAmVa2F0JG1FNGdp0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5kjnxXl3PhatJaeYOYY/cj5/AFXujdE=</latexit>

(a)

 z,⌧
<latexit sha1_base64="EG7Pguq4ZaFqNaxYZE7MaEY5WOk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXEhJRNBl0Y3LCvYBTQiT6aQdOpmEmYlQYxb+ihsXirj1N9z5N07aLLT1wMDhnHu5Z06QMCqVbX8blaXlldW16nptY3Nre8fc3evIOBWYtHHMYtELkCSMctJWVDHSSwRBUcBINxhfF373nghJY36nJgnxIjTkNKQYKS355oHbktTP3AipURBmD/mpq1Ca+2bdbthTWIvEKUkdSrR888sdxDiNCFeYISn7jp0oL0NCUcxIXnNTSRKEx2hI+ppyFBHpZdP8uXWslYEVxkI/rqyp+nsjQ5GUkyjQk0VOOe8V4n9eP1XhpZdRnqSKcDw7FKbMUrFVlGENqCBYsYkmCAuqs1p4hATCSldW0yU4819eJJ2zhqP57Xm9eVXWUYVDOIITcOACmnADLWgDhkd4hld4M56MF+Pd+JiNVoxyZx/+wPj8AZvOlng=</latexit><latexit sha1_base64="EG7Pguq4ZaFqNaxYZE7MaEY5WOk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXEhJRNBl0Y3LCvYBTQiT6aQdOpmEmYlQYxb+ihsXirj1N9z5N07aLLT1wMDhnHu5Z06QMCqVbX8blaXlldW16nptY3Nre8fc3evIOBWYtHHMYtELkCSMctJWVDHSSwRBUcBINxhfF373nghJY36nJgnxIjTkNKQYKS355oHbktTP3AipURBmD/mpq1Ca+2bdbthTWIvEKUkdSrR888sdxDiNCFeYISn7jp0oL0NCUcxIXnNTSRKEx2hI+ppyFBHpZdP8uXWslYEVxkI/rqyp+nsjQ5GUkyjQk0VOOe8V4n9eP1XhpZdRnqSKcDw7FKbMUrFVlGENqCBYsYkmCAuqs1p4hATCSldW0yU4819eJJ2zhqP57Xm9eVXWUYVDOIITcOACmnADLWgDhkd4hld4M56MF+Pd+JiNVoxyZx/+wPj8AZvOlng=</latexit><latexit sha1_base64="EG7Pguq4ZaFqNaxYZE7MaEY5WOk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXEhJRNBl0Y3LCvYBTQiT6aQdOpmEmYlQYxb+ihsXirj1N9z5N07aLLT1wMDhnHu5Z06QMCqVbX8blaXlldW16nptY3Nre8fc3evIOBWYtHHMYtELkCSMctJWVDHSSwRBUcBINxhfF373nghJY36nJgnxIjTkNKQYKS355oHbktTP3AipURBmD/mpq1Ca+2bdbthTWIvEKUkdSrR888sdxDiNCFeYISn7jp0oL0NCUcxIXnNTSRKEx2hI+ppyFBHpZdP8uXWslYEVxkI/rqyp+nsjQ5GUkyjQk0VOOe8V4n9eP1XhpZdRnqSKcDw7FKbMUrFVlGENqCBYsYkmCAuqs1p4hATCSldW0yU4819eJJ2zhqP57Xm9eVXWUYVDOIITcOACmnADLWgDhkd4hld4M56MF+Pd+JiNVoxyZx/+wPj8AZvOlng=</latexit><latexit sha1_base64="EG7Pguq4ZaFqNaxYZE7MaEY5WOk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXEhJRNBl0Y3LCvYBTQiT6aQdOpmEmYlQYxb+ihsXirj1N9z5N07aLLT1wMDhnHu5Z06QMCqVbX8blaXlldW16nptY3Nre8fc3evIOBWYtHHMYtELkCSMctJWVDHSSwRBUcBINxhfF373nghJY36nJgnxIjTkNKQYKS355oHbktTP3AipURBmD/mpq1Ca+2bdbthTWIvEKUkdSrR888sdxDiNCFeYISn7jp0oL0NCUcxIXnNTSRKEx2hI+ppyFBHpZdP8uXWslYEVxkI/rqyp+nsjQ5GUkyjQk0VOOe8V4n9eP1XhpZdRnqSKcDw7FKbMUrFVlGENqCBYsYkmCAuqs1p4hATCSldW0yU4819eJJ2zhqP57Xm9eVXWUYVDOIITcOACmnADLWgDhkd4hld4M56MF+Pd+JiNVoxyZx/+wPj8AZvOlng=</latexit>

timeT
<latexit sha1_base64="1MxHWot1kLoq+sEN2e0klhQeYAI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxhX5BG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPWFhYd3ZtiZN0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcj+vd55QaR7Lppkm6Ed0JHnIGTXWajQH5YpbdRci6+DlUIFc9UH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sseiMXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmV5MhV8iMmFqgTHG7K2FjqigzNpuSDcFbPXkd2ldVz3LjulK7y+MowhmcwyV4cAM1eIA6tIABwjO8wpvz6Lw4787HsrXg5DOn8EfO5w+vq4zY</latexit><latexit sha1_base64="1MxHWot1kLoq+sEN2e0klhQeYAI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxhX5BG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPWFhYd3ZtiZN0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcj+vd55QaR7Lppkm6Ed0JHnIGTXWajQH5YpbdRci6+DlUIFc9UH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sseiMXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmV5MhV8iMmFqgTHG7K2FjqigzNpuSDcFbPXkd2ldVz3LjulK7y+MowhmcwyV4cAM1eIA6tIABwjO8wpvz6Lw4787HsrXg5DOn8EfO5w+vq4zY</latexit><latexit sha1_base64="1MxHWot1kLoq+sEN2e0klhQeYAI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxhX5BG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPWFhYd3ZtiZN0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcj+vd55QaR7Lppkm6Ed0JHnIGTXWajQH5YpbdRci6+DlUIFc9UH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sseiMXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmV5MhV8iMmFqgTHG7K2FjqigzNpuSDcFbPXkd2ldVz3LjulK7y+MowhmcwyV4cAM1eIA6tIABwjO8wpvz6Lw4787HsrXg5DOn8EfO5w+vq4zY</latexit><latexit sha1_base64="1MxHWot1kLoq+sEN2e0klhQeYAI=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxhX5BG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPWFhYd3ZtiZN0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcj+vd55QaR7Lppkm6Ed0JHnIGTXWajQH5YpbdRci6+DlUIFc9UH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sseiMXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmV5MhV8iMmFqgTHG7K2FjqigzNpuSDcFbPXkd2ldVz3LjulK7y+MowhmcwyV4cAM1eIA6tIABwjO8wpvz6Lw4787HsrXg5DOn8EfO5w+vq4zY</latexit>
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Figure 5.1: One-dimensional space-time diagrams illustrating (a) the forward scattering
problem and (b) the linear sampling method. An unknown source function S ′ (shown in
blue) generates the scattered waves us. A prescribed sampling point (z, τ) determines from
which point in space-time the test function Ψz,τ (shown in red) propagates. When the point
z lies within the support of S ′ along the space axis, the time-reversed scattered waves ustr
can be shifted so that the sampling point (z, τ) lies within the support of S ′.
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Figure 5.1(b) illustrates the convolution of the scattered waves us in the near-field equa-

tion. Here, we prescribe a test function Ψz,τ (shown in red), which is the wave field generated

by a source localized in space-time at the sampling point (z, τ). The near-field equation

