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ABSTRACT

Interferometry recovers the impulse response of waves propagating between two

sensors as if one of them acts as a source. The primary focus of this thesis is on provid-

ing a framework for interferometry based on perturbation theory that can be used for

the direct reconstruction of the portion of the data that is of interest for imaging and

inversion methodologies. I derive general reciprocity theorems in perturbed acoustic

media. These theorems show that the wavefield perturbations are extracted from

cross-correlating the perturbations detected by one receiver with unperturbed waves

sensed by another. Apart from applications to interferometry, the representation theo-

rems presented here can also be used for inverse-scattering and time-lapse monitoring.

I also present a theory describing interferometry by deconvolution, based on a series

expansion of deconvolved waves in the wavefield perturbations. This expansion is

used to give a scattering-based interpretation of the physics of deconvolution interfer-

ometry. Deconvolution interferometry, like its correlation counterpart, also retrieves

the impulse response between the receivers, but with boundary conditions that are

different than those of the original measurement. Interferometry by deconvolution is

particularly important for recovering the impulse response from noise records excited

by a long and complicated source-time function. As an application of deconvolution

interferometry in exploration geophysics, I elaborate on the use of this method for

processing seismic-while-drilling data, while comparing to more standard practices.

Interferometry by deconvolution yields wide-band images from drilling noise without

requiring an independent estimate of the drill-bit excitation. This concept is applied

to borehole measurements of drilling noise at the San Andreas Fault Observatory at
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Depth (SAFOD) to provide a broadside depth image of the San Andreas Fault sys-

tem. This image displays the localized subsurface structure of the San Andreas Fault

and of another major blind fault. Finally, the representation theorems in perturbed

media are used to develop an interferometry method that targets the interference of

specific arrivals in the data. This target-oriented interferometry method can be used

to reconstruct primary reflections from internal multiples. The interference of inter-

nal multiples can be used to image subsalt structures using borehole receiver arrays

placed beneath salt. I test this method both on numerical experiments and on field

data from deep-water Gulf of Mexico.
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“Firmitas, Utilitas, Venustas.”

Vitruvius, De Architectura.
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4.6 Panel (a) shows the large-scale structure of the P-wave velocity field
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5.1 Panel (a) shows our current knowledge of the structure of the San
Andreas fault system at Parkfield, CA. The main geologic formations
are indicated by different colors and by their corresponding acronyms,
these are: the Tertiary Ethegoin (Te), Tertiary Ethegoin-Big Pappa
(Tebp), Tertiary undifferentiated (Tund), Cretaceous Franciscan rocks
(Kfr), Cretaceous Salinian Granite (Ksgr), and the pre-Cretaceous
Great Valley (pKgv). The SAFOD main-hole (MH) is indicated by the
blue solid line. Black solid lines in (a) represent faults. BCFZ refers to
the Buzzard Canyon Fault zone. The areas where the finer-scale struc-
ture of the SAF system were unknown are indicated by question marks.
The red triangles, numbered 1 through 5, show approximate locations
of intersections of the MH with major zones of faulting (Solum et al.,
2006). Triangle number 5 represents the point where the MH pene-
trated the SAF in 2006. Panel (b) shows the large-scale structure of
the P-wave velocity field (velocities are colorcoded) that approximately
corresponds to the schematic representation in (a). The circles in (b)
indicate the location of the sensors of the SAFOD pilot-hole array used
here for the recording of drilling noise. The SAFOD MH array, used in
the active-shot experiment, is indicated by the triangles. The location
of the active shot is depicted by the star. Depth is with respect to sea
level, the altitude at SAFOD is of approximately −660 m. . . . . . . 136

5.2 Schematic acquisition geometries of SAFOD data. Receivers are indi-
cated by the light-blue triangles. The structures outlined by black solid
lines to the right-hand side of the figure represent a target fault. (a)
shows the acquisition geometry of the downhole seismic-while-drilling
(SWD) dataset. It consists of multiple 60 second-long recordings of
drill-bit noise excited at different depths, recorded at 32 3-component
receivers in the PH. As indicated by (a), receivers are oriented in the
Z-(or downward vertical), NE- and NW-directions. (a) also shows a
schematic stationary path between the drill-bit and two receivers. In-
terferometry recovers only the portion of the propagation path rep-
resented by black arrows in (a). The active-shot geometry in (b) is
comprised of 178 3-component receivers placed in the MH. The dashed
red arrow in (b) represents all waves that propagate towards the NE
(right-hand side of the figure), while the solid red line represents all
waves going toward SW (left-hand side of (b)). The inclination of the
deviated portion of the MH is of about 45o with respect to the vertical.
The receiver components of the SAFOD MH array are co-oriented with
those of the PH array, whose orientations are shown in (a). . . . . . 137
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5.3 (a) Vertical component of the interferometric shot gather for a pseudo-
shot position at pilot-hole receiver PH-26. Red arrows indicate reflec-
tions of interest. The reflection event that arrives at approximately 1.0
s at receiver PH-24 is interpreted to correspond to a P-wave reflection
from the SAF zone. Due to the noise levels, only a subset of the 32
receivers of the PH array is sensitive to the incoming signals from the
SAF zone. (b) Data recorded by the vertical component of motion
in the SAFOD MH array from the active-shot experiment. The red
arrows indicate two left-sloping events that are associated to P-wave
reflections from faults within the SAF system. . . . . . . . . . . . . . 140
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same as indicated by the red arrows and numbers 1 through 3 in main-
text Figure 3. The dashed yellow boxes in (a) and in (b) highlight the
portions of the images that are shown in main-text Figures 3a and 3b,
respectively. Both yellow boxes in fact represent the subsurface area
that is physically sampled by P-wave reflections, which in turn depends
on the acquisition geometry of each experiment (see Figure S5.2). The
red triangles show the approximate locations where the SAFOD MH
intersected major fault zones (see main text Figure 1b). Distances
in the x-axis in (a) and (b) are with respect to the location of the
SAFOD drill site at the surface. The surface trace of the SAFz is at
approximately x = 2000 m. . . . . . . . . . . . . . . . . . . . . . . . 144

xviii
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overlayed on the result obtained from Chavarria et al. (2003). The
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6.1 Geometry of the perturbation approach to target-oriented interfero-
metric imaging. A large volume is bounded by the surface Σ, that
contains medium perturbations that are restricted to the volume P

(indicated by the grey-shaded areas). Closed surfaces are denoted by
the dashed lines. In both panels, u0 are unperturbed wavefields, while
uS are wavefield perturbations due to scattering within the volume P.
The solid lines illustrate stationary wave-paths. Two receivers, located
at rA and rB, are represented by triangles. The grey triangle denotes
the receiver that acts as a pseudo-source in the interferometric exper-
iments. When the target is imaging medium perturbations above the
receivers, as in panel (a), I rely on waves excited by sources over the
surface σ1 (solid black line). In panel (b), interferometry targets the
reconstruction of up-going scattered waves from below the receivers.
In this case, I consider only waves generated by sources on the surface
σ2. These Figures are extended after Chapter 2. . . . . . . . . . . . 161

6.2 Examples of wavefield separation for target-oriented interferometry.
The wavefield u0 and the perturbation uS are extracted from the recorded
perturbed wavefield u by wavefield separation. Wavefield separation is
implemented by wavenumber filtering (e.g., by f − k filtering) in the
shot domain. Receivers are represented by triangles. The receiver
that acts as a pseudo-source (located at rB) is indicated by the grey
triangles. The arrows indicate the direction of waves arriving at the
receivers. The directions parallel and perpendicular to the receiver line
define a coordinate frame indicated by the dashed lines. In this coor-
dinate frame, ks is the shot-domain wavenumber of a given recorded
wave. Panel (a) illustrates the separation of wavefields necessary for
target-oriented interferometric imaging in the context of Figure 6.1a.
This is one particular choice of pseudo-sources that radiate energy to-
wards the upper right-hand portion of the medium above the array.
The wavefield separation in panel (b) is designed for the imaging ex-
periment in Figure 6.1b. This procedure can be thought in terms of
selecting a portion of the Ewald sphere (Ewald, 1962). . . . . . . . . . 166

xx



6.3 Geometry of the numerical experiment with the Sigsbee model. The
figure displays the model structure, colorcoded by acoustic wavespeed.
A receiver array with 100 sensors is set beneath the salt body, in a
45o inclined borehole (solid line with triangles). Shots are placed in
a horizontal line 500 ft below the water surface, and extend laterally
towards the left-hand side of the receiver array, as indicated by the
red arrow. Interferometry is used to image the salt with the receiver
array by reconstructing down-going primary reflections propagating
between the receivers from internal multiples. The wavepath of one
such multiple is indicated by the dashed black arrow. . . . . . . . . . 169

6.4 Images obtained from interferometry of the data acquired in the nu-
merical experiment (Figure 6.3). The images, in grey scale, are super-
posed on the velocity model from Figure 6.3. The images are based on
cross-correlation interferometry (panel a), and on deconvolution inter-
ferometry (panel b). I used the full wavefield recorded at the receivers
to reconstruct the interferometric shot gathers from which these images
are obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Images obtained from target-oriented interferometry of the Sigsbee
Walk-Away VSP data (Figure 6.3). Target-oriented interferometry
is implemented with the wavefield separation approach described in
Figure 6.2a, adapted to include waves arriving from directly above
the receivers. As in Figure 6.4, the image in (a) is obtained from
cross-correlation interferometry and the image in (b) from deconvolu-
tion interferometry. The reflectors in these images come from single-
reflections reconstructed by interferometry mostly from internal mul-
tiples. This numerical experiment is analogous to that shown in Fig-
ure 6.1a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xxi



6.6 Geometry and acquisition of the Walk-Away VSP field data. The ve-
locity model derived from surface seismic is shown in (a). Receivers are
placed in a deviated Ill below the salt canopy, as indicated by the black
triangles in (a). A plane view of the shot-receiver acquisition geome-
try is given by (b). Shot positions are denoted by blue circles, while
receiver locations are represented by red triangles. In panel (b), the
coordinate frame is centered on the location of the shallowest receiver.
N is distance oriented toward the North; E is Eastward oriented. The
orientation of the velocity profile in (a) coincides with that of the WAW
line in (b). The lateral distance in (a) is also measured with respect
to the location of the shallowest receiver, along the direction of the
acquisition plane. The arrows in (b) indicate which sources are used
for controlling the illumination of the interferometric data. Sources A
(in red) correspond to the sources over σ1 in the experiment in Fig-
ure 6.1a. Sources B (in green) are the ones that contribute to imaging
below the array (source over σ2; Figure 6.1b). . . . . . . . . . . . . . 174

6.7 The effect of wavefield separation on receiver gathers from field data.
The original data recorded at receiver 1 (shallowest receiver in Fig-
ure 6.6a) is shown in panel (a). The receiver gather in panel (b) only
contains waves with ks < 0 (see Figure 6.2). The data in (c) come from
the positive wavenumbers in the shot domain (ks > 0). The black ar-
rows highlight portions of the data for which wavefield separation has
a visible effect. The red box outlines the portion of the data that cor-
responds to Sources A (Figure 6.6b), while the data inside the green
box is excited by Sources B. . . . . . . . . . . . . . . . . . . . . . . . 175

6.8 Interferometric shot gathers with pseudo-shot at receiver 10, recon-
structed with correlation interferometry. The pseudo-shot gather in
(a) results from correlating the full wavefields from all sources (Fig-
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6.9 Pseudo-shot gathers from deconvolution interferometry. The input
data in panels (a), (b) and (c) is the same as that in Figures 6.8a, b and
c, respectively. The data in (a) is reconstructed from the full wavefield
from all sources (Figure 6.6b). Sources A (Figure 6.6b) along with
wavefield separation according to Figure 6.2a are used to obtain the
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6.10 Comparison between images after reverse-time migration, with and
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ceiver. The images in the left-hand panels (a and c) correspond to
using all sources and the full wavefield for interferometry; the images
in the center panels (b and e) are from pseudo-sources that radiate en-
ergy upward (as in Figure 6.1a; wavefield separation is done according
to Figure 6.2a). The images in (c) and (f) are the result of reverse-time
migration of pseudo-sources designed to radiate energy downward (see
also Figures 6.1b and 6.2b). Images on the top panels result from corre-
lation interferometry, and the bottom images are obtained with decon-
volution interferometry. The images correspond to the same portion
of the subsurface shown by the model in Figure 6.6a. Image aperture
is controlled by the geometry of the receiver array (Figure 6.6a). . . . 181
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Chapter 1

INTRODUCTION

The inference of waves recorded at two observation points can be used to extract

waves that propagate between these points. Interferometry is the general term I use to

refer to the methods by which we can manipulate recorded wavefields to extract waves

that propagate between the receivers as if one of them acts as a source. In the field of

exploration geophysics, Claerbout (1968) was the first to note that the autocorrelation

of recorded transmission responses yields the reflection response in 1D media. He

referred to this approach as daylight imaging (Claerbout, 1968; Rickett and Claerbout,

1999), by comparing it to the manner by which human eyesight works. This analogy

with human vision can be associated to some of the first formal proofs of the concepts

of interferometry in multidimensions, which rely on the cross-correlation diffuse waves

recorded by two sensors to extract the impulse response between them (Lobkis and

Weaver, 2001; Weaver and Lobkis, 2004). Diffuse-wave correlations (e.g., Weaver and

Lobkis, 2004; Larose et al., 2006) rely on the physical principle of equipartioning,

which states that at the observation points, after averaging over time, waves travel

in all directions with the same amount of energy. This condition is necessary for the

reconstruction of the medium’s full impulse response from correlations of the recorded

data.