(5.9) attempts to construct the prescribed test function Ψz,τ from a linear combination of

the scattered waves us. In particular, Ψz,τ is set to be a convolution of the scattered waves

us. Consequently, the scattered waves us are time-reversed, shifted, and integrated with an

unknown function ϕz,τ such that Ψz,τ is the resulting convolution. Since Ψz,τ is defined to be

a singular radiating wave, clearly ϕz,τ must act as an inverse of the source function S ′ (other-

wise Ψz,τ would contain multiple wave arrivals). The solution to the near-field equation ϕz,τ

thus contains the time shifts and scattering amplitudes necessary to construct a Herglotz

wave function vϕz,τ that focuses onto the sampling point (z, τ). That is, the Herglotz wave

function is constructed in such a way as to “cancel” its interactions with the scatterers as it

propagates through the medium. As can be seen from Figure 5.1(b), the solution ϕz,τ can

effectively cancel the unknown source function S ′ if the time-reversed scattered waves can

be shifted so that the sampling point (z, τ) lies within the support of S ′. That is, ϕz,τ is an

effective inverse of S ′ if and only if the point z lies within the support of the source function

S ′ along the space axis. If z lies within the support of S ′, we say the sampling point z is

causal, since at this point in space there was a causal (or physical) source of scattered waves.

Otherwise, we say the sampling point is acausal.

Note that the time axis in Figure 5.1(b) spans the convolution interval [−T, T ] – not the

physical time interval [t0, tf ] in which the data are recorded. This is due to the fact that the

incident and scattered waves of the inverse focusing problem (vϕ, wϕ) are convolutions of the

incident and scattered waves of the forward scattering problem (ui, us), respectively. For the

near-field equation to be consistent, the prescribed test functions Ψz,τ must also be evaluated

over the convolution interval [−T, T ]. Here, τ is a focusing time; i.e., a time at which the

Herglotz wave function vϕz,τ focuses onto the point z and the test function Ψz,τ radiates. It

follows that the length of the recording interval T has two important consequences. First,
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the accuracy of the convolution of the scattered wave us is directly dependent on how well

us is represented in the recording interval. In particular, if the support of the scattered wave

us is effectively contained in the recording interval [t0, tf ], then we can expect its convolution

wϕ to have compact support in the interval [−T, T ]. Second, the near-field equation has a

nontrivial solution only when the test function Ψz,τ lies in the convolution interval [−T, T ],

as observed on a given recording surface Γr. For a fixed recording length T , a focusing

time τ can always be found such that the test function Ψz,τ (at least partially) lies in the

convolution interval [−T, T ]. That is, no matter how near or far the point z is from the

recording surface Γr, the test functions can be shifted in time to lie in the interval [−T, T ].

Thus, the size of the sampling region (or imaging domain) is arbitrary.

Provided we have adequately recorded the scattered wave us, consider the sampling points

z for which the test functions Ψz,τ fully lie in the convolution interval [−T, T ] when τ = 0.

In this case, the observed test functions Ψz are nonzero only in the subinterval [0, T ], which

has the same length as the recording interval [t0, tf ]. Clearly, the source of the observed field

must lie in this region of space, since both the test functions and the data are contained

in a time interval of the same length as measured on the recording surface Γr. For these

sampling points, the near-field equation will have nontrivial solutions, and an image of the

source function can therefore be obtained. Note, however, that the test functions will not lie

in the interval [−T, T ] for τ ≥ T , and generally for τ � −T . For these values of τ , the near-

field equation will have trivial solutions, and the linear sampling method will fail. Hence,

provided the observed field is adequately contained in the recording interval, the parameter

τ can be discarded (i.e., set to zero) without loss of generality.

We now show how sampling the near-field operator N generates solutions to the near-

field equation with the desired blowup behavior. We give a proof in 5.9 for a general source

function that is separable in space and time, and apply the result here for the case of localizing

a scatterer. According to the Lippmann-Schwinger equation (Lechleiter and Monk, 2015),

the scattered wave us has the integral representation
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us(x, t; xs) = − 1

c2
0

∫

R

∫

D

G0(x, t− t′;η)m(η)
∂2u(η, t′; xs)

∂t′2
dη dt′,

where m is the contrast function (5.2) with compact support D and u(·, ·,xs) is the total

wave incident to the scatterer due to a source at xs ∈ Γs. Note that the scattered wave us

has the form of expression (5.10) if we identify S = mutt. Such a source function is called a

contrast source. Following the procedure given in the appendix, we find that the near-field

equation can be rewritten as
∫

R

∫

Γs

∂2u(z, t′ − t; xs)
∂t2

ϕ(xs, t) ds(xs) dt = −c
2
0ζ(t′)

m(z)
, z ∈ D. (5.11)

It follows that in the limit as z → ∂D, the contrast function m(z) → 0 and the right-hand

side of equation (5.11) becomes unbounded. In fact, by definition (5.2), the contrast function

m(z) = 0 for all z ∈ R3 \D. Thus, any solution ϕz to equation (5.11) – and consequently to

the near-field equation (5.9) – becomes unbounded as z→ ∂D, and remains unbounded for

all z ∈ R3 \D. Thus, the blowup behavior of solutions to the near-field equation is due to

division by the contrast function m with compact support D.

The behavior of ‖ϕz‖L2(Γs×R) has a simple physical interpretation (Catapano et al., 2007).

The L2 norm of each solution ϕz is effectively a measure of the energy required to construct

a singular, radiating wave from a linear combination of the recorded data us that originated

from the sampling point z. In other words, we can use expression (5.10) to write the near-field

equation as

us ~ ϕz = Ψz,

so that ϕz can be thought of as a type of inverse source function, and its L2 norm as a

measure of its energy. We saw above that sampling the near-field operator is equivalent

to sampling the source function that generates the observed field. If the sampling point z

is causal (that is, if z is inside the scatterer), then the recorded data contain the field us

due to that source point in space. In this case, the linear sampling method matches the

energy of the test function Ψz with the energy of the scattered waves us due to the source

79



point z. Since the recorded data have finite energy, the energy of the source function ϕz is

finite. Otherwise, if the sampling point is acausal, then there is no corresponding field in

the recorded data that can be attributed to the sampling point z. Here, the linear sampling

method reasonably predicts that the amount of energy required to construct the test function

Ψz is infinite, because it takes a source function ϕz of infinite energy to construct Ψz from

waves that never existed.

Regarding the numerical solution of the near-field equation, the common mistake found

in the literature to date is to truncate the convolution to fit within a support which has

the same length as the recorded time interval. As we show in the next section, truncating

the convolution discards much of the information provided by the scattered wave us, and

negatively impacts the ability of the linear sampling method to localize the unknown source.