In the context of interferometry, the medium’s impulse response is formally de-

fined by the Green’s functions describing waves that propagate between the two sen-

sors. Thus, interferometry is also referred to as Green’s function retrieval (e.g., Weaver



2

and Lobkis, 2004; Wapenaar et al., 2006). Along with the diffuse-wave theory (e.g.,

Weaver and Lobkis, 2004), other derivations are based on representation theorems

(e.g., Wapenaar et al., 2004; Wapenaar et al., 2006; Snieder, 2007; Snieder et al.,

2007) also demonstrate the results of interferometry. These representations theorems

(also called Greens’s theorems) come from general reciprocity theorems (de Hoop,

1988; Fokkema and van den Berg, 1993; Wapenaar et al., 2006) which relate two

arbitrarily different wave states in one and the same space. The representation the-

orems used to describe interferometry are akin to those used in the derivation of the

Kirchhoff-Helmholtz integral (e.g., Bleistein et al., 2001) that is commonly used in

seismic imaging methods (e.g., Bleistein et al., 2001; Biondi, 2006). For systems that

are invariant in time reversal, the representation theorems state that the impulse

response between two sensors can be extracted from cross-correlating waves excited

by sources distributed over a closed surface that surrounds the receiver. This source

configuration produces waves propagating at all directions at the receiver locations,

being thus similar in concept to the physics of equipartioned diffuse waves.

There are examples of applications of interferometry in the fields of exploration

seismology (e.g., Schuster, 2001; Schuster et al., 2004; Bakulin and Calvert, 2004;

Mehta et al., 2007b), ultrasonics (e.g., Malcolm et al., 2004; van Wijk, 2006), ocean

acoustics (Roux et al., 2004; Sabra et al., 2004), global earth seismology (e.g., Shapiro

et al., 2005; Sabra et al., 2005a), structural engineering (Snieder and Şafak, 2006;

Thompson and Snieder, 2006) and helioseismology (e.g., Rickett and Claerbout,

1999). In exploration seismology, Schuster and co-workers have provided interferomet-

ric imaging applications for reverse vertical-seismic profile (VSP) data (e.g. Schuster

et al., 2004; Yu and Schuster, 2006), increasing dramatically the illumination area

in these experiments. Bakulin and Calvert (2004,2006) use time-reversal arguments
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to design Virtual Sources with interferometry that eliminate the influence of highly

heterogeneous overburden in VSP data. Mehta et al. (2007b,c) extended the Virtual

Source method of Bakulin and Calvert (2006) to multiple removal and time-lapse

applications. Shapiro et al. (2005) and Sabra et al. (2005a) rely on the incoherent

excitation produced by ocean waves hitting the coast to extract surface waves prop-

agating between sensors and use them for surface-wave tomography. These are only

some of the examples of interferometry applications I cite in this thesis. My work

offers perturbation-based and deconvolution interferometry as tools to treat yet an-

other subset of physical problems related to scattering-based imaging and monitoring

temporal changes in the medium. I give examples of applications in fault and subsalt

imaging, and imaging with coherent noise such as drilling noise.

This thesis consists on the compilation of five stand-alone research articles that

are intrinsically related. One of the ways in which I establish the relationship between

the research work in these articles is simply by cross-referencing the chapters, when-

ever appropriate. Apart from citations, this Introduction sets a general framework

for these papers, providing a “map” to guide the readers through both the content

and the broader context of each article.

As discussed above, the most central concept in this manuscript is that of inter-

ferometry. To understand the meaning of this term1 in a fundamental way, let us first

review the conventional approach to describing natural phenomena in mathematical

physics (which include geophysical applications). A general mathematical construc-

tion to describe a physical phenomenon postulates a conceptual model M (Figure 1.1)

to describe a Material State. This Material State is typically represented by model

parameters associated with physical material quantities such as mass, thermal con-

1I follow the terminology introduced by Schuster (2001).
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Figure 1.1. A common mathematical concept of a physical system. The solid arrows
denote a forward modeling scheme, where a measurement D is predicted from a given
material state M by means of a theoretical framework T. The dotted arrows represent
an inversion, where the theory is used to infer the material state from observations.

ductivity or resistivity, for example. On the other end of the mathematical physics

constructions lies the Measurement D (Figure 1.1) of a physical quantity such as pres-

sure, temperature or electric potential. The Material State M and the Measurements

D are linked by a formal and reproducible deductive system (e.g., that of Principia

Mathematica; Whitehead and Russell, 1910, 1912, 1913) in the form of a Theory T

(Figure 1.1). This conceptual construction can be used to predict the data that would

be acquired for a known model, this is commonly referred to as forward modeling or

simply as modeling (this is illustrated by the solid arrow in Figure 1.1). The concept

in Figure 1.1 can also be used to infer the Material States from a given Measurement

by means of inversion (e.g., Tarantola, 1987). Interferometry methods use the math-

ematical physics concept in Figure 1.1 differently from the more conventional forward

or inverse approaches. By manipulating the Theory T (Figure 1.2), interferometry

can be used to reconstruct a pseudo-measurement Dr from actual measurements Da,

with no knowledge of the Material State M (e.g., Wapenaar et al., 2006; Snieder et

al., 2007).

Although my objective in this thesis is more mundane than the discussion of
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Figure 1.2. The general concept of interferometry as treated by this manuscript.
Based on a set of theories T, the acquired measurements Da are used to reconstruct
a pseudo-measurement Dr.

the principles of mathematical physics, it is worth noting two important issues re-

garding the concept illustrated by Figure 1.1. First, it is important to note that

the Material parameters only have meaning in the context of a proposed model and

Theory set. The monograph by Tarantola (2006) provides a thorough discussion on

the meaning of physical measurements and parameters. Second, Gödel (1930) showed

that a mathematical statement that cannot be proved is not necessarily false, nor it

is guaranteed that a proven mathematical statement is true. This means that the

mathematical representation of physical phenomena expresses a limited perception

of the natural world which cannot be logically proven to be true. Wigner (1960)

discusses the complex role of mathematics in describing different levels of human

phenomenological perception. Following standard scientific practice, in this thesis I

present theory and experiments that communicate my intuition on particular aspects

of wave propagation. More specifically, through the method of interferometry I de-

scribe how seismological measurements can be used to recover a pseudo-acquisition

thatdiffers from the originally recorded data, and give examples of applications in

exploration geophysics.

Interferometry can be used reconstruct a pseudo-acquisition from recorded mea-
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surements without knowledge of model parameters (Figure 1.2). The objective of

geophysics, however, is the understanding of the subsurface, i.e., of the model. So

how can interferometry be used to gain insight about the Earth’s subsurface that

cannot be gained by the original measurements? The limitations of the acquired

data Da (Figure 1.2) in terms of number of sources and sensors, spatial distribution,

etc., along with the approximations in the theory dictate which portion of M can be

inferred by means of inversion (Figure 1.1). In this context, the interferometrically

reconstructed data Dr can be used to recover a portion of the model space of M that

is different from that recovered by the inversion of Da. For example, seismic imaging

methods (e.g., Bleistein et al., 2001; Biondi, 2006) typically assume that the data

contains only single-scattered waves, and cannot handle multiply-scattered waves.

With interferometry, I use seismic imaging techniques based on single-scattering to

image waves scattered multiple times within the subsurface (Chapter 6), this results

in an image with illumination properties that are different than what would have been

obtained with the same data using standard processing techniques.

It may sound like “new data” is “created” from observed data by interferometry,

but no such thing really happens. The data reconstructed by interferometry contains

all of the same information present in the original measurements. The idea of inter-

ferometry is akin to that of reshuffling poker cards, where each card represents a set

of information contained in the observed data. One may then be inclined to think

that this presents a contradiction to the discussion in the previous paragraph, where

I state that interferometric data can be used to infer portions of the model space

which the original measurements cannot estimate. What happens in practice is that

the approximate theories used to infer models typically consider only a subset of the

data, i.e., they look at some of the cards in our information deck in a predetermined
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order. Once interferometry reshuffles the information in the data, the same approxi-

mate theories have access to data features that are ignored in the original experiment.

The example of imaging internal multiples with interferometry given in the previous

paragraph illustrates this concept.

The focus on perturbation theory is a fundamental aspect of my research in inter-

ferometry that makes it unique with respect to other published work in the field. As I

show in this thesis, the perturbation approach plays a key role in formally connecting

the result of interferometry to the scattering and monitoring problems. The theory

I present here targets the interferometric reconstruction of wavefield perturbations,

which are the desired input for many existing techniques in imaging (e.g., Bleistein

et al. 2001; Weglein et al., 2003; Biondi, 2006), data processing (e.g., Weglein et al.,

2003; Malcolm et al., 2004) and inversion (e.g., Tarantola, 1987; Bleistein et al., 2001;

Weglein et al., 2003). Other approaches in interferometry (see citations in Chapters

2 through 6) result in the reconstruction of the full wavefields. I discuss this with

further detail below.

Although centered on theory and applications of interferometry, this thesis also

deals with other topics such as perturbation and scattering theory, passive and active

seismic imaging, and imaging of fault zones and subsalt environments. The two first

papers (Chapters 2 and 3) provide the theoretical background for the applications

presented in Chapters 4 through 6. The articles were not all directed to a single

scientific community, so there are subtle differences in the language and discourse

focus between one Chapter and another. Much of the general language and scientific

writing standards I employ in these texts is inspired by Gopen and Swan (1990) and

Penrose and Katz (1998). In this Chapter, I provide brief descriptions of the other

Chapters, highlighting the connections between their contents. More detailed descrip-



8

tions of the context of each article can be found in the corresponding Introduction

sections of each Chapter.

As mentioned above, in the theoretical papers (Chapters 2 and 3) I use pertur-

bation theory (e.g., Schrödinger, 1950; Lipmann, 1956; Rodberg, 1967). The main

reason for using perturbation theory in my derivations is its use in the description of

scattering problems (e.g., Lipmann, 1956; Rodberg, 1967). We use scattering-based

arguments to connect the theory we present in Chapters 2 and 3 with the seismic

applications in Chapters 4 through 6, in a manner analogous as that presented by

de Hoop (1996), Weglein et al. (2003), and Malcolm et al. (2007). In Chapter 2,

I manipulate the acoustic wave equations that describe waves in unperturbed and

perturbed media to derive reciprocity theorems of the convolution- and correlation-

type (de Hoop, 1988; Fokkema and van den Berg, 1993). The theoretical framework

I use in Chapter 2 relies in a general domain representation (Figure 1.3) first intro-

duced by de Hoop (1988) and used by Fokkema and van den Berg (1993). The use

of this domain representation allows for the derivations of theories that account for

arbitrary complexity in medium and geometry parameters. The reciprocity theorems

in Chapter 2 provide explicit relations between wavefields (unperturbed and per-

turbed) and the wavefield perturbations. Next I derive representation theorems using

the Green’s functions and discuss how they can be used to extract only the wavefield

perturbations that propagate between the receivers from recorded data using interfer-

ometry. The extraction of the wavefield perturbations is important because they are

the input to most seismic imaging methods (e.g., Bleistein et al., 2001; Biondi et al.,

2006). Going beyond interferometric imaging, in Chapter 2 I discuss the application

of the representation theorems in perturbed media for monitoring medium changes

and inverse-scattering imaging. I describe interferometry in Chapter 2 by means of
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Figure 1.3. The domain representation used to derive reciprocity theorems. V is an
arbitrary volume bounded by ∂V with normal unit vectors n.

cross-correlations, which relates to other descriptions of interferometry (e.g., Lobkis

and Weaver, 2001; Wapenaar et al., 2002; Wapenaar et al., 2006; Snieder et al., 2007;

see Chapter 2 for a more detailed discussion).

Interferometry extracts the response between two given receivers as if one of them

acts as a source. When waves are excited by transient noise sources, the response re-

constructed by correlation-based interferometry carries an average of the power spec-

tra of the excitations (Snieder et al., 2006a; Wapenaar and Fokkema, 2006; Chapter

3). If the excitation is described by a long and complicated time series, extracting the

Earth’s impulse response from the result of cross-correlation interferometry is compli-

cated due to the imprint of the source power spectra. Such complicated excitations

can be found in passive experiments as in seismic-while-drilling (e.g., Rector and Mar-

ion, 1991; Poletto and Miranda, 2004) or turbine monitoring, for instance; waveforms

incoming from the subsurface can also constitute a complicated and incoherent exci-
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tation (e.g., Trampert et al., 1993; Snieder and Şafak, 2006; Mehta et al., 2007c,d).