In this case, the focusing time τ becomes crucial to ensure that the prescribed test functions

Ψz,τ lie in a particular subset of the interval [−T, T ]. The particular subset of [−T, T ] needed

to obtain an accurate image is determined by which part of the convolution is truncated.

5.5 On the numerical solution of the near-field equation

In this section, we give an in-depth discussion on the numerical implementation of the

near-field operator in both the time and frequency domains, including detailed algorithms.

As we will show, the frequency-domain implementation is more economical in many cases

than the time-domain implementation, especially when the signals are band-limited. First,

we briefly describe a general procedure for setting up a least-squares formulation of the

ill-posed near-field equation. Our strategy is to apply a Tikhonov regularization scheme

(Tikhonov et al., 2013) and obtain a least-squares solution to

min
ϕz,τ

{‖Nϕz,τ −Ψz,τ‖2
2 + α‖ϕz,τ‖2

2} (5.12)

for the time-domain case and

min
ϕ̂z

{‖N̂ϕ̂z − Ψ̂z‖2
2 + α‖ϕ̂z‖2

2} (5.13)
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for the frequency-domain case. Here, α ≥ 0 is the regularization parameter. For the

frequency-domain case, the parameter τ is taken to be zero. The discretized near-field

operator is given in the time domain by

(Nϕ)(i, k) :=
Nt−1∑

l=−Nt+1

Ns∑

j=1

us(xi, (k − l)∆t; yj)ϕ(j, l)

and in the frequency domain by

(N̂ϕ̂)(i;ω) :=
Ns∑

j=1

ûs(xi,yj;ω)ϕ̂(j;ω),

where i = 1, . . . , Nr, where Nr is the number of receivers; j = 1, . . . , Ns, where Ns is the

number of sources; and k = −Nt+1, . . . , Nt−1, where Nt is the number of time samples used

to record the scattered wave us and ∆t is the length of a time step. Note that for the time-

domain case we do not limit k and l to the interval [1, Nt], which would be valid only if the

nonzero durations of both us and ϕ are known to be limited to the interval [1, Nt]. Since ϕ is

unknown, we do not make this assumption. Here, ω is a vector of angular frequencies which

is determined by a user-specified bandpass filter. Similarly, the discretized test functions are

given in the time and frequency domains by

Ψz,τ (i, k) = Ψz,τ (xi, k∆t)

and

Ψ̂z(i;ω) = Ψ̂z(xi;ω),

respectively. We follow the general approach of Guo et al. (2013); Haddar et al. (2014)

and obtain least-squares solutions to equations (5.12) and (5.13) using a truncated singular-

value decomposition (SVD) of the discretized near-field operators N and N̂, respectively.

As is often noted in the literature, the singular-value decomposition is aptly suited for the

linear sampling method – since the scattered wave us is independent of any sampling point

(z, τ) ∈ R3×R, the singular-value decomposition of N (or N̂) is independent of any sampling

point as well, and therefore need only be computed once. Hence, an efficient approach to the
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linear sampling method consists of two main steps: 1) estimate a low-rank approximation to

the discretized near-field operator via a truncated SVD; and 2) approximate the solutions to

(5.12) and (5.13) for each sampling point by orthogonally projecting the test functions onto

the solution space using the SVD. We denote by (σn,φn,ψn) the singular-value decomposi-

tion of N, where σn are the singular values and φn and ψn are the corresponding left- and

right-singular vectors, respectively. Similarly, we denote by (σn, φ̂n, ψ̂n) the singular-value

decomposition of N̂. Using the K largest singular values and corresponding vectors, an

approximate solution is computed for each sampling point as (Hansen, 2010)

ϕ̃αz,τ =
K∑

n=1

σn
α + σ2

n

(φn ·Ψz,τ )ψn (5.14)

for the time-domain case and as

ϕ̃αz =
K∑

n=1

σn
α + σ2

n

(φ̂n · Ψ̂z)ψ̂n (5.15)

for the frequency-domain case. Note that if the chosen pulse function ζ ∈ C2(R) does not

possess the same frequency band as the recorded data, then the projections φn ·Ψz,τ and

φ̂n · Ψ̂z are trivially zero, since the singular vectors will lie in a frequency band disjoint from

that of the test functions. Consequently, the obtain solutions ϕ̃αz are trivially zero. Hence,

it is important to analyze the frequency content of the recorded data before choosing the

pulse function ζ.

An image is obtained by mapping the obtained solutions (5.14) and (5.15) through an

indicator functional I that assigns to each sampling point (z, τ) a value based on the norm

of the solution (recall τ = 0 for the frequency-domain case). We define the indicator function

as

I(z, τ) :=
f(z, τ)−minz f(z, τ)

maxz f(z, τ)−minz f(z, τ) + ε
,

where

f(z, τ) :=
1

‖ϕ̃αz,τ‖2 + ε
.
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Here, the norm of ϕ̃αz,τ (j, l) is computed over all j = 1, . . . , Ns and l = −Nt + 1, . . . , Nt − 1

(or l = 1, . . . , Nω in the frequency domain where Nω is the number of frequency samples).

We have added a small positive number ε – typically taken to be the machine precision of

the computer – to the denominator of each term for numerical stability. Thus, by the blowup

behavior of the solutions (5.14) and (5.15), we have 0 ≤ I(z, τ) ≤ 1, where values close to

zero indicate an “unlikely” location of the source function and values close to one indicate a

“likely” location of the source function.

The question remains on how to efficiently obtain a truncated SVD of the discretized near-

field operators N and N̂. As noted in Guo et al. (2013); Haddar et al. (2014), an efficient way

to do this is by estimating the actions of N and N̂ through the use of so-called matrix-vector

products that define their forward and adjoint operations. These matrix-vector products then

define a linear operator whose SVD can be estimated using open-source software packages

such as ARPACK (Lehoucq et al., 1998). As we discuss next, how we define these matrix-

vector products significantly affects the accuracy of the obtained SVD. In particular, we

focus on the effects of truncating the convolution in the near-field operator and how this

leads to a dependence of the imaging algorithm on the time parameter τ .

5.5.1 Algorithms for an efficient implementation of the near-field operator

Our goal is to define matrix-vector products for the forward and adjoint operations of

the discretized near-field operators N and N̂. According to the well-known convolution

theorem, convolution in the time domain is equivalent to multiplication in the frequency

domain. Hence, the convolution in the near-field operator N can be performed using a fast

Fourier transform algorithm (FFT), which is most efficient for signals of length 2n for some

natural number n ∈ N. We can further increase efficiency by using an FFT algorithm that

exploits the fact that the recorded data are real valued, in which case the Fourier transform

is conjugate symmetric with respect to the positive and negative frequencies.

Let D ∈ RNr×Nt×Ns denote a three-dimensional array consisting of the sampled scattered

wave us, so that D(i, k, j) = us(xi, k∆t; xj). As stated in Section 5.4, the common mistake in
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the literature to date is to truncate the convolution in the discretized near-field operator N so

that it has the same length Nt as the data array D. To see the significance of this mistake, we

refer to Figure 5.2, which illustrates the convolution of two arbitrary signals in both the time

and frequency domains. In the middle row of Figure 5.2, the convolution in the time domain

has length 2Nt − 1. The highlighted regions indicate two possible subintervals of length Nt

that are returned in a truncated implementation of the discretized near-field operator N.

In general, a subinterval of length Nt is insufficient to capture the full convolution. Hence,

truncation of the convolution discards much of the information provided by the scattered

wave us. This is equivalent to under-representing the discretized near-field operator N.

Intuitively, truncation of the convolution manifests in a singular-value decomposition as a

more rapid decay of the singular values, since a truncated convolutional operator contains

“less” information than an operator that returns a full convolution.

The bottom row of Figure 5.2 shows the amplitude spectrum of one of the convolved

signals in the frequency domain. Because the signal is band-limited, its representation in the

frequency domain is sparse. Hence, the convolution in the frequency domain will be nonzero

only where the two signals being convolved have overlapping support. This is shown in the

bottom right panel of Figure 5.2, where the full convolution in the frequency domain lies in

a small subset of the total frequency range needed to represent the convolution in the time

domain. Hence, we can exploit the sparseness of the convolution in the frequency domain to

obtain a discretized convolutional operator that is significantly smaller than its equivalent

representation in the time domain. To do this, we can simply apply a bandpass filter to the

data array D that covers the support of the recorded signals in the frequency domain. When

the signals are well sampled in the recorded time interval (that is, for sufficiently large Nt),

the filtered data array in the frequency domain will typically have a length M � 2Nt − 1.

Algorithms 1 and 2 provide detailed procedures for implementing the discretized near-

field operators N and N̂, respectively. Both implementations share a common first step of

padding the data array D with zeros to the end of its time axis so that its new length is
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Figure 5.2: Two signals of length Nt and their convolution. Middle row : The convolution in
the time domain has length 2Nt− 1. The highlighted regions indicate two possible subinter-
vals of length Nt that are returned in a truncated implementation of the discretized near-field
operator. Bottom row : (left) The amplitude spectrum of signal 1 based on the 2Nt− 1 sam-
ples needed to represent the convolution in the time domain. (right) The support of the
convolution in the frequency domain lies in a small subinterval of length M � 2Nt − 1.
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the next power of 2 greater than the length of the convolution 2Nt − 1. Next, a forward

FFT is applied once to the extended data array along its time axis. In Algorithms 1 and 2,

we use H to denote the Hermitian transpose and the notation desc :A → B to represent a

transformation, where “desc” is a brief descriptor of what the transformation does. To obtain

a low-rank approximation of N and N̂, we define two functions that perform their forward

and adjoint operations, which we name “forward ” and “adjoint”, respectively, in Algorithms

1 and 2. These two functions are then used to define a linear operator, whose SVD can

then be estimated for the K largest singular values and corresponding vectors. We note that

in Algorithm 1, the convolution computed in the frequency domain as length N , but the

transformation back to the time domain returns only the first 2Nt − 1 samples. Because we

initially zero-pad the end of the time axis of the data array D, the full convolution lies in the

first 2Nt − 1 samples of the computed convolution. Note that the total number of forward

and inverse FFT operations performed in Algorithm 1 is Nr + Ns + 3, while Alogirthm 2

performs just one forward FFT.

5.6 Numerical examples

In this section, we perform several numerical examples applied to imaging scatterers to

demonstrate the effectiveness of the improved time- and frequency-domain implementations

of the discretized near-field operator compared to its truncated implementation. For the

truncated implementation, we follow Algorithm 1 with the exception that the firstNt samples

of the computed convolution are returned in both the forward and adjoint operations. For the

time-domain implementations, we test the dependence of the imaging algorithm for several

values of the time parameter τ . In each example, the length of the recording interval T is

specified. The test functions are evaluated in the time interval [−T, T ] for the for case of the

full convolution, and in the interval [0, T ] for the case of the truncated convolution. For the

frequency-domain implementation, we apply the same bandpass filter to the test functions

as for the data array D in the computation of the SVD.
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Algorithm 1 (Time Domain)
set N = 2n such that N > 2Nt − 1
fft: D ∈ RNr×Nt×Ns → D̂ ∈ CNr×N×Ns

def forward(x):
reshape x:
x ∈ R(2Nt−1)Ns×1 → x ∈ R(2Nt−1)×Ns

fft: x ∈ R(2Nt−1)×Ns → x̂ ∈ CN×Ns

initialize y = 0 ∈ R(2Nt−1)×Nr

for i = 1 : Nr

ĉ = D̂(i, ·, ·)x̂
ifft: ĉ ∈ CN×Ns → c ∈ R(2Nt−1)×Ns

sum over sources:
y(·, i) = sum(c, axis=2)

reshape y:
y ∈ R(2Nt−1)×Nr → y ∈ R(2Nt−1)Nr×1

return y

def adjoint(y):
reshape y:
y ∈ R(2Nt−1)Nr×1 → y ∈ R(2Nt−1)×Nr

fft: y ∈ R(2Nt−1)×Nr → ŷ ∈ CN×Nr

initialize x = 0 ∈ R(2Nt−1)×Ns

for j = 1 : Ns

ĥ = D̂(·, ·, j)H ŷ
ifft: ĥ ∈ CN×Nr → h ∈ R(2Nt−1)×Nr

sum over receivers:
x(·, j) = sum(h, axis=2)

reshape x:
x ∈ R(2Nt−1)×Ns → x ∈ R(2Nt−1)Ns×1

return x

set A=LinearOperator(forward, adjoint)
U, s, V = svd(A, K)

Algorithm 2 (Frequency Domain)
set N = 2n such that N > 2Nt − 1
fft: D ∈ RNr×Nt×Ns → D̂ ∈ CNr×N×Ns

bandpass filter:
D̂ ∈ CNr×N×Ns → D̃ ∈ CNr×M×Ns

def forward(x̂):
reshape x̂:
x̂ ∈ CMNs×1 → x̂ ∈ CM×Ns

initialize ŷ = 0 ∈ CM×Nr

for i = 1 : Nr

ĉ = D̃(i, ·, ·)x̂
sum over sources:
ŷ(·, i) = sum(ĉ, axis=2)

reshape ŷ:
ŷ ∈ CM×Nr → ŷ ∈ CMNr×1

return ŷ

def adjoint(ŷ):
reshape ŷ:
ŷ ∈ CMNr×1 → ŷ ∈ CM×Nr

initialize x̂ = 0 ∈ CM×Ns

for j = 1 : Ns

ĥ = D̃(·, ·, j)H ŷ
sum over receivers:
x̂(·, j) = sum(ĥ, axis=2)

reshape x̂:
x̂ ∈ CM×Ns → x̂ ∈ CMNs×1

return x̂

set Â=LinearOperator(forward, adjoint)
Û, s, V̂ = svd(Â, K)

For simplicity, we limit the numerical examples we present to the reconstruction of two-

dimensional scatterers embedded within homogeneous background media. The method is

easily generalized to three space dimensions and to inhomogeneous background media. Con-

sequently, the test functions for all imaging experiments presented hereafter are computed

as
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Ψz,τ (i, k) =
χ1,2(k∆t− τ − c−1

0 ‖xi − z‖2)

2π
√
k2∆t2 − c−2

0 ‖xi − z‖2
2 + ε

,

where the pulse functions χ1,2 are set to zero whenever their arguments are negative. We

have again added the small positive number ε to the denominator for numerical stability.