As an alternative to cross-correlations, in Chapter 3 I provide a theory that describes

deconvolution interferometry in acoustic media of arbitrary complexity. This theory

is based on a series expansion of deconvolved waves with respect to small wavefield

perturbations. Using the results of Chapter 2, I study how deconvolution interferom-

etry can be used to extract the impulse response propagating between receivers for

arbitrarily complicated excitation. In Chapter 3, I provide a scattering-based phys-

ical analysis of deconvolution interferometry, and explain how this method yields a

pseudo-experiment with different boundary conditions from the original recordings.

Using a simple model of a homogeneous medium with a single reflector, I use the

stationary-phase method (Bleistein and Handelsman, 1975) to illustrate the result

of deconvolution interferometry. I illustrate the concepts in Chapter 3 with simple

numerical examples.

Chapters 2 and 3 together present a set of tools that can be used for interfer-

ometry in perturbed media, both in the context of imaging (by associating scattering

to perturbation theory) and in monitoring changes in the medium. While Chapter

2 provides representation theorems that can be used for imaging/inversion and for

correlation interferometry, Chapter 3 offers the physics of deconvolution interferome-

try that can be used for imaging waves excited by long and complicated source-time

functions. Throughout my derivations, I assume that the reader is familiar with com-

monly referred topics of mathematical physics such as the wave equation, Fourier

integral transformations and their associated properties, and the Gauss divergence

theorem (e.g., see Courant and Hilbert, 1989).

I discuss applications for the theory presented in Chapters 2 and 3 in Chapters

4 through 6. In Chapter 4, I describe the application of deconvolution interferometry
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to the recordings of drill-bit noise. The majority of methods that treat seismic-while-

drilling (SWD) data require independent measurements (called pilot records) of the

drill-bit excitation to extract the Earth’s impulse response (e.g., Rector and Mar-

ion, 1991; Poletto et al., 2004; Haldorsen et al., 1994). Deconvolution interferometry

can be of particular use for processing SWD when pilot records are not available

or if they provide a poor representation of the drill-bit signal. In Chapter 4 I il-

lustrate, with a numerical example, the how deconvolution interferometry can be

used to image drill-bit noise passively recorded by subsalt borehole receiver arrays.

With a heuristic extension of the theory in Chapter 3 to the case of elastic wave

propagation, I analyze multicomponent field records of drill-bit noise from the Pi-

lot borehole of the San Andreas Fault Observatory at Depth (SAFOD) at Parkfield,

CA (e.g., http://www.icdp-online.de/sites/sanandreas/index/index.html; Chavarria

et al., 2003). In both the numerical and field data examples, I provide comparisons

between the results of deconvolution- and correlation-based interferometry.

The geophysical characterization of the San Andreas fault zone is important to

the understanding of the local dynamics of transcurrent plate boundaries (Turcotte

and Schubert, 2001) and their associated seismicity. In particular, the dynamics

of the San Andreas fault (SAF) is crucial in characterizing the seismogenic risk of

highly populated areas in CA that lie near the fault zone. Figure 1.4 shows a satellite

image of the SAF by Palmdale, CA, where of the urbanized area lies next to the

fault. The SAFOD drill-bit data, whose processing I discuss in Chapter 4, is part of

a comprehensive set of data on the San Andreas fault zone at Parkfield, CA. These

data include not just passive (Oye et al., 2004; Nadeau et al., 2004) and active (Hole

et al., 2001; Catchings et al., 2003; Chavarria et al., 2003) seismic records, but also

surface gravity (Roecker et al., 2004) and resistivity surveys (Unsworth et al., 2000;
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Figure 1.4. Perspective view of a satellite image of the San Andreas Fault (SAF)
at Palmdale, CA. The image is overlaid on a 3D topographic model. The image
perspective is the same of an observer looking toward the South East direction. The
SAF zone is marked by the linear feature in the center of the image (indicated by the
red arrow). The city of Palmdale can be seen in the right-hand side of the image.
(Courtesy of the NASA Visible Earth project, http://visibleearth.nasa.gov)

Unsworth and Bedrosian, 2004), and well information in the form of logs (Boness

and Zoback, 2004, 2006) and rock samples in the form of cores and washed cuttings

(Solum et al., 2004, 2006). In Chapter 5, I provide an interpretation of the results of

the deconvolution interferometry of the SAFOD Pilot Hole SWD data (Chapter 4)

along with the imaging of active-shot seismic data recorded in the SAFOD Main Hole.

We compare the results obtained by the joint interferometric and active-shot imaging

with previous measurements at Parkfield to arrive at a geological interpretation of

the images I obtain.

In Chapter 6 I propose yet another application of the perturbation-based inter-

ferometry presented in Chapter 2. This application consists in the interferometry of

waves that are excited by sources at the Earth’s surface that reflect multiple times
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within the subsurface and are recorded by borehole sensors. Using the theory in Chap-

ter 2, I show that the interference of multiple reflections can be used to reconstruct

primary reflections that propagate between the borehole receivers. These primary

waves can be used in algorithms designed for standard seismic exploration experi-

ments (e.g., Bleistein et al., 2001; Biondi, 2006) to image structures that lie above

the receiver array. Because the interferometry method I describe in Chapter 6 targets

the imaging of a chosen portion of the subsurface surrounding a borehole receiver

array, I refer to it as target-oriented interferometry. This target-oriented interferom-

etry methodology relies on a wavefield separation procedure to separate unperturbed

waves from wavefield perturbations in the recorded data. I describe target-oriented

interferometry and compare it to other existing interferometry methods in Chapter

6. With the same numerical model used in Chapter 4, I generate a synthetic exper-

iment that demonstrates that target-oriented interferometry can be designed to use

internal multiples for imaging subsalt features from borehole arrays located below

these structures. Finally I test these concepts on field data from deep-water Gulf

of Mexico, where I demonstrate the effects of target-oriented interferometry on the

recorded data as well as on the final images.

With Chapters 4 and 6 I address the potential importance of using interferometry

in imaging off-shore subsalt environments. A large portion of significant significant

oilfields in Gulf of Mexico, Brazil, West Africa, North Sea and in the Mediterranean

are set in salt-rich geological environments with high structural complexity. In many

cases, surface seismic in these environments is compromised by strong spatial varia-

tions and complexity in medium parameters around the salt bodies. In Chapters 4

and 6 I promote interferometry techniques for subsalt borehole seismic data that can

overcome, in a localized portion of the subsurface, some of the issues encountered by
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surface seismic in imaging subsalt structures.

In this thesis, the concept described by Figure 1.2 is the foundation of the in-

terferometry theories I discuss in Chapters 2 and 3. With the different numerical

and field interferometric imaging examples in Chapters 3 through 6 I demonstrate

how the data remapping achieved with interferometry (Figure 1.2) can be used to

obtain subsurface images that cannot be obtained from the original recorded data

with existing processing techniques.
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Chapter 2

REPRESENTATION THEOREMS AND GREEN’S FUNCTION

RETRIEVAL IN PERTURBED ACOUSTIC MEDIA1

2.1 Summary

Representation theorems describe important general properties of wave propa-

gation. We provide general representation theorems for perturbed acoustic media in

the form of convolution- and correlation-type theorems. Our results differ from previ-

ous derivations because we provide explicit integral relations between wavefields and

wavefield perturbations which alone do not satisfy the acoustic wave equations. Using

Green’s functions to describe perturbed and unperturbed waves in two distinct wave

states, we provide expressions based in our representation theorems that are appli-

cable to remote sensing experiments. When medium perturbations are localized and

away from the observation points, we show that by cross-correlating wavefield pertur-

bations recorded at a given receiver with unperturbed waves at another, we generate

a pseudo-experiment where only wavefield perturbations propagate from one receiver

to the other as if one of them were a source. This application has been validated by

numerical examples and seismic field experimentation. In another application, our

representation theorems in perturbed media, along with inverse scattering methods,

can be used to directly estimate medium perturbations from remotely acquired data.

1Submitted to Physical Review E.
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2.2 Introduction

Representation theorems, also referred to as reciprocity theorems, have long been

used to describe important properties of wave propagation phenomena. Lord Rayleigh

(1878) used a local form of an acoustic representation theorem to demonstrate source-

receiver reciprocity. Time-domain reciprocity2 theorems were later generalized to

relate two wave states with different field, material and source properties in absorbing,

heterogeneous media (de Hoop, 1988). Fokkema and van den Berg (1993) provide an

in-depth analysis of frequency-domain acoustic representation theorems, discussing

many applications that follow from these theorems.

Fokkema and van den Berg (1993) show that acoustic representation theorems

can be used for modeling wave propagation, for boundary and domain imaging, and

for estimation of the medium properties. In the field of exploration seismology, an

important application of convolution-type representation theorems lies in removing

multiple reflections caused by the Earth’s free-surface (e.g., Fokkema and van den

Berg, 1993; Berkhout and Verschuur, 1997). These approaches rely on the convolution

of single-scattered waves to create multiples (according to the description given by

the convolution-type representation theorems), which are then subtracted from the

recorded data. Other approaches for the elimination of multiples from seismic data

rely on the inverse scattering methods (e.g., Weglein et al., 2003; Malcolm et al.,

2007). The inverse-scattering based methodologies are typically used separately from

the representation theorem approaches (Fokkema and van den Berg, 1993; Berkhout

and Verschuur, 1997) in predicting multiples.

In particular, recent forms of reciprocity theorems have been derived for the

Green’s functions (e.g., Wapenaar et al., 2002; Wapenaar and Fokkema, 2006; Wape-

2We use the terms representation theorems and reciprocity theorems interchangeably.
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naar et al., 2006), showing that the cross-correlations of waves recorded by two re-

ceivers can be used to obtain the waves that propagate between these receivers as if

one of them behaves as a source. These results coincide with other studies based on

cross-correlations of diffuse waves in a medium with an irregular boundary (Lobkis

and Weaver, 2001), caused by randomly distributed uncorrelated sources (Weaver

and Lobkis, 2001; Wapenaar et al., 2002; Shapiro et al., 2005), or present in the

coda of the recorded signals (Snieder, 2004). An early analysis by Claerbout (1968)

shows that the reflection response in a 1D medium can be reconstructed from the

autocorrelation of recorded transmission responses. This result was later extended

for cross-correlations in heterogeneous 3D media by Wapenaar et al. (2004), who

used one-way representation theorems in their derivations. Green’s function retrieval

by cross-correlations has found applications in the fields of global (e.g., Shapiro et

al., 2005; Sabra et al., 2005a) and exploration seismology (e.g., Schuster et al., 2004;

Willis et al. 2006; Bakulin and Calvert, 2006), ultrasonics (e.g., Fink, 1997; Malcolm

et al., 2004; vanWijk, 2006), helioseismology (e.g., Rickett and Claerbout, 1999),

structural engineering (Snieder and Şafak, 2006; Thompson and Snieder, 2006) and

ocean acoustics (Roux et al., 2004; Sabra et al., 2005b).

Although the correlation-based Green’s function retrieval has been proven for

special cases by methods other than representation theorems (e.g., Lobkis and Weaver,

2001; Weaver and Lobkis, 2004; Bakulin and Calvert, 2006), the derivations based

on reciprocity theorems have provided for generalizations beyond lossless acoustic

wave propagation. The extension to elastic wave propagation was shown by Wape-

naar (2004) using representation theorems. Snieder (2006), derived representation

theorems for the diffusion equation, showing that the reconstruction of the Green’s

functions by wavefield correlations does not require time-reversal to hold. More gen-
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eral forms of representation theorems have been derived by Wapenaar et al. (2006)

and by Snieder et al. (2007) which include a wide range of differential equations such

as the acoustic, elastodynamic, and electromagnetic wave equations, as well as the

diffusion, advection and Schrödinger equations, among others.

In this paper, we derive representation theorems for acoustic perturbed me-

dia. Although previous derivations of representation theorems account for arbitrary

medium parameters that are different between two wave states (e.g., de Hoop, 1988;

Fokkema and van den Berg, 1993; Wapenaar et al., 2006), they do not explicitly

consider the special case of perturbed media. In perturbed media, there are special

relations between the unperturbed and perturbed wave states (e.g., in terms of the

physical excitation) that make the representation theorems in such media differ in

form with respect to their more general counterparts (Fokkema and van den Berg,

1993; Wapenaar et al., 2006). We discuss some of these differences in this manuscript.

Another important aspect of studying representation theorems in perturbed media

lies in retrieving wavefield perturbations from cross-correlations, in a manner analo-

gous to that discussed by Wapenaar et al. (2006) and Snieder et al. (2007). This

is important because from the representation theorems in Wapenaar et al. (2006)

and Snieder et al. (2007) it is only possible to reconstruct wavefield quantities. As

we show in this paper, wavefield perturbations by themselves do not satisfy the wave

equations and thus their retrieval does not follow directly from the general formulation

presented by Wapenaar et al. (2006) and Snieder et al. (2007).

We first derive general forms of convolution- and correlation-type representation

theorems by manipulating the perturbed and unperturbed wave equations for two

wave states. In the Section that follows, we rewrite our representation theorems

in terms of the Green’s functions for unperturbed and perturbed waves in the two
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states. Finally, we discuss two applications of the Green’s function forms of our

representation theorems in perturbed acoustic media. In one application, we describe

the physical cases in which the cross-correlation of wavefield perturbations at an

observation point with unperturbed waves at another yields wavefield perturbations

that propagate between the two observation points as if a source were placed in one

of them. Another application covers the use of representation theorems in perturbed

media to estimate medium perturbations. This application involves the combination

of our reciprocity theorems and inverse scattering methods (Weglein et al., 2004;

Malcolm et al., 2007).

2.3 Representation theorems in convolution and correlation form

We start by defining acoustic wave states in a domain V, bounded by ∂V (Fig-

ure 2.1; de Hoop, 1988; Fokkema and van den Berg, 1993). The outward pointing

vector normal to ∂V is represented by n. We define two wave states, which we denote

by the superscripts A and B, respectively. Each wave state is defined in an unper-

turbed medium with compressibility κ0(r) and density ρ0(r); as well as in a perturbed

medium described by the material properties κ(r) and ρ(r). The acoustic wavefield

equations for state A in an unperturbed medium are, in the frequency-domain,

∇pA
0 (r, ω) − iωρ0(r)v

A
0 (r, ω) = 0

∇ · vA
0 (r, ω) − iωκ0(r)p

A
0 (r, ω) = qA(r, ω) ,

(2.1)

where pA(r, ω) and vA(r, ω) represent pressure and particle velocity, respectively. The

quantity qA(r, ω) describes the source distribution in terms of volume injection rate
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density. Similar equations describe waves in state A in a perturbed medium:

∇pA(r, ω) − iωρ(r)vA(r, ω) = 0

∇ · vA(r, ω) − iωκ(r)pA(r, ω) = qA(r, ω) ,

(2.2)

with perturbed pressure and particle velocity given by pA(r, ω) and vA(r, ω), respec-

tively. The acoustic field equations that describe wave propagation in state B follow

by replacing the superscript A by B in equations 2.2 and 2.1. Note that the source

distribution qA(r, ω) is the same for both the unperturbed (equation 2.1) and per-

turbed (equation 2.2) cases. We assume that no external volume forces are present

by setting the right-side of the vector equations in equations 2.1 and 2.2 equal to

zero. The perturbed pressure for either wave state is given by p = p0 + pS, where

the subscript S indicates the wavefield perturbation caused by medium changes. Ac-

cording to equations 2.1 and 2.2, particle velocities in unperturbed and perturbed

media are given by v = (iωρ)−1p and v0 = (iωρ0)
−1p0, respectively. Thus, for small

perturbations in density (i.e., ρ0/ρ ≈ 1), v = v0 + vS, where vS = (iωρ)−1pS. The

perturbations in compressibility can be arbitrarily large. For brevity, in this paper

we assume that perturbations only occur in compressibility, thus ρ = ρ0. Despite this

assumption, our derivations are equally valid for small perturbations in density.

To derive Rayleigh’s reciprocity theorem (Rayleigh, 1878; de Hoop, 1988; Fokkema

and van den Berg, 1993) we insert the equations of motion and stress-strain relations

for states A and B (equations 2.1 and 2.2) in

vB
0 ·EA

0 + pA
0 E

B
0 − vA

0 ·EB
0 − pB

0 E
A
0 ; (2.3)

where E and E represent the equation of motion and the stress-strain relation in
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Figure 2.1. Illustration of the domain used in the representation theorems. The
domain consists of a volume V, bounded by ∂V. The unit vector normal to ∂V is
represented by n. The wave states A and B are represented by receivers placed at
rA (white triangle) and rB (grey triangle), respectively. The solid arrows denote the
stationary paths of unperturbed waves G0, propagating between the receivers and an
arbitrary point r on ∂V.
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equation 2.1, respectively. The subscripts in equation 2.3 indicate that equations and

field parameters (p and v) are considered in the unperturbed case. The superscripts

indicate whether equations and field parameters pertain to state A or B. For brevity,

we omit the parameter dependence on r and ω. From equation 2.3 we isolate the

interaction quantity ∇ · (pA
0 vB

0 − pB
0 vA

0 ) (de Hoop, 1988). Next, we integrate the

result of equation 2.3 over the domain V and apply Gauss’ divergence theorem. This

results in
∮

r∈∂V

[
pA

0 vB
0 − pB

0 vA
0

]
· dS =

∫

r∈V

[
pA

0 q
B
0 − pB

0 q
A
0

]
dV ; (2.4)

which is commonly referred as a reciprocity theorem of the convolution type (Rayleigh,

1878; de Hoop, 1988; Fokkema and van den Berg, 1993), because the frequency-

domain products of field parameters represent convolutions in the time domain. A

correlation-type reciprocity theorem (de Hoop, 1988; Fokkema and van der Berg,

1993) can be derived from isolating the interaction quantity ∇·(pA
0 vB∗

0 +pB∗
0 vA

0 ) from

vB∗
0 · EA

0 + pA
0 E

B∗
0 + vA

0 ·EB∗
0 + pB∗

0 EA
0 , (2.5)

where ∗ denotes complex conjugation. Subsequent volume integration and application

of the divergence theorem yields

∮

r∈∂V

[
pA

0 vB∗
0 + pB∗

0 vA
0

]
· dS =

∫

r∈V

[
pA

0 q
B∗
0 + pB∗

0 qA
0

]
dV , (2.6)

where complex conjugates represents time-domain cross-correlations of field parame-

ters. For this reason, equation 2.6 is a representation theorem of the correlation type

(de Hoop, 1988; Fokkema and van den Berg, 1993). Convolution- and correlation-

type representation theorems for the perturbed wave states (e.g., equation 2.2) can be

expressed simply by removing the subscript 0 from equations 2.3 though 2.6. In equa-
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tion 2.6 we assume that κ0 and ρ0 are real quantities (i.e.; the medium is lossless). In

the next Section we review the application of such theorems for retrieving the Green’s

functions of arbitrary media (Wapenaar et al., 2002; Wapenaar and Fokkema, 2006).

The theorems in equations 2.4 and 2.6 hold when the material properties in states

A and B are the same. General reciprocity theorems that account for arbitrarily

different source and material properties between two wave states have been derived

by de Hoop (1988) and Fokkema and van den Berg (1993). Here, we further develop

the representation theorems of de Hoop (1988) and Fokkema and van den Berg (1993)

for the special case of perturbed acoustic media. First, we consider

vB
0 ·EA + pAEB

0 − vA ·EB
0 − pB

0 E
A , (2.7)

which involves the equations and field parameters for state B in an unperturbed

medium (e.g., equation 2.1), along with equations and field parameters for state A

in a perturbed medium (equation 2.2). From equation 2.7 we isolate the interaction

quantity ∇· (pAvB
0 −pB

0 vA). After separating this quantity, we integrate equation 2.7

over V and apply Gauss’ theorem. Next, given that p = p0 + ps and v = v0 + vS, we

use the result in equation 2.4, which gives

∮

r∈∂V

[
pA

SvB
0 − pB

0 vA
S

]
· dS =

∫

r∈V

pA
S q

B
0 dV +

∫

r∈V

iω(κ0 − κ)pApB
0 dV , (2.8)

which is a convolution-type representation theorem for perturbed media. This ex-

pression is a new form of representation theorem because it relates the wavefields pB
0

and vB
0 with the wavefield perturbations pA

S and vA
S . Previous derivations of repre-

sentation theorems (e.g., de Hoop, 1988; Fokkema and van den Berg, 1993; Wapenaar

and Fokkema, 2006). Previously derived reciprocity theorems provide, for two arbi-
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trary wave states, relations between field parameters that satisfy wave equations (e.g.,

equations 2.1 and 2.2). Wavefield perturbations such as pA
S and vA

S , by themselves,

do not satisfy the wave equations for perturbed media (e.g., equation 2.2). Although

equation 2.8 accounts for compressibility changes only, it can be modified to include

density perturbations. Such modification involves adding, to the right-hand side of

the equation, a third volume integral whose integrand is proportional to (ρ0 − ρ) and

the wavefields vA and vB
0 (Fokkema and van den Berg, 1993).

The correlation-type counterpart of equation 2.8 can be derived from the inter-

action quantity ∇ · (pAvB∗
0 + pB∗

0 vA), which can be isolated from

vB∗
0 · EA + pAEB∗

0 + vA ·EB∗
0 + pB∗

0 EA . (2.9)

After performing the same steps as in the derivation of equation 2.8 we obtain

∮

r∈∂V

[
pA

SvB∗
0 + pB∗

0 vA
S

]
· dS =

∫

r∈V

pA
S q

B∗
0 dV −

∫

r∈V

iω(κ0 − κ)pApB∗
0 dV , (2.10)

which is a correlation-type representation theorem for perturbed acoustic media.

Again, we assume that both κ and κ0 are real (i.e., no attenuation takes place).

As with its convolution counterpart (equation 2.8), equation 2.10 is novel because

it provides a relation between the wavefield perturbations in state A and the un-

perturbed waves in state B. Density perturbations can be included in equation 2.10

in a manner analogous to that discussed for equation 2.8 (de Hoop, 1988; Fokkema

and van den Berg, 1993). By interchanging the superscripts in equations 2.7 and 2.9

we derive convolution- and correlation-type representation theorems that relate the

perturbations pB
S and vB

S to pA
0 and vA

0 . These theorems have the same form as the

ones in equations 2.8 and 2.10, except A is interchanged with B in equation 2.8, and
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with B∗ in equation 2.10.

Since the source term qA(r, ω) is the same both in the unperturbed and perturbed

cases, it follows from equations 2.1 and 2.2 that

∇pA
0 (r, ω) − iωρ0(r)v

A
0 (r, ω) = ∇pA(r, ω) − iωρ(r)vA(r, ω)

∇ · vA
0 (r, ω) − iωκ0(r)p

A
0 (r, ω) = ∇ · vA(r, ω) − iωκ(r)pA(r, ω) .

(2.11)

These relations can be used to derive others representation theorems in perturbed

media. To derive a convolution-type theorem, we first consider the combination

vB
0 · RA + pA

0 R
B −vA

0 · RB − pB
0 R

A

+

vB · RA + pARB −vA · RB − pBRA ,

(2.12)

where R and R are the vector and scalar relations in equation 2.11; the superscripts

indicate whether they pertain to wave state A or B. Equation 2.12 is subject to

volume integration and to the application of the theorem of Gauss. This equation is

then simplified by using the identities p = p0 + ps and v = v0 + vS. In simplifying

equation 2.12, we also use the convolution-type representation theorem in equation 2.8

as shown, and with interchanged A and B superscripts. These steps result in

∮

r∈∂V

[
pA

SvB
S − pB

S vA
S

]
· dS =

∫

r∈V

iω(κ− κ0)
[
pA

Sp
B
0 − pA

0 p
B
S

]
dV . (2.13)

Because the the frequency-domain products in integrands translate to convolutions in

the time domain, this integral theorem is of the convolution type. The convolution-

type representation theorem in equation 2.13 relates wavefield perturbations from
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both wave states over the surface ∂V with wavefield perturbations, unperturbed

waves, and the medium perturbation (κ − κ0) within the volume V. Equation 2.13

can be extended to include small density perturbations by adding a extra volume

integral with the integrand proportional to (ρ − ρ0)
[
vA

S vB
0 − vA

0 vB
S

]
(e.g., Fokkema

and van den Berg, 1993).

A correlation-type theorem of the same form as equation 2.13 can be derived from

modifying the relations in equation 2.12 to account for the time-reversed wave state

B∗ (e.g., equations 2.3 and 2.5). Again, we integrate the result over V, use Gauss’

divergence theorem, and simplify it by representing perturbed wavefields in terms of

unperturbed waves and wavefield perturbations. Using the theorem in equation 2.10

as is, and with A interchanged with B∗, we obtain

∮

r∈∂V

[
pA

SvB∗
S + pB∗

S vA
S

]
· dS =

∫

r∈V

iω(κ− κ0)
[
pA

0 p
B∗
S − pA

Sp
B∗
0

]
dV , (2.14)

which is the correlation-type counterpart of the theorem in equation 2.13. This theo-

rem can be extended to include small density perturbations in a manner analogous to

that described for equation 2.13. Like the representation theorems in equations 2.8

and 2.10, equations 2.13 and 2.14 provide relations between wavefield perturbations

and wavefields that satisfy the acoustic wave equations.

2.4 Representation theorems for the Green’s functions

In this Section, we rewrite the representation theorems for perturbed acoustic

media derived in the previous Section in terms of the Green’s functions. We focus

the discussion on the role of Green’s functions in the representation theorems in

equations 2.10 and 2.14 because of the applicability of these theorems to remote

sensing experiments (treated in the next Section). The Green’s function forms of the
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theorems in equations 2.4 and 2.6 are treated by others (e.g., Wapenaar et al., 2002;

Wapenaar and Fokkema, 2006; Draganov et al., 2006). The convolution theorem

in equation 2.4 leads to the well-known acoustic source-receiver reciprocity relation

(e.g., Rayleigh, 1878; Fokkema and van den Berg, 1993; Wapenaar and Fokkema,

2006). From the correlation-type theorem in equation 2.6, Wapenaar et al. (2004)

and Wapenaar and Fokkema (2006) show that the surface integration of the cross-

correlated Green’s function results in the causal and acausal Green’s functions that

propagate between two receivers. We discuss this with in more detail below.