The pulse function is taken to be either

χ1(t) = sin(4t)e−1.6(t−3)2

or the Ricker pulse

χ2(t) = [1− 2π2ν2(t− 0.1)2]e−π
2ν2(t−0.1)2 .

All numerical computations are performed on a computer equipped with a 2.8 GHz quad-

core Intel Core i7 processor and 16 GB of 1600 MHz DDR3 memory. The machine precision

is ε = 2× 10−16. This parameter remains fixed throughout all numerical computations.

5.6.1 Starfish-shaped scatterer

Our first imaging experiment reconstructs a starfish-shaped scatterer using the same

scattered wave and acquisition data as was used in Guo et al. (2013). In this case, the

scatterer represents a perturbation in the model wave speed, for which the background wave

speed is c0 = 1 and c = 2 inside the scatterer. We interrogate the scatterer under two

different acquisition scenarios. In the first case, 16 sources and receivers are co-located

around the scatterer, representing an ideal, full-aperture acquisition setup (Figure 5.3(a)).

In the second case, we place 5 sources in the lower-left corner below the scatterer and

7 receivers in the upper-right corner above the scatterer, representing a limited-aperture

acquisition setup that only measures transmitted waves (Figure 5.3(b)). In both imaging

experiments, we sample the model with a 61× 61 point uniformly spaced sampling grid and

interrogate the scatterer using the pulse function χ1 (the dominant wavelength is shown in

the right panels of Figure 5.3 for scale). The scattered wave is recorded in the time interval

[0, 18] using a step size ∆t = 2.34×10−2 for a total of Nt = 769 time samples. Consequently,
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the test functions are evaluated in the interval [−18, 18] for the time- and frequency-domain

implementations that use the full convolution, and in the interval [0, 18] for the truncated

implementation. The left panels of Figure 5.3 show examples of the recorded scattered wave.

To test the robustness of the imaging algorithm to noisy measurements, we add band-limited

white noise in the frequency range [0.25, 1.25] to the recorded data so that the computed

signal-to-noise ratio (SNR) is 4, as defined by

SNR :=
Psignal

Pnoise
,

where P is the average power (i.e., the mean-square amplitude). The mean power spectrum

of the recorded signals before and after adding the band-limited white noise is shown in

Figure 5.4(a) and Figure 5.4(b), respectively, and the mean power spectrum of the test

functions is shown in Figure 5.4(c). Note that the frequency bands of the data and the

test functions overlap significantly, as this ensures an optimal reconstruction of the target.

Figure 5.5 shows theK largest singular values of the truncated SVD used to compute the time

and frequency domain solutions (5.14) and (5.15), respectively. As we expect, the singular

values decay faster for the truncated implementation, indicating that the near-field operator

is under-represented. The time to compute the truncated SVD for each implementation is

indicated in its respective panel.

Figure 5.6 and Figure 5.7 show the obtained reconstructions for the full-aperture and

limited-aperture starfish imaging experiments using the three different implementations of

the discretized near-field operator. For the truncated implementation, it is clear how the time

parameter τ influences the reconstruction of the scatterer boundary. In particular, for three

different values of τ , we obtain three completely different images. The time- and frequency-

domain implementations that use the full convolution readily give the desired result, which

is consistent with the true boundary of the scatterer. As expected, the time-domain imple-

mentation fails when τ is set such that the test functions lie outside the convolution interval

[−18, 18]. In Figure 5.6, the full-aperture acquisition allows the linear sampling method to

accurately reconstruct the boundary of the starfish-shaped scatterer, whereas in Figure 5.7,
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(b)

Figure 5.3: (a) The full-aperture imaging experiment and (b) the limited-aperture imaging
experiment for the starfish-shaped scatterer. Sources are indicated by stars and receivers by
triangles. The right panels show a map of the experiment indicating the particular source
(large, cyan star) that generated the scattered data shown in the left panels. Band-limited
white noise in the frequency range [0.25, 1.25] has been added to the signals so that the
computed SNR = 4.
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Figure 5.4: Power spectra for the starfish imaging experiment. The power spectrum is
averaged over all recordings of the scattered wave for (a) the noise-free case and (b) after
adding band-limited white noise in the frequency range [0.25, 1.25] so that the computed
SNR = 4. (c) The mean power spectrum of the test functions with time dependence given
by χ1.
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Figure 5.5: Estimated singular values for the full-aperture (left column) and limited-aperture
(right column) imaging experiments for the starfish-shaped scatterer. Each column gives the
estimated singular values based on the numerical implementation of the discretized near-field
operator. The truncated convolution under-represents the discretized near-field operator, as
evidenced by the more rapid decay of the singular values. The noisy data are used in all
cases.

92



we see the method correctly identified the lower-left ray of the starfish, but largely failed to

reconstruct the rest of the scatterer. The diagonal smearing present in Figure 5.7 is char-

acteristic of a limited-aperture acquisition, in which the geometry of a scatterer is not well

constrained (a detailed investigation of limited-aperture imaging using the linear sampling

method was carried out in Guo et al. (2016)). In both imaging experiments, the linear sam-

pling method proved reasonably robust to the noisy data, so long as a small regularization

term was added to the solutions (5.14) and (5.15).

5.6.2 Box-shaped scatterers

Our second imaging experiment aims to reconstruct the boundaries of two box-shaped

scatterers of different sizes. In this case, the scatterers represent a large contrast in the

model wave speed in order to induce strong multiple scattering. Here, the background wave

speed is c0 = 2 km/s and c = 0.343 km/s inside the scatterers (Figure 5.8). As before,

we interrogate the scatterers under two different acquisition scenarios. In the first case, we

place 24 co-located sources and receivers in a circle around the scatterers, again representing

an ideal, full-aperture acquisition setup (Figure 5.8(a)). In the second case, we place 12 co-

located sources and receivers along a line at the top of the model, representing a single-sided

surface acquisition geometry (Figure 5.8(b)). In both imaging experiments, we sample the

model in space with a 51 × 51 point uniformly spaced sampling grid and interrogate the

scatterers using the pulse function χ2 with a dominant frequency ν = 25 Hz (the dominant

wavelength is shown in Figure 5.8 for scale). The scattered waves are recorded in the time

interval [0 s, 2 s] using a step size ∆t = 4.0 × 10−2 s for a total of Nt = 501 time samples.

Consequently, the test functions are evaluated in the interval [−2 s, 2 s] for the time- and

frequency-domain implementations that use the full convolution, and in the interval [0 s, 2 s]

for the truncated implementation. We do not add any noise for these experiments. The left

panels of Figure 5.8 show examples of the recorded scattered waves for the two acquisition

geometries. The mean power spectra of the recorded data and test functions are shown in

Figure 5.9. Note again that the frequency bands of the data and the test functions overlap
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Figure 5.6: Reconstructions of the starfish-shaped scatterer for the full-aperture imaging
experiment and noisy data with SNR = 4. Top row: Reconstructions based on the truncated
convolution in the time domain with τ = 0, τ = 3, and τ = 8. Middle row: Reconstructions
based on the full convolution in the time domain with τ = 0, τ = 4, and τ = −25. When
τ = −25, the test functions partially lie outside the support [−18, 18] and the method fails.
Bottom center: Reconstruction based on the frequency-domain approach. The regularization
parameter α = 1× 10−2 in all cases.
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Figure 5.7: Reconstructions of the starfish-shaped scatterer for the limited-aperture imaging
experiment and noisy data with SNR = 4. Top row: Reconstructions based on the truncated
convolution in the time domain with τ = 0, τ = 3, and τ = 5.3. Middle row: Reconstructions
based on the full convolution in the time domain with τ = 0, τ = −2, and τ = 18. When
τ = 18, the test functions completely lie outside the support [−18, 18] and the method fails.
Bottom center: Reconstruction based on the frequency-domain approach. The regularization
parameter α = 1× 10−2 in all cases.
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significantly, as this ensures an optimal reconstruction of the target. Figure 5.10 shows the

K largest singular values of the truncated SVD used to compute the time and frequency

domain solutions (5.14) and (5.15), respectively. Again, we observe that the singular values

decay faster for the truncated implementation, indicating that the near-field operator is

under-represented. The time to compute the truncated SVD for each implementation is

indicated in its respective panel.

Figure 5.11 and Figure 5.12 show the obtained reconstructions for the full-aperture and

single-sided imaging experiments for the two box-shaped scatterers using the three different

implementations of the discretized near-field operator. Again, we observe that the truncated

implementation is strongly dependent on the choice of the time parameter τ to reconstruct

the boundaries of the scatterers, whereas the time- and frequency-domain implementations

that use the full convolution readily give the desired result. As expected, the time-domain

implementation fails when τ is set such that the test functions lie outside the convolution

interval [−2 s, 2 s]. In Figure 5.11, the full-aperture acquisition allows the linear sampling

method to accurately reconstruct the boundaries of the box-shaped scatterers, whereas in

Figure 5.12, we see the method identified the top-left box, but largely failed to reconstruct

the lower-right box. Again, due to the limited-aperture data acquisition, the geometries of

the scatterers are not well constrained.

5.7 Conclusions

We have shown in the appendix that the blowup behavior of solutions to the near-field

equation is due to division by a spatially dependent function with compact support that

localizes the source of the observed field. This general proof gives valuable insight into how

the blowup behavior will depend on different types of source functions, and consequently how

the linear sampling method may be applied to other imaging problems. For example, our

generalized formulation shows that the linear sampling method could be applied to localizing

microseismic events or underground explosions.

96



�
<latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit>

(a)

�
<latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit>

Map

�
<latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit><latexit sha1_base64="Lha9QBBnT+dKooKNXJEOmLpQcy8=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKDeTSTt0MgkzE6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6BmgkvWNtwI1ksVwzgQrBtM7uZ+94kpzRP5aKYp82McSR5xisZK3YGw0RCH1Zpbdxcg68QrSA0KtIbVr0GY0Cxm0lCBWvc9NzV+jspwKtisMsg0S5FOcMT6lkqMmfbzxbozcmGVkESJsk8aslB/T+QYaz2NA5uM0Yz1qjcX//P6mYlu/JzLNDNM0uVHUSaIScj8dhJyxagRU0uQKm53JXSMCqmxDVVsCd7qyeukc1X3LH+4rjVvizrKcAbncAkeNKAJ99CCNlCYwDO8wpuTOi/Ou/OxjJacYuYU/sD5/AE8x499</latexit>

(b)

Figure 5.8: (a) The full-aperture imaging experiment and (b) the single-sided imaging ex-
periment for the two box-shaped scatterers. Sources are indicated by stars and receivers by
triangles. The right panels show a map of the experiment indicating the particular source
(large, cyan star) that generated the scattered data shown in the left panels. No noise is
added to the signals.
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Figure 5.9: Power spectra for the two-box imaging experiment. The power spectrum is
averaged over all recordings of (a) the scattered wave and (b) the test functions with time
dependence given by χ2.

We have presented a physical framework in which the time parameter τ corresponds to

the focusing time of the Herglotz wave function. Furthermore, our numerical experiments

demonstrate how the length of the recorded time interval determines the range of values that

τ can assume. Provided the scattered wave is adequately represented in the recorded time

interval, our experiments show that the focusing time can be safely assumed zero without

loss of generality. The frequency-domain implementation should be preferred for practical

applications, as it gives qualitatively similar results as the time-domain implementation and

offers additional computational savings.

A practical concern for the linear sampling method is how one can effectively separate the

desired scattered wave from the recorded total wave. In principle, one could predict the un-

perturbed wave field recorded at the receivers and subtract it from the data, but this requires

accurate knowledge of the background medium which is not available in many applications.

In time-lapse studies, one could subtract the wave fields recorded at different periods in time

to obtain the perturbed wave field caused by changes in the medium. However, this applica-

tion is prone to any errors in the acquisition deployment that influences the repeatability of
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Figure 5.10: Estimated singular values for the full-aperture (left column) and single-sided
(right column) imaging experiments for the two box-shaped scatterers. Each column gives the
estimated singular values based on the numerical implementation of the discretized near-field
operator. The truncated convolution under-represents the discretized near-field operator, as
evidenced by the more rapid decay of the singular values.
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Figure 5.11: Reconstructions of the two box-shaped scatterers for the full-aperture imaging
experiment. Top row: Reconstructions based on the truncated convolution in the time
domain with τ = 0 s, τ = 0.2 s, and τ = 0.5 s. Middle row: Reconstructions based on
the full convolution in the time domain with τ = 0 s, τ = −2 s, and τ = 1.8 s. When
τ = 1.8 s, the test functions lie partially outside the support [−2 s, 2 s] and the method fails.
Bottom center: Reconstruction based on the frequency-domain approach. The regularization
parameter α = 0 in all cases.
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Figure 5.12: Reconstructions of the two box-shaped scatterers for the single-sided imaging
experiment. Left column: Reconstructions based on the truncated convolution in the time
domain with τ = 0 s, τ = 0.3 s, and τ = 0.75 s. Right column: Reconstructions based
on the full convolution in the time domain with τ = 0 s, τ = 0.75 s, and τ = −4 s.
When τ = −4 s, the test functions lie completely outside the support [−2 s, 2 s] and the
method fails. Bottom center: Reconstruction based on the frequency-domain approach. The
regularization parameter α = 0 in all cases.
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the experiment. It is therefore of practical interest to understand how the linear sampling

method tolerates errors in the acquisition as well as in the assumed background medium.

A promising aspect of the linear sampling algorithm is that it is embarrassingly paral-

lel, since the solution of the near-field equation at each sampling point is independent of

the solution at every other sampling point. Thus, if one has the computational resources

available, the sampling algorithm could easily be distributed over a computing cluster. Our

future work will investigate possible approaches to making the linear sampling method more

computationally efficient as it is applied to larger-scale imaging problems. Additionally, it

would be interesting to compute and visualize the total wave field of the inverse focusing

problem, since this would either validate or reject our interpretation of τ as the focusing

time of the Herglotz wave function.
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5.9 Appendix

Here, we give a proof of the blowup behavior of solutions to the near-field equation (5.9).