We introduce the Green’s functions, in the frequency domain, by setting

qA,B = δ(r− rA,B) , (2.15)

where the positions rA,B denote the wave states A and B, respectively. This choice

for q allows for expressing the field quantity p in terms of the Green’s functions G,

i.e.,

pA,B(r, ω) = G(r, rA,B, ω) = G0(r, rA,B, ω) + GS(r, rA,B, ω) , (2.16)

where the subscripts 0 and S stand, respectively, for unperturbed waves and wavefield

perturbations. Note that these are the Green’s functions for sources of the volume

injection rate type. The derivation below can also be reproduced using volume in-

jection sources (e.g., Wapenaar and Fokkema, 2006). It follows from equations 2.16

and 2.2 that vA,B = (iωρ)−1∇G(r, rA,B, ω). Substituting the Green’s functions (equa-
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tion 2.16) for the wavefields p and v in equation 2.10 gives

∫

r∈V

GS(r, rA)δ(r− rB)dV =

∮

r∈∂V

1

iωρ
[GS(r, rA)∇G∗

0(r, rB)] · dS

−

∮

r∈∂V

1

iωρ
[G∗

0(r, rB)∇GS(r, rA)] · dS

+

∫

r∈V

iω(κ0 − κ)G(r, rA)G∗
0(r, rB)dV ; (2.17)

for brevity we omit the dependence on ω. The volume integral on the left-hand side

yields GS(rB, rA), which describes causal wavefield perturbations that propagate from

rB to rA as if the observation point at rB acts as a source. The wavefields ∇G can be

expressed in terms G. If the medium at and around ∂V is smooth, the normal deriva-

tives of G (right-hand side of equation 2.17) are approximately given by multiplying

each wave constituent in the Green’s function by ±iωc−1(r)|cos α(r)| (Wapenaar and

Fokkema, 2006); with c(r) = [κ(r)ρ(r)]−
1

2 the local acoustic wavespeed at ∂V and

α(r) the local angle between a given ray-geometrical arrival and n (Figure 2.1). The

minus and plus signs indicate inward and outward propagating waves, respectively.

When the medium outside V is heterogeneous, and depending on the shape of ∂V,

the correlation products between in- and out-going waves from the two wave states

contribute to the surface integral on the right-hand side of equation 2.17 (Draganov

et al. 2003, 2006; Wapenaar and Fokkema, 2006).

With the purpose of deriving relations that allow the experimental extraction

of GS(rB, rA) from sources over ∂V, we assume that the medium at and outside

∂V is homogeneous with wavespeed c and mass density ρ. In this case we can

write, in equation 2.17, ∇G in terms of G by multiplying each wave constituent

by iωc−1(r)|cos α(r)|. Next, assuming far-field propagation and that ∇G is parallel

to n (i.e., that the surface is locally smooth and perpendicular to incoming waves)
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at ∂V we set (∇G) · n = iωc−1G. We rely on these assumptions in all subsequent

equations. Thus, we can simplify equation 2.17 to

GS(rB, rA) =
2

ρc

∮

r∈∂V

GS(r, rA)G∗
0(r, rB)dS

+ iω

∫

r∈V

(κ0 − κ)G(r, rA)G∗
0(r, rB)dV . (2.18)

This equation shows that the causal wavefield perturbation GS(rB, rA) is obtained

from the surface integral of the cross-correlation of wavefield perturbations at rA

with unperturbed waves at rB. Along with this surface integral, a volume integral

is necessary to recover GS(rB, rA). Using the Green’s function form of the represen-

tation theorem in equation 2.10 with interchanged superscripts A by B∗, we obtain

G∗
S(rB, rA):

G∗
S(rB, rA) =

2

ρc

∮

r∈∂V

G0(r, rA)G∗
S(r, rB)dS

− iω

∫

r∈V

(κ0 − κ)G0(r, rA)G∗(r, rB)dV . (2.19)

The relations in equations 2.18 and 2.19 are similar in form to expressions for the re-

trieval of the impulse response from diffuse-wave correlation (e.g., Lobkis and Weaver,

2001; Malcolm et al., 2004; Larose et al., 2006) and from correlations of determinis-

tic wavefields (e.g., Wapenaar, 2004; Snieder, 2004; Wapenaar and Fokkema, 2006).

In these studies, the cross-correlation of recorded waves leads to a superposition of

causal and acausal wavefields G or G0. This points to two important differences

between equations 2.18 and 2.19 and previous expressions for Green’s function re-

trieval. The first difference is that here we obtain the wavefield perturbations GS,

which by themselves do not satisfy the acoustic wave equations (e.g., equation 2.2),
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from cross-correlating GS with G0. Second, the proper manipulation of unperturbed

waves G0 and perturbations GS in the integrands of equations 2.18 and 2.19 allow for

the separate retrieval of causal and acausal GS(rB, rA) in the frequency-domain.

The retrieval of G0(rB, rA) from cross-correlation of the recorded G0(r, rA,B)

or G(rB, rA) with G(r, rA,B) only requires a surface integration (e.g., Wapenaar,

2004; Wapenaar and Fokkema, 2006). Apart from surface integration, the retrieval

of GS(rB, rA) from equations 2.18 or 2.19 also requires a volume integration. The

evaluation of the volume integral requires, apart from knowledge of the wavefields

G and G0 within V, the values of the medium perturbations (κ0 − κ). Having only

sources over ∂V, and with no knowledge about the model perturbations, the recon-

struction of GS(rB, rA) from equations 2.18 and 2.19 is incomplete. As we discuss

in the next Section, there are cases in which the volume integrals in equations 2.18

and 2.19 can be neglected. Here, we provide insight into the physical meaning of the

volume integrals in these equations.

The volume integrals in equation 2.18 account for medium perturbations that lie

in the path of unperturbed waves G0(r, rB). To illustrate this concept, we use the

example in Figure 2.2. In this example, we assume that the medium perturbations

are confined to a defined subvolume P. This causes the integrand of the volume

integral in equation 2.18 (as well as in equation 2.19) to be nonzero only for r ∈ P. In

Figure 2.2, the indicated source position r is a stationary source position that gives the

dominant contribution to direct waves propagating from rB to rA (Snieder et al., 2006;

Chapter 3). The solid arrow in the Figure represents the stationary path of G0(r, rB),

while the dotted arrow denotes the stationary path of GS(rB, rA). The stationary

path of G(r, rA), for the desired arrival (dotted arrow inFigure 2.2), is given by the

combination of the two paths shown in Figure 2.2. Along the path shown in Figure 2.2
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(dotted arrow), GS(rB, rA) is only influenced by perturbations that lie between rB

and rA. The same perturbations influence the waves in GS(r, rA) (present in the

integrands in equation 2.18), but these waves are also perturbed by medium changes

in the path from r to rB. In this case, the portion of the stationary path of GS(r, rA)

that is influenced by perturbations between r to rB coincides with the stationary path

of G0(r, rB) (solid arrow) in Figure 2.2. Thus, the volume integral in equation 2.18

acts as secondary sources within P that are proportional to the perturbation (κ0−κ),

placed along a perturbation path defined by G(r, rA)G∗
0(r, rB). These secondary

sources cancel the contribution of medium perturbations along the solid arrow (the

path of G0(r, rB)) in Figure 2.2 that are encoded in GS(r, rA) (e.g., within the surface

integral in equation 2.18). This cancelation ensures that the wavefield perturbations

in the recovered GS(rB, rA) correspond to the medium perturbations sensed only by

waves that propagate from rB to rA.

Although we use the example of Figure 2.2 to discuss the volume integral in equa-

tion 2.18, the integral accounts for perturbations in the paths of all waves in G0(r, rB)

(apart from the arrows in Figure 2.2) and for arbitrary source positions r (not just

for stationary source positions). In other words, even though the argument above, for

simplicity, relies on geometrical concepts (e.g., stationary-phase) the interpretation of

the volume integral holds for finite-bandwidth signals and for media of arbitrary scat-

tering strength. This follows from the fact that there are no high-frequency or weak

perturbations assumptions behind equation 2.18. Furthermore, this interpretation

is not restricted to medium configurations as in Figure 2.2; the medium perturba-

tions can be arbitrarily distributed within V. Although we focus in the interpretation

above on the volume integral in equation 2.18, a similar interpretation holds for the

volume integral in equation 2.19. In equation 2.19, the volume integral compensates
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Figure 2.2. A schematic interpretation of the function of the volume integral in
retrieving GS(rB, rA) (equation 2.18). Medium perturbations are restricted to the
volume P. The solid arrow indicates the stationary paths unperturbed waves in
G0(r, rB), while the dotted arrow denotes perturbed waves in GS(rB, rA). The path
defined by the two arrows combined is also a stationary path to waves in GS(r, rA).
Note that the medium gets perturbed along a portion of the path of G0(r, rB). Here,
the position r is a stationary source position that contributes to the direct wave that
travels from rB to rA.
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the effects of medium perturbations in the path of all unperturbed waves in G0(r, rA).

When medium perturbations also occur in densities (ρ 6= ρ0; equations 2.1 and 2.2),

the corresponding volume integrals (see discussion in previous Section) play the same

role as the volume integrals that account for perturbations in compressibility (equa-

tions 2.18 and 2.19).

Equations 2.18 and 2.19 provide representation relations obtained from impul-

sive physical sources (e.g., equation 2.15). The results in this paper can be ex-

tended to transient excitations (Snieder et al. 2006; Wapenaar and Fokkema, 2006)

of the type W (r, ω), such that the recorded data is, for example, given by pA(r, ω) =

W (r, ω)G(r, rA, ω) (and likewise for rB). In that case the results in equations 2.18

and 2.19 are multiplied by 〈|W (r, ω)|2〉, an arbitrarily chosen average of the power

spectrum of the excitation (Snieder et al. 2006; Wapenaar and Fokkema, 2006). The

results of equations 2.18 and 2.19 can also be extended to accommodate mutually

active uncorrelated noise sources (e.g., Weaver and Lobkis, 2001; Derode et al., 2003;

Shapiro et al., 2005; Snieder et al., 2006) by following the same steps described by

Wapenaar and Fokkema (2006).

Finally, we turn our attention to the representation theorem in equation 2.14.

Using the Green’s functions as defined in equation 2.16, along with the same assump-

tions used to derive equations 2.18 and 2.19, we express equation 2.14 as

2

ρc

∮

r∈∂V

GS(r, rA)G∗
S(r, rB)dS = iω

∫

r∈V

(κ− κ0)G0(r, rA)G∗
S(r, rB)dV

− iω

∫

r∈V

(κ− κ0)GS(r, rA)G∗
0(r, rB)dV .

(2.20)

This equation relates the surface integral of cross-correlated wavefield perturbations
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to a volume integral whose integrand is proportional to the medium perturbation

and cross-correlations between unperturbed waves and wavefield perturbations. Note

that equation 2.20 does not depend on the source term q (equation 2.15); the same

holds for the representation theorem in equation 2.14. Although not immediately

applicable for the reconstruction of the Green’s function as equations 2.18 or 2.19,

equation 2.20 is suitable for other purposes in remote sensing experiments. These

purposes are discussed in the next Section.

2.5 Applications to remote sensing experiments

As we discuss in the previous Section, equations 2.18 and 2.19 retrieveGS(rB, rA):

the wavefield perturbations that propagate between rB and rA, as if the observation

point at rB acts as a source. This result is of particular interest for remote sensing

experiments where physical sources exist only on the surface ∂V (Figure 2.3), or when

the excitation is caused by uncorrelated noise sources of unknown locations randomly

distributed within V. In such cases, equations 2.18 and 2.19 can be used to retrieve

the wavefield perturbation between receivers within the volume V, which in turn

can be used to image the perturbed medium. We refer to the retrieval of impulse

response between receivers by the term interferometry, borrowing the terminology

from the field of exploration geophysics, where it is referred to as seismic interferom-

etry (Schuster, 2001). We use the term interferometric imaging when referring to the

imaging3 of the impulse response reconstructed by interferometry.

The main issue in using equations 2.18 and 2.19 for interferometry is that the

medium perturbations (κ0 − κ) (as well as field quantities) must be known for the

3By imaging we refer to imaging based on linear mapping procedures as described by Biondi
(2006), as well as inverse imaging methods (e.g., Tarantola, 1987; Bleistein et al., 2001; Weglein et
al., 2003).
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volume integral in the equations to be evaluated. This is a problem for interferometry

because it typically relies only on the observation, at the points rA and rB, of waves

excited by sources on ∂V (e.g., Weaver and Lobkis, 2001; Wapenaar et al. 2004;

Wapenaar and Fokkema, 2006). This problem can be overcome by assuming that

medium perturbations are restricted to a perturbation volume P that does not include

the observation points rA and rB (Figure 2.3). In this case, there is a subset of sources

r (Figure 2.3) on a portion ∂V1 of ∂V for which the stationary paths of unperturbed

waves in G0(r, rB) are not affected by the medium perturbations within P (e.g., solid

arrow in Figure 2.3). For these sources, the stationary wave paths inGS(r, rA) that are

affected by the medium perturbations are the same as those in GS(rB, rA). Because of

this, the contribution of the volume integral in equation 2.18 for r ∈ ∂V1 is negligible,

hence,

GS(rB, rA) ≈
2

ρc

∫

r∈∂V1

GS(r, rA)G∗
0(r, rB)dS , (2.21)

Equation 2.21 only recovers a portion of the waves in GS(rB, rA) (dotted arrow in

Figure 2.3) that arise from stationary source regions on the surface segment ∂V1 (e.g.,

in the vicinity the source position r in Figure 2.3; Snieder et al. 2006;Chapter 3).

The volume integral in equation 2.18 cannot be neglected in the cases when (i) rB is

inside P (e.g., Figure 2.2), (ii) when the medium is perturbed over the entire support

of V or (iii) when we consider sources for which wave paths in G0(r, rB) are affected

by perturbations in P.

According to equation 2.21, by cross-correlating unperturbed waves measured at

rB with wavefield perturbations at rA and integrating over sources at ∂V1, we obtain

wavefield perturbations that propagate from rB to rA as if a source were placed at

rB. This makes equation 2.21 suitable for interferometry. Chapter 3 use stationary-

phase analysis to validate of equation 2.21 for the special case of a homogeneous
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Figure 2.3. Application of the representation theorem in equation 2.18 in interfer-
ometric imaging experiments. As in Figure 2.2, solid and dotted arrows represent
stationary paths of unperturbed and perturbed waves, respectively. The medium
perturbation is restricted to the volume V. Both receivers, at rA (white triangle)
and rB (grey triangle), are outside the perturbation volume V. The stationary paths
indicated by the arrows contribute to the reconstruction of waves scattered by the
perturbations within P.
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medium with a single reflector. In equation 2.21, the truncation of the surface integral

from equation 2.18 can lead to a nonzero error in the retrieval of GS(rB, rA). If

the medium and/or its perturbations are heterogeneous, this error may manifest in

the form of amplitude distortions (e.g., caused by apparent absorption) or by the

introduction of spurious arrivals (Snieder et al., 2006; Wapenaar, 2006;Chapter 3).

The volume integral in equation 2.19 can be neglected by considering sources r ∈ ∂V2,

for which the wave paths in G0(r, rA) are not affected by medium perturbations in

P. This reasoning is analogous to that we used to approximate equation 2.21 from

equation 2.18.

Equation 2.20 can also be applied to remote sensing experiments. The applica-

tion, however, is not the same as that of equations 2.18 and 2.19. Instead of recover-

ing the wavefield perturbations GS(rB, rA), equation 2.20 can be used to estimate the

medium perturbations (κ0 −κ) inside V (right-hand side of the equation) from wave-

field perturbations measured at rA and rB for r ∈ ∂V. To do this, we assume that

we know, apart from GS(r, rA) from r ∈ ∂V, the unperturbed medium parameters

κ0 as well as the unperturbed waves observed at rA and rB excited by r ∈ ∂V. This

means that the left-hand side of equation 2.20 is a known quantity. Furthermore,

since κ0 and G0 for r ∈ ∂V are known, it is possible to model the unperturbed waves

inside V. Within the integrand in the right-hand side of equation 2.20, the wave-

field perturbations GS can be expressed in terms of the corresponding unperturbed

wavefields G0 and of (κ0 − κ) by means of a scattering series (e.g., Lippmann, 1956;

Rodberg, 1967; de Hoop, 1996). When using a scattering series formulation, the only

unknown quantities in equation 2.20 are the medium perturbations (κ0 − κ). These

perturbations can be estimated by solving the integral expression in equation 2.20.

Inverse scattering methods, with the examples of the Lippmann-Schwinger based ap-
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proach of Weglein et al. (2003) or the hybrid Bremmer-Lippmann method of Malcolm

et al. (2007), can in principle be used to invert equation 2.20 for the perturbations

(κ0 − κ). The numerical implementation of such inverse scattering methods is in-

volved and yields approximate results (Malcolm et al., 2007). Although we do not

provide a detailed treatment of the Green’s function forms of the convolution-type

theorems from the previous Section (equations 2.8 or 2.13), these can be employed for

the estimation of the medium perturbations in an analogous manner as we describe

here for equation 2.14.

2.6 Discussion and conclusion

By manipulating the acoustic wave equations for unperturbed and perturbed me-

dia we derive convolution- and correlation-type representation theorems for perturbed

acoustic media. These theorems differ from previous forms of reciprocity theorems

(e.g., de Hoop, 1988; Fokkema and van den Berg, 1993) because they provide ex-

plicit relations between the wavefields and wavefield perturbations. Unlike wavefield

parameters (e.g., de Hoop, 1988; Fokkema and van den Berg, 1993), the wavefield

perturbations by themselves do not satisfy the perturbed wave equations. We ex-

tend our reciprocity theorems for perturbed media to the special case of the Green’s

functions.

With the Green’s function form of the correlation-type representation theorems,

we show that by cross-correlating wavefield perturbations measured at one receiver

with unperturbed waves recorded by another we obtain the wavefield perturbations

that propagate between the receivers as if one of the receivers were a source. This

concept relates to previous work in the field of Green’s function retrieval from diffuse-

wave correlation (e.g., Weaver and Lobkis, 2001; Malcolm et al., 2004; Larose et al.,
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2006) and from correlation of deterministic wavefields (Wapenaar, 2004; Snieder,

2004; Wapenaar and Fokkema, 2006). These studies show that cross-correlations can

be used to recover a superposition of the causal and acausal parts of the wavefields

G or G0 (i.e., unperturbed or perturbed). Our expressions recover the wavefield

perturbations GS, which do not satisfy the wave equations for G, separately from its

acausal counterpart G∗
S. For systems that are invariant under time reversal, Green’s

function retrieval by wavefield cross-correlations require only a surface integration

(Larose et al., 2006; Wapenaar and Fokkema, 2006; Snieder et al., 2007), whereas the

retrieval of the perturbations GS from correlations of wavefield perturbations with

unperturbed wavefields requires an additional volume integral. We show that this

volume integral accounts for medium perturbations that lie in the path of unperturbed

waves that propagate from sources at the surface ∂V to the receiver that acts as a

pseudo-source.

The extraction of wavefield perturbations GS that propagate between receivers

as if one of them acts as a source is a useful tool for remote sensing experiments.

When medium perturbations are localized within a volume P that does not contain

the observation points, the wavefield perturbations propagating between receivers can

be obtained from only the surface integral of cross-correlated perturbations and un-

perturbed wavefields (i.e., the volume integral can be neglected). In this case, the

correlation-type theorems we propose can be applied to interferometry (the term is

borrowed from Schuster, 2001). We have proposed direct applications of the interfer-

ometric retrieval of wavefield perturbations as proposed in this paper (e.g., Chapter

3; Chapter 6). In Chapter 6, the retrieval of wavefield perturbations according to the

formulation in this paper is used to image salt structures in the Earth’s subsurface

from the interference of multiply scattered waves measured inside a deep borehole in
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off-shore Gulf of Mexico. Chapter 3 use the concepts developed here to interpret the

physical meaning of their deconvolution-based interferometry approach. Their decon-

volution interferometry method (based partly on equations 2.18 and 2.21) has been

validated with numerical experiments Chapters 3 and 4. Using field measurements

of the noise generated by a well being drilled, in Chapters 4 and 5 we also apply the

concepts presented in this paper.

As suggested in Chapter 6, the interferometric retrieval of wavefield perturba-

tions we describe here can be used for targeting the imaging of particular portions

of the medium. They refer to this as target-oriented interferometry (Chapter 6).

Such an application has also been implicitly proposed by Bakulin and Calvert (2006)

and by Mehta et al. (2007), in the so-called Virtual Source method. With this

method (Bakulin and Calvert, 2006; Mehta et al., 2007a), transmission and reflec-

tion responses can be regarded as unperturbed waves and wavefield perturbations,

respectively. This points out to the relationship between the results we present here

and those of Wapenaar et al. (2004), that show that the reflection response between

receivers can be obtained from cross-correlations between reflection and transmission

responses measured by these receivers. Although most of the examples cited come

from the field of geophysics, our results are immediately applicable to other fields

in acoustics such as physical oceanography, laboratory and medical ultrasonics, and

non-destructive testing.

Another important potential use for the exact form of the correlation-type reci-

procity theorems that retrieve the wavefield perturbations that propagate between two

receivers lies in the calculation of the so-called Fréchet derivatives (Tarantola, 1987;

Hettlich, 1998; Sava and Biondi, 2004). The Fréchet derivatives consist in the partial

derivatives of the wavefield perturbations with respect to the medium perturbations,
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which can be directly derived from the theorems we provide here. These derivatives

are important for the computation of sensitivity kernels used in full-waveform inver-

sion (e.g., Tarantola, 1987), in inverse imaging (Hettlich, 1998) or in linearized forms

of wave-equation based tomography (Sava and Biondi, 2004).

From correlation- and convolution-type representation theorems in perturbed

media, we suggest the application of estimating the medium perturbations by com-

bining theorems presented here with inverse scattering theory (Weglein et al., 2003;

Malcolm et al., 2007). This type of approach can be potentially used for inverse imag-

ing of the wavefield perturbations (e.g., Tarantola, 1987; Weglein et al., 2003), as well

as for the targeting the extraction of a particular desired subset of the wavefield per-

turbations (Malcolm et al., 2007). In this context, the use of our expressions can

be simplified through linearizing the wavefield perturbations on the medium changes.

This would yield, for example, a Born approximation (e.g., Snieder, 1990; Bleistein

et al., 2001; Weglein et al., 2003) of the theorems presented here.

Apart from imaging applications, we expect that our results (both in terms of

retrieving wavefield perturbations and for estimating medium perturbations) can be

used for monitoring temporal changes in the medium. In geoscience, this could be

applied to remotely monitoring the depletion of aquifer or hydrocarbon reservoirs;

or monitoring the injection of CO2 for carbon sequestration. In material sciences,

our results can be used to monitor material integrity with respect, for example, to

temporal changes in temperature. The detection of earthquake damage is a potential

application in the field of structural engineering. Within medical imaging applica-

tions, our expressions can be tailored, for instance, to observe tumor evolution from

ultrasonic measurements.

The theory we present here assumes lossless media. In light of the work of Snieder
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(2007), who shows that Green’s function retrieval can be accomplished in attenuative

acoustic media, we believe that our discussions regarding the retrieval of wavefield per-

turbations can be extended to absorbing media by following steps analogous to those

in Snieder (2007). Furthermore, since Green’s function retrieval by cross-correlations

has been shown to hold for a wide class of differential equations (Wapenaar et al.,

2006; Snieder, 2006; Snieder et al., 2007), the representation theorems for perturbed

media presented here can be potentially extended to describe other physical phenom-

ena, such as perturbations in electromagnetic wave propagation, diffusion, advection

and quantum scattering.
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Chapter 3

INTERFEROMETRY BY DECONVOLUTION – THEORY AND

NUMERICAL EXAMPLES1

3.1 Summary

Interferometry allows us to synthesize data recorded at any two receivers into

waves that propagate between these receivers as if one of them behaves as a source.

This is typically accomplished by cross-correlations. Based on perturbation theory

and representation theorems, we show that interferometry can also be done by decon-

volutions for arbitrary media and multidimensional experiments. This is important

for interferometry applications where the excitation is described by a complicated

function. First, we derive a series expansion that proves that interferometry can be

accomplished by deconvolution before source integration. This method, unlike us-

ing cross-correlations, yields only causal scattered waves that propagate between the

receivers. We provide an analysis in terms of singly and multiply scattered waves. Be-

cause deconvolution interferometry shapes the zero-offset trace in the interferometric

shot gather into a band limited spike centered at time equal zero, spurious arrivals are

generated by the method. Here, we explain the physics behind these spurious arrivals

and demonstrate the they usually do not map onto coherent structures in the im-

age domain. We also derive an interferometry method that does deconvolution after

source integration that is associated with existing interferometry techniques. Decon-

1Submitted to Physical Review E.
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volution after source integration yields both causal and acausal scattering responses,

and it also introduces spurious events. Finally, we illustrate the main concepts of

deconvolution interferometry and its differences with the correlation-based approach

through stationary-phase analysis and with numerical examples.

3.2 Introduction

The main objective of seismic interferometry is to obtain the impulse response be-

tween receivers, without any knowledge about model parameters (Lobkis and Weaver,

2001; Weaver and Lobkis, 2004a; Wapenaar et al., 2004a). Typically, interferometry is

implemented using by cross-correlations of recorded data (Curtis et al., 2006; Larose

et al., 2006). Many of the formal proofs and arguments surrounding interferome-

try are based on cross-correlations. Proofs based on correlation-type representation

theorems state the validity of interferometry for acoustic waves (Lobkis and Weaver,

2001; Weaver and Lobkis, 2004b), for elastic media (Wapenaar et al, 2004a and b,

Draganov et al., 2006), and also for attenuative (Snieder, 2007) and perturbed media

(Chapter 2). Other proofs of interferometry based on time-reversal were offered by

Fink (2006), and by Bakulin and Calvert (2006) in their Virtual-Source methodology.

Schuster et al. (2004) and Yu and Schuster (2006) use correlation-based interferome-

try imbedded within an asymptotic migration scheme to do interferometric imaging.

Similarly, Snieder (2004) Sabra et al. (2004) and Snieder et al. (2006a) rely on the

stationary-phase method to explain results from interferometry.

The field of interferometry expands beyond exploration seismology. There are

examples of interferometry applications in many other fields such as ultrasonics (Mal-

colm et al., 2004; van Wijk, 2006), helioseismology (Rickett and Claerbout, 1999),

global seismology (Shapiro et al., 2005; Sabra et al., 2005). Curtis et al. (2006) and
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Larose et al. (2006) give comprehensive interdisciplinary reviews of interferometry.

As the understanding of interferometry progresses, finding more applications to the

method is inevitable. For example, reservoir engineering may soon benefit from inter-

ferometry, as Snieder (2006) recently found that the principles of interferometry also

hold for the diffusion equation. In an even more general framework, interferometry

can be applied to a wide class of partial differential equations, with the examples

of the Schrödinger or the advection equation (Wapenaar et al., 2006; Snieder et al.,

2007). These findings might bring possibilities for interferometry within quantum

mechanics, meteorology or mechanical engineering, for instance.

Our goal in this paper is to gain insight into interferometry from yet another

point of view. Although interferometry is typically done by correlations, it is almost

natural to wonder if it could be accomplished by deconvolutions. This issue was in

fact raised by Curtis et al. (2006) as one of the standing questions within interfer-

ometry. We claim that interferometry can indeed be accomplished by deconvolutions

for arbitrary, multidimensional media. In fact, there are already successful examples

of deconvolution interferometry. Trampert et al. (1993) used deconvolution to ex-

tract the SH-wave propagator matrix and to estimate attenuation. Snieder and Şafak

(2006) recovered the elastic response of a building using deconvolutions, and were

able to explain their results using 1D normal-mode theory. Mehta and Snieder (2006)

obtained the near-surface propagator matrix using deconvolutions from the recording

of a teleseismic event in a borehole seismometer array.

In his early paper that spawned much of today’s work on interferometry, Claer-

bout (1968) originally suggested the use of deconvolution to retrieve the Earth’s 1D

reflectivity response. He then turned to correlation because it tends to be a more

stable operation. Loewenthal and Robinson (2000) showed that the deconvolution
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of dual wavefields can be used to change the boundary conditions of the original ex-

periment to generate only up-going scattered waves at the receiver locations and to

recover reflectivity. In a series of papers on free-surface multiple suppression, Amund-

sen and co-workers use inverse deconvolution-like operators designed to remove the

free-surface boundary condition (e.g., Amundsen, 2001; Holvik and Amundsen, 2005).

The topics of multiple suppression and interferometry are intrinsically related, pre-

cisely due to the manipulation of boundary conditions. This is explicitly pointed out

by Berkhout and Verschuur (2006), by Mehta et al. (2006) and by Snieder et al.

(2006b). Consequently, previous work on deconvolution-based multiple suppression

is also related to the practice of interferometry. Since we seek to shed light on the

physics behind deconvolution interferometry, we hope to bring yet another piece to

the puzzle that connects interferometry and other geophysical applications. These ap-

plications may be the manipulation of boundary conditions for multiple suppression,

passive and active imaging, time-lapse monitoring and others.

Using a combination of perturbation theory and representation theorems (as

in Chapter 2), we first review interferometry by correlations. In our discussion on

correlation-based interferometry, we restrict ourselves to key aspects which help un-

derstanding the meaning of deconvolution interferometry. In the Section that follows,

we go through a derivation in which we represent deconvolution interferometry by a

series similar in form to the Lippmann-Schwinger scattering series (Rodberg et al.,

1967; Weglein et al., 2003). We first analyze the meaning of series terms of leading-

order in the scattered wavefield, to then discuss the role of the higher-order terms of

the deconvolution interferometry series. Next, we also demonstrate that interferome-

try can be accomplished by deconvolution after integration over sources, and compare

the outcome of this method with deconvolution before source integration and with
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cross-correlation interferometry. Finally, using a single-layer model we illustrate the

main concepts of deconvolution interferometry, while comparing it to its correlation-

based counterpart. This is done by a stationary-phase analysis of the most prominent

terms in deconvolution interferometry, and with a synthetic data example.

Although it is not our intention here to discuss a specific use for interferometry

by deconvolution, we point out the this method will be of most use for interferometry

applications that require the suppression of the source function. The paper Chap-

ter 4 is dedicated to a specific application of deconvolution interferometry, providing

both numerical and field data examples in drill-bit seismic imaging. In particular, an

important component of the broad-side imaging of the San Andreas fault at Parkfield

presented Chapter 5 would not have been possible without deconvolution interferom-

etry (Chapter 4). Apart from drill-bit seismics, a complicated source signal may be

generated by the Earth itself. In the examples by Trampert et al. (1993), Snieder

and Şafak (2006) and Mehta and Snieder (2006), deconvolution is necessary to sup-

press the incoming Earth signal, which contains arrivals of different modes, multiply

scattered waves, etc. In the method by Loewenthal and Robinson (2000) the purpose

of deconvolution is to collapse all down-going waves into a spike at zero time, leav-

ing only the up-going Earth response. These are but examples of applications where

deconvolution interferometry plays an important role.

3.3 Theory of interferometry

In this section we describe the theory of deconvolution interferometry through

a perturbation theory approach. We begin by reviewing interferometry by cross-

correlation in perturbed media. Next, we cover the derivation of deconvolution in-

terferometry before summation over sources. Since such a derivation is done by a
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series expansion, we interpret the physical significance of the most prominent terms

of the deconvolution interferometry series. On the following subsection, we discuss yet

another option for interferometry where deconvolution is done after the summation

over sources. Finally, we illustrate the physical significance of the the most prominent

terms of the deconvolution interferometry series by providing an asymptotic analysis

of these terms for a simplified toy model.

3.3.1 Review of interferometry by cross-correlations

Let the frequency-domain wavefield u(rA, s, ω) recorded at rA be the superposi-

tion of the unperturbed and scattered Green’s functions G0(rA, s, ω) and GS(rA, s, ω),

respectively, convolved with a source function W (s, ω) associated with an excitation

at s, hence

u(rA, s, ω) = W (s, ω) [G0(rA, s, ω) +GS(rA, s, ω)] . (3.1)

Although here and throughout the text we callGS the scattered wavefield, formally GS

represents a wavefield perturbation. In our derivations, we rely on perturbation theory

(Weglein et al., 2003; Chapter 2), such that the quantities G0 and u (or its impulsive

version, G), respectively, represent background and perturbed wavefields that satisfy

the equation for acoustic (Chapter 2), elastic (Wapenaar et al., 2004a) and possibly

attenuative waves (Snieder, 2007a), and may contain higher-order scattering and

inhomogeneous waves. Both the background medium and the medium perturbation

can be arbitrarily heterogenous and anisotropic. Also, W (s, ω) may be a complicated

function of frequency, and may vary as a function of s.

The cross-correlation of the wavefields measured at rA and rB (equation 6.1)

thus gives
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CAB = |W (s)|2G(rA, s)G
∗(rB, s) ; (3.2)

where ∗ denotes complex-conjugation. From equation 4.2, it follows that the cross-

correlation CAB depends on the power spectrum of W (s). Note that we choose to

omit the frequency dependence of equation 4.2 for the sake of brevity; we do the same

with all of the other equations in this paper. Following the principle of interferometry

(Lobkis and Weaver, 2001; Wapenaar et al, 2006), we integrate the cross-correlations

in equation 4.2 over a surface Σ that includes all sources s, giving

∮

Σ

CAB ds = 〈|W (s)|2〉 [G(rA, rB) + G∗(rA, rB)] ; (3.3)

where 〈|W (s)|2〉 is the source average of the power spectra (Snieder et al., 2007),

and G(rA, rB) and G∗(rA, rB) are the causal and acausal Green’s functions for an

excitation at rB and receiver at rA. Note that for equation 6.2 to hold G corresponds

to the pressure response in acoustic media (e.g., Wapenaar and Fokkema, 2006). If G

is the particle velocity response, the plus sign on the right-hand side of equation 6.2 is

replaced by a minus sign (e.g., Wapenaar and Fokkema, 2006). Equation 6.2 has been

derived by many other authors (e.g., Wapenaar et al., 2004b; Draganov et al., 2006)

and it is not our intention here to restate it. Instead, we highlight the importance of

the 〈|W (s)|2〉 term in equation 6.2.

The source average 〈|W (s)|2〉 may be a complicated function of frequency (or

time), hence
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recovering the response between the receivers at rA and rB through equation 6.2 can

be difficult. In the interferometry literature, most authors suggest deconvolving the

power spectrum average 〈|W (s)|2〉 after the integration in equation 6.2 (Wapenaar

et al., 2004a; Snieder et al., 2006; Fink, 2006). This assumes that an independent

estimate of the source function is available. Indeed, in some applications such an

estimate can be obtained (Mehta et al., 2007). There are many cases in which inde-

pendent estimates of the source function are not a viable option. The second part

of this paper (Chapter 4) deals with a specific drill-bit seismic examples for which

independent estimates of the source function are not available, and the correlation-

based interferometry (equation 6.2) does not provide acceptable results. In the next

two Sections we provide alternative interferometry methodologies that recover the im-

pulse response between the receivers without the requirement of having independent

estimates of the power spectrum of the source function.

In this paper we focus on understanding the physical meaning of interferometry

by deconvolution, and its differences with its correlation-based counterpart. To do so

it is necessary to review some of the physics behind cross-correlation interferometry in

perturbed media. Thus, for the moment, it is convenient to assume a source function

that is independent of the source position s (W (s) = W ) in equations 6.1, 4.2 and 6.2.

Combining equations 6.1 and 4.2, we can expand CAB into four terms:

CAB = u(rA, s)u
∗(rB, s)

= u0(rA, s)u
∗
0(rB, s)

︸ ︷︷ ︸

C1

AB

+ uS(rA, s)u
∗
0(rB, s)

︸ ︷︷ ︸

C2

AB

+

+ u0(rA, s)u
∗
S(rB, s)

︸ ︷︷ ︸

C3

AB

+ uS(rA, s)u
∗
S(rB, s)

︸ ︷︷ ︸

C4

AB

,

(3.4)

where u0 = WG0 and uS = WGS (see equation 6.1). The four terms, namely C1
AB
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through C4
AB, can be inserted into equation 6.2, giving

∮

Σ

[
C1

AB + C2
AB + C3

AB + C4
AB

]
ds = |W |2 [G0(rA, rB) + GS(rA, rB) +

+G∗
0(rA, rB) + G∗

S(rA, rB)] . (3.5)

Each of the four integrals on the left-hand side of equation 3.5 has a different physical

meaning. With the use of representation theorems, in Chapter 2 we analyze how each

integral in equation 3.5 relates to the terms in the right-hand side of the equation.

Note that for imaging purposes, we want to use only the uS terms in equation 3.5. The

first integral relates to the unperturbed terms in the right-hand side of equation 3.5

to give,

∮

Σ

u0(rA, s)u
∗
0(rB, s) ds = |W |2 [G0(rA, rB) + G∗

0(rA, rB)] . (3.6)

The relationship in equation 3.6 is not surprising because the unperturbed wave-

fields u0 satisfy the unperturbed wave equation. Consequently, interferometry of the

unperturbed wavefields on the left-hand side of equation 3.6 must yield the causal

and acausal unperturbed wavefields between rB and rA (right-hand side of equa-

tion 3.6). A less obvious relationship between the terms in equation 3.5 (Chapter

2) is that the dominant contribution to the causal scattered wavefield between rB

and rA comes from the correlation between the unperturbed wavefield at rB and the

scattered wavefield at rA, that is,

∫

σ1

uS(rA, s)u
∗
0(rB, s) ds ≈ |W |2 GS(rA, rB) ; (3.7)

where σ1 is a portion of Σ that yields stationary contributions to GS(rA, rB). In
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Chapter 2 we show that this relationship holds for most types of experiments in

exploration seismology (surface seismic, many VSP experiments, etc.). Equation 6.3

is an approximate relationship because it neglects the influence of a volume integral

that provides a correction for medium perturbations that sit in the stationary paths

of the unperturbed waves that propagate from the sources s to the receiver at rB

(Chapter 2). In the context of seismic imaging, the extraction of GS(rA, rB) is the

objective of interferometry. Equation 6.3 is not only important for the separation of

the scattered waves that propagate between rB and rA, but also because it can be

used to show that deconvolution interferometry is capable of recovering the response

between any two receivers.