We introduce two important generalizations that broaden the applicability of the linear

sampling method to applications other than localizing scatterers. First, we generalize the

notion of recording wave fields due to different known sources to the notion of recording

different realizations of a wave field that passes through a given medium. For example,

us(·, ·,xs) denotes a realization of the scattered wave due to a particular source at xs ∈ Γs.

For a different source location, we observe a different realization of us. Hence, we replace
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the idea of integrating over a known acquisition surface Γs with the more general idea of

integrating over all possible realizations of an observed wave field. This generalization is

powerful, since we no longer need to know the source locations xs. This has important

applications in passive imaging, for example, in which unknown, ambient sources interrogate

the medium. We denote by Ω the set of all possible realizations of the recorded wave (in

practice, of course, we only record a subset of Ω). Second, we generalize the source from

a scatterer to any source function S that can be written as countable sum of separable

functions in space and time; that is,

S(x, t;µ) =
∑

i

Ri(x)Θi(x, t;µ)

for some unknown functions Ri and Θi. Here, we assume the source function has terms Ri

which depend only on space and not on time or the realization µ ∈ Ω that we measure.

Hence, the terms Ri effectively localize the source function and represent its amplitude as

a function of space, which in general depends on the physical properties of the source. On

the other hand, we allow the time dependence of the source function (given by the functions

Θi) to depend on both space and realization. For example, the location of a scatterer in

a medium is fixed, but the time at which the scatterer acts a source function depends on

how the scatterer is interrogated. We assume that each function Ri has compact support

Di ⊂ R3 such that sets Di are pairwise disjoint and that D = ∪iDi gives the total spatial

support of S. For a given realization µ ∈ Ω, expression (5.10) determines that a wave u

generated by such a source has the representation

u(x, t;µ) =
∑

i

∫

R

∫

Di

G0(x, t− τ ;η)Ri(η)Θi(η, τ ;µ)dη dτ.

The function wϕ of the inverse problem can be written as a linear combination of all possible

realizations of the recorded data:

wϕ(x, t′) =

∫

R

∫

Ω

u(x, t′ − t;µ)ϕ(t, µ) dµ dt.
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The wave fields u and wϕ are given equivalently in the frequency domain by

û(x;ω, µ) =
∑

i

∫

Di

Ĝ0(x;η, ω)Ri(η)Θ̂i(η;ω, µ)dη, (5.16)

and

ŵϕ(x;ω) =

∫

Ω

û(x;ω, µ)ϕ̂(ω, µ) dµ, (5.17)

respectively, where ω is the angular frequency. If we substitute (5.16) into (5.17) and inter-

change the order of integration, we obtain

ŵϕ(x;ω) =
∑

i

∫

Di

Ĝ0(x,η;ω)Ri(η)

(∫

Ω

Θ̂i(η;ω, µ)ϕ̂(ω, µ) dµ

)
dη.

For notational convenience, we introduce the source functions Ŝ(i)
ϕ as

Ŝ(i)
ϕ (η;ω) :=

∫

Ω

Θ̂i(η;ω, µ)ϕ̂(ω, µ) dµ, (5.18)

so that the integral representation for ŵϕ becomes

ŵϕ(x;ω) =
∑

i

∫

Di

Ĝ0(x,η;ω)Ri(η)Ŝ(i)
ϕ (η;ω)dη.

Suppose we wish to find the contribution to ŵϕ from a single point z in space. We sample

the wave field ŵϕ using the delta distribution δz = δ(η − z) and obtain

ŵϕ(x; z, ω) =
∑

i

∫

Di

δ(η − z)Ĝ0(x,η;ω)Ri(η)Ŝ(i)
ϕ (η;ω)dη. (5.19)

Note that η is the integration variable over the spatial supports Di of the source function S

that generated the wave field u. It follows from (5.19) that if z 6∈ Di for any i = 1, 2, . . . ,

then the wave field u is identically zero everywhere, and consequently so is wϕ. Otherwise,

if z ∈ Di for some i = 1, 2, . . . , we have

ŵϕ(x; z, ω) = Ĝ0(x, z;ω)Ri(z)Ŝ(i)
ϕ (z;ω). (5.20)

The test function (5.8) can be written in the frequency domain as

Ψ̂(x; z, ω) = Ĝ0(x, z;ω)ζ̂(ω), (5.21)
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where the function ζ̂ ∈ C2(R) is chosen such that it has overlapping support with the

observed field û. We can obtain the near-field equation be forcing equality between the

sampled scattered wave (5.20) and the test function (5.21) on the receiver surface Γr:

Ĝ0(xr, z;ω)Ri(z)Ŝ(i)
ϕ (z;ω) = Ĝ0(xr, z;ω)ζ̂(ω), z ∈ Di,

i.e., since Ri(z) 6= 0 for z ∈ Di,

Ŝ(i)
ϕ (z;ω) =

ζ̂(ω)

Ri(z)
, z ∈ Di. (5.22)

Substituting the definition of the source function Ŝ(i)
ϕ (5.18) back into the left-hand side of

equation (5.22), we obtain the integral equation
∫

Ω

Θ̂i(z;ω, µ)ϕ̂(ω, µ) dµ =
ζ̂(ω)

Ri(z)
, z ∈ Di,

or, in the time domain,
∫

R

∫

Ω

Θi(z, t
′ − t;µ)ϕ(t, µ) dµ dt =

ζ(t′)

Ri(z)
, z ∈ Di. (5.23)

Note that if the observed field u has finite energy (i.e., is square integrable in the sense

of Lebesgue), so does its source function S. In particular, the functions Θi are square

integrable. Therefore, the integral operator on the left-hand side of equation (5.23) admits a

singular-value decomposition (Hansen, 2010). If we denote this singular-value decomposition

by (σn, φn, ψn), where σn are the singular values and φn and ψn are the corresponding left-

and right-singular vectors, respectively, then a solution to equation (5.23) can be written as

ϕz =
∞∑

n=1

1

σn

〈
φn,

ζ

Ri

〉

L2(R)

ψn,

where 〈·, ·〉L2(R) denotes the standard L2 inner product. It follows that in the limit as

z → ∂Di, the function Ri(z) → 0 and the coefficients 〈φn, ζR−1
i 〉L2(R) become uniformly

unbounded (i.e., unbounded for all n ∈ N). In fact, the function Ri(z) = 0 for all z ∈ R3\Di.

Thus, any solution ϕz to equation (5.23) – and consequently to the near-field equation (5.9)

– becomes unbounded as z → ∂Di, and remains unbounded in general for all z ∈ R3 \ D.

Thus, the blowup behavior of solutions to the near-field equation is due to division by the
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spatially dependent functions Ri with compact support Di.