An important requirement for the successful application of interferometry is that

there must be waves propagating at all directions at each receiver location. Many

authors refer to this condition as equipartioning (Weaver and Lobkis, 2004; Larose et

al, 2006), while others simply mention the necessity of having many sources closely

distributed around a closed surface integral, such as in equation 6.2. In real-life

exploration experiments, however, it is impossible to surround the subsurface with

sources. As a consequence we end up with only a partial source integration, instead of

the closed surface integration necessary for equation 6.2 to hold. As was pointed out

by Snieder et al. (2006) for simplified 1D models, truncation of the surface integral

may lead to the introduction of spurious events in the final interferometric gathers.

This holds for general 3D models as well, and it can be easily verified provided that

∫

σ1

CAB ds +

∫

σ2

CAB ds = |W |2 [G(rA, rB) + G∗(rA, rB)] , (3.8)

where σ1 and σ2 are surface segments of Σ, such that σ1 ∪ σ2 = Σ. Now, suppose

that in an actual field experiment we could only acquire data with waves excited over
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the surface σ1 (such as in equation 6.3). Then, as we can see from equation 3.8,

the integration over all available sources (the integral over σ1) results in the desired

response (right-hand side of equation 3.8) minus the integral over σ2. In this case, if

the integral over σ2 is non-zero (i.e., there are stationary contributions associated with

sources placed over σ2), then the data synthesized from interferometry over σ1 would

contain spurious events associated the missing sources over σ2. Although this at first

glance may seem like a practical limitation of the method of interferometry, in reality

the lack of primary sources in the subsurface is somewhat compensated by multiple

scattering, or by reflections below the region of interest (Wapenaar, 2006; Halliday

et al., 2007). In field experiments, some of the desired system equipartioning may

be achieved with longer recording times, making up for some of the missing sources

over σ2. Because this is a model-dependent problem, it is impossible in practice to

pre-determine what the influence of missing sources will be, and to what extent longer

recording times make up for these sources.

3.3.2 Deconvolution before summation over sources

As we have seen in the previous Section, the cross-correlation of the wavefields

u(rA, s) and u(rB, s) contains the power spectrum of the excitation function (equa-

tion 4.2). Instead deconvolution of u(rA, s) with u(rB, s) gives

DAB =
u(rA, s)

u(rB, s)
=

u(rA, s) u
∗(rB, s)

|u(rB, s)|
2 =

G(rA, s)G
∗(rB, s)

|G(rB, s)|
2 , (3.9)

Now the source function W (s) (equation 6.1) is canceled by the deconvolution pro-

cess. Although no multidimensional deconvolution interferometry approach has been

presented to date, it is intuitive to proceed with the integration
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∮

Σ

DAB ds =

∮

Σ

G(rA, s)G
∗(rB, s)

|G(rB, s)|
2 ds , (3.10)

to mimic the procedure of interferometry by cross-correlation (equation 6.2). The

existing proofs for the validity of interferometry by cross-correlation (equation 6.2)

are not immediately applicable to interferometry by deconvolution. For example,

the use of representation theorems (e.g., Wapenaar et al., 2004a; Wapenaar et al.,

2006; Chapter 2) is unpractical for the spectral ratio of wavefields. Also, stationary-

phase evaluation of the integral in equation 3.10 for a specified model (such as in

Snieder et al., 2006) is compromised by the presence of |G(rB, s)|
2 in the numerator.

Despite being zero-phase, |G(rB, s)|
2 contains cross-terms between unperturbed and

scattered wavefields (see below) which make the denominator in equation 3.10 a highly

oscillatory function that cannot be accounted for by the stationary-phase method

(Bleistein and Handelsman, 1975).

Our solution to evaluating the integral in equation 3.10 is to expand the de-

nominator in a power series, which then allows us to give a physical interpretation

to deconvolution interferometry. The next two Sections cover the derivations of this

series expansion and the subsequent interpretation of its physical significance.

Contributions to first-order in the scattered wavefield.

We focus our discussion on the terms that make the most prominent contributions

to the deconvolution interferometry integral in equation 3.10. First, we rewrite the

deconvolution in equation 4.11 as
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DAB =
CAB

|G(rB, s)|
2 =

1

|G(rB, s)|
2 [G0(rA, s)G

∗
0(rB, s) + GS(rA, s)G

∗
0(rB, s) +

+ G0(rA, s)G
∗
S(rB, s) + GS(rA, s)G

∗
S(rB, s)] ;

(3.11)

where we explicitly identify the relationship between deconvolution and the cross-

correlation of G(rB, s) with G(rB, s), here denoted by CAB. As in equation 3.4,

the numerator in equation 4.11 yields four terms as shown in the right-hand side of

equation 3.11. The next step in our derivation is to express |G(rB, s)|
−2 as

1

|G(rB, s)|
2 =

1

[G0(rB, s) + GS(rB, s)] [G∗
0(rB, s) + G∗

S(rB, s)]
; (3.12)

which shows that the numerator in equation 3.10 contains the power spectra of the

unperturbed and scattered wavefields, as well as cross-terms between these two wave-

fields. If we assume the wavefield perturbations to be small (|GS|
2 << |G0|

2), the

last term in the denominator of equation 3.12 can be dropped, hence

|G(rB, s)|
−2 ≈

1

|G0(rB, s)|
2
[

1 +
G0(rB ,s) G∗

S
(rB ,s)

|G0(rB,s)|2
+

GS(rB,s) G∗

0
(rB ,s)

|G0(rB ,s)|2

] , (3.13)

By inspecting the denominator, it follows that equation 3.13 can be expanded in a

power series in GS/G0 + G∗
S/G

∗
0. From this expansion, taking terms only up to first

order in the wavefield perturbations gives
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|G(rB, s)|
−2 ≈

1

|G0(rB, s)|
2

[

1 −
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

]

. (3.14)

After inserting equation 3.14 into the integral in equation 3.10 and keeping only

the terms which are linear in the wavefield perturbations GS, we get

∮

Σ

DAB ds =

∮

Σ

G0(rA, s)G
∗
0(rB, s)

|G0(rB, s)|
2 ds

︸ ︷︷ ︸

D1

AB

+

∮

Σ

GS(rA, s)G
∗
0(rB, s)

|G0(rB, s)|
2 ds

︸ ︷︷ ︸

D2

AB

−

∮

Σ

GS(rB, s)G0(rA, s)G
∗
0(rB, s)

G0(rB, s)
ds

︸ ︷︷ ︸

D3

AB

. (3.15)

Equation 4.12 shows that, to leading order in the scattered wavefield, the decon-

volution integral in equation 3.10 can be represented by the integrals D1
AB through

D3
AB. In fact, equation 4.12 is a Born-like approximation (e.g., Weglein et al., 2003)

of equation 3.10. In contrast with the term |G(rB, s)|
2 in equation 3.10, the term

|G0(rB, s)|
2 in equation 4.12 does not contain cross-terms between unperturbed and

scattered wavefields. Therefore, |G0(rB, s)|
2 is a slowly-varying zero-phase function

of s. This means that only the numerators determine the stationary contributions to

the integrals in the right-hand side of equation 4.12. This property allows the direct

comparison between the phases of the integrands in equations 4.12 and the terms in

equation 3.5.

Physical insights into deconvolution interferometry come from observing that the

integrands of the D1
AB and D2

AB terms (equation 4.12) have the same phase as the

C1
AB and C2

AB terms in equations 3.4 and 3.5. Based on these observations, and on

equation 3.6 (Chapter 2), we can conclude that D1
AB provides the causal and acausal
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(b)(a)

Figure 3.1. Representation of the wavefields that result from (a) deconvolution and
(b) correlation interferometry. We refer to this representation as light cones. The
medium is 1D with a wavespeed c. x0 is the location of the pseudo-source. The
grey-shaded areas represent the regions where the wavefields are nonzero. Away from
these areas the wavefields are equal to zero. The wavefield produced by deconvolution
interferometry in (a) is zero also along the dashed white line, for t 6= 0. In the time-
domain, the excitation in (a) is given by δ(t), while in (b) it is given by 〈|W (s, t)|2〉.
The white text boxes indicate what type of wavefields propagate in the causal and
acausal light cones of (a) and (b).

unperturbed wavefield that propagates from rB to rA. More importantly, since the

integrand of D2
AB and C2

AB have the same phase, the term D2
AB gives the causal

scattered waves that are excited at rB and recorded at rA.

In the process of deriving equation 4.12 from equations 3.10, 3.11 and 3.14, the

terms that carry the same phase as C3
AB and C4

AB cancel with the products of C1
AB and

C2
AB with the G∗

S/G
∗
0 term. This cancelation implies that interferometry by decon-

volution does not recover the acausal scattering response between the two receivers.

Note that the acausal scattered waves are attenuated in deconvolution interferometry

even for a closed surface integral (equation 4.12), or for an equipartioned system. This

is a difference with what is obtained with interferometry by cross-correlation, which

does recover the acausal scattering response between the receivers (equation 6.2).
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(b)(a)

Figure 3.2. Illustrations of the free point boundary condition in deconvolution inter-
ferometry. (a) provides an interpretation of the free point boundary condition for
1-dimensional media with wavespeed c, using the light cone representation (as in Fig-
ure 3.1a). x0 is the location of the pseudo-source (and of the free point) and xS is the
location of a point scatterer. The arrows represent waves, excited by the source in
x0, propagating in the medium. Waves denoted with solid arrows propagate with op-
posite polarity with respect to waves represented by dotted arrows. The wavefield is
equal to zero at the dashed white line, and the black vertical line indicates the region
of influence of the medium perturbation at xS. (b) illustrates the free point boundary
condition in a 3D inhomogeneous acoustic medium. The pseudo-source, located at
rB, is shown with the white triangle. The receiver is represented by the grey triangle
at rA. The medium perturbation is a point scatterer at xS, here denoted by the black
circle. The solid arrow depicts a direct wave excited at rB. This wave is scattered at
xS and propagates toward rA and rB, as shown by the dashed arrows. The dotted
arrow denotes a free point scattered wave that is recorded at rA. Waves represented
by dashed and dotted arrows have opposite polarity. t1 through t3 are the traveltimes
of waves that propagate from rB to xS, xS to rA, and rB to rA, respectively.
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The term D3
AB has no counterpart in correlation interferometry. In a zero-offset

interferometric experiment, that is rA = rB, the integrands of D3
AB and D2

AB have

the same phase. In that case, the stationary traveltimes that come from integrating

D3
AB are the same as the ones coming from D2

AB. These traveltimes correspond to

scattered waves for a zero-offset experiment at rB. Given that D3
AB and D2

AB have

opposite sign (equation 4.12), their contributions cancel when rA = rB. As the offset

between the two receivers increases, the stationary traveltimes from D3
AB and D2

AB

become increasingly different. As we shall discuss in more detail in Section 3.3.4,

the stationary traveltimes from D3
AB at finite offsets does not correspond to physical

events for real wavefields excited at rB and recorded at rA. Because of this we refer

to terms such as D3
AB as spurious events. Next, we explain the origin of the spurious

arrivals in deconvolution interferometry.

Indeed, setting rA = rB in equation 3.10 yields, in the time domain, a delta

function at zero time. In deconvolution interferometry, scattered waves must cancel

at zero-offset. This is a boundary condition imposed on the interferometric experi-

ment where we excite waves at rB and record them at rA. The consequence of this

boundary condition is the creation of spurious events such as D3
AB that cancel scat-

tered waves that arrive at zero-offset with finite traveltimes. Note that these spurious

arrivals are different from the ones that may result from the truncation of the surface

integral (equation 3.8), and exist even for a closed surface of sources or in an equipar-

tioned system (equation 4.12). Truncation of the surface integral in deconvolution

interferometry will have the same effect as in interferometry by cross-correlation (see

previous Section).

In Figure 3.1, we summarize the physical meaning of deconvolution interfer-

ometry and compare it to the correlation-based approach. The type of wavefield



60

representation in Figure 3.1 comes from the theory of special relativity (Ohanian and

Ruffini, 1994). According to the causality principle, no wave in Figure 3.1 can move

faster than the medium wavespeed c (which for the sake of argument we assume to be

constant). Hence, an excitation that occurs at x0 and t = 0 influences only the causal

grey-shaded regions in Figure 3.1, and it is influenced by the acausal grey-shaded re-

gions. In special relativity theory, these grey-shaded areas are called light cones: the

causal grey-shaded regions are the future light cones, while the acausal ones are the

past light cones. From equation 4.11, it follows that DBB = 1 (i.e., when rA = rB). In

this case, deconvolution interferometry yields G(rB, rB) = 1 in the frequency domain,

which translates to

G(rB, rB, t) = δ(t) (3.16)

in the time domain. Hence, in deconvolution interferometry, the time-domain excita-

tion is given by δ(t) (Figure 3.1a). This excitation influences all of the causal light

cone of interferometry by deconvolution, except at x = x0 for t > 0, where the wave-

field is zero (equation 4.15). Likewise, the condition given by equation 4.15 states

that the pseudo-source in deconvolution interferometry is influenced by all events of

the past light cone, except