Note that if we do not know the background medium exactly, then we cannot write the

test function Ψz using expression (5.21), since the Green function G0 is unknown. Suppose

instead we approximate the Green function by another function H. Then equation (5.22)

becomes

Ŝ(i)
ϕ (z;ω) =

Ĥ(xr, z;ω)ζ̂(ω)

Ri(z)Ĝ0(xr, z;ω)
,

which is a deconvolution of H and G0 in the frequency domain.
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CHAPTER 6

THE JOURNEY AHEAD

In this thesis, I have put forward the goal of imaging arbitrary acoustic scatterers using

unknown and uncontrolled random sources. The imaging methods presented herein achieve

this goal by solving for the space and time dependence of the scatterers that radiate observed

energy from a specified subset of the medium. In this way, the illumination on the scattering

targets need not be known, and all multiple scattering is properly taken into account. This

is in contrast to techniques such as seismic interferometry, which assume the sources of

illumination are uniformly distributed around and away from the receivers and imaging

targets.

In Chapter 2, I provided a geometrical explanation of the memory effect and demon-

strated its time dependence by simulating the transmission of short-duration impulses through

collection of random point scatterers. In Chapter 3, I showed that it is possible to image

strongly scattering targets in the presence of randomly distributed and unknown sources us-

ing the linear sampling method. The success of the method relies on the persistent radiation

of scattered energy that can be amplified and detected in the recorded data. In Chapter

4, I introduced a novel imaging method based on inverting the Lippmann-Schwinger equa-

tion of acoustic scattering theory. I compared the proposed Lippmann-Schwinger inversion

with the linear sampling method and investigated their physical bases. In Chapter 5, I

resolved the dependence of the linear sampling method on an ambiguous time parameter

and provided a physical framework for the method’s interpretation. Additionally, I provided

detailed numerical algorithms to properly and efficiently implement the method in both the

time and frequency domains.

Together, Lippmann-Schwinger inversion and the linear sampling method represent two

modern inverse scattering techniques that may be suitable for future ambient imaging ap-
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plications. While the two methods have shown promise in their ability to localize arbitrary

scatterers under the ideal conditions simulated in this thesis, there are a number of practi-

cal challenges that need to be overcome before they may be considered for seismic imaging

applications. I elaborate on a few of these below.

6.1 Single-sided or limited-aperture acquisition

Seismic data are acquired at or near the surface of the earth. Naturally, Lippmann-

Schwinger inversion and the linear sampling method must demonstrate satisfactory imaging

capabilities given limited-aperture data before they can be considered for subsurface imaging

applications. In Chapter 5, I showed the image of two scatterers obtained by the linear

sampling method when the sources and receivers were located to one side of the imaging

domain (Figure 5.12). This acquisition setup mimics what is typically employed in seismic

applications. The reduced aperture limits the illumination and scattering angles with which

we interrogate and observe the imaging target. The result is that we lose the ability to

resolve the geometry of the opposite side of the scatterers. In particular, Figure 5.12 shows

that deeper targets are imaged more poorly than shallower targets.

What can be done to mitigate the aperture problem faced by these methods? Catapano

et al. (2008, 2011) suggest that the sensitivity of the linear sampling method to targets at

greater depths can be improved by normalizing the observed impulse response from each

image point by its energy. That is, we can separate the blowup behavior of solutions to the

near-field equation from the effects of geometrical spreading. Another idea is to reconsider

how the image is defined with these methods in the first place. The solutions to the near-

field and Lippmann-Schwinger equations contain valuable time information about the source

of the scattered wave. By taking the norm as the image, we integrate over time and lose

this information. We may be able to increase spatial resolution by integrating over different

time windows of the solutions (for example, by windowing in time where the solutions are

“peaked”).
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6.2 Heterogeneous and elastic background media

Estimation of the background medium (and in particular velocity estimation) is an im-

portant part of seismic imaging (e.g., Biondi (1992); Cameron et al. (2007); Etgen (1990);

Fowler (1988)). Having an adequate background model is also important for the linear

sampling method and Lippmann-Schwinger inversion, since we must specify the impulse re-

sponse of the background medium (see equations (4.10) and (4.15)). There is the issue of

the sensitivity of the methods to the background model, which falls into two categories: (1)

a “smooth” estimate of the background model (the case commonly sought after in seismic

imaging), and (2) interfaces of strong impedance contrast such as the water bottom and salt

boundaries. A sensitivity analysis of these methods to the background model needs to be

performed.

In the case of elastic media, the linear sampling method has been formulated for ho-

mogeneous, isotropic background media (Arens, 2001; Charalambopoulos et al., 2002; Fata

and Guzina, 2004), and more recently for anisotropic scatterers (Anagnostopoulos and Char-

alambopoulos, 2006) and piecewise-homogeneous background media (Guzina and Madyarov,

2007). Here, an inaccurate background model will not only yield an impulse response with

the wrong kinematics, but may also generate spurious mode conversions between compres-

sional and shear waves, which will be inconsistent with recorded data.

6.3 Density discontinuities

In Chapter 4, I tested both the linear sampling method and Lippmann-Schwinger in-

version on reconstructing a pure density contrast. As seen in expression (4.5), a scatterer

caused by a density contrast creates a dipole radiation pattern, which depends on the direc-

tions of both the incoming wave and the density variations. However, both methods model

the impulse response of the background medium as a monopole source, and consequently fail

to capture the directional dependence of the density contrast. For a given source position

xs, the solution to the Lippmann-Schwinger equation χ(xs) is sensitive to the illumination
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direction. It may be possible to glean more detailed information about the density properties

of a scatterer by analyzing the gradients of the solutions ∇xsχ(xs) with respect to source po-

sitions xs. For the linear sampling method, we could consider modeling the impulse response

due to a unit point force with varying polarization to find the one that best reconstructs the

boundary of the density contrast.

6.4 Quantitative inversion or parameter estimation

Typically, a weak-scattering approximation is made to invert the Lippmann-Schwinger

equation and estimate the velocity contrast of a scatterer. Relatively recently, it has been

shown that estimates of the velocity contrast can be extracted from the linear sampling

method (Crocco et al., 2012; Di Donato et al., 2015; Di Donato and Crocco, 2015; Di Donato

et al., 2016; Palmeri et al., 2017). In essence, a two-step inversion process is proposed: (1)

estimate the shape of the unknown target using the linear sampling method, and (2) apply

Lippmann-Schwinger inversion to the wave fields of the virtual experiment corresponding

to those image points inside the scatterer. This latter approach exploits the fact that the

total wave field at the scatterer in the virtual experiment is known, and consequently the

velocity contrast can be estimated without any weak-scattering approximations. It would

be interesting to compare this approach with techniques such as full-waveform inversion.

6.5 “Real data” testing

To the best of my knowledge, the linear sampling method has been tested only on single-

or multi-frequency electromagnetic data: both Crocco et al. (2012) and Di Donato et al.

(2016) use the so-called “Fresnel” data sets (Belkebir and Saillard, 2001, 2004), while Tacchino

et al. (2002) tested on the so-called “Ipswich” data (McCahan and Kleinman, 1996). Akıncı

et al. (2015) acquire their own data for microwave imaging. It would be worthwhile to test the

linear sampling method and Lippmann-Schwinger inversion on time-dependent data acquired

in a laboratory or field experiment (e.g., vertical seismic profile (VSP) or cross-borehole data).

Often, much is learned about the practicality of a method simply by applying it to real data.
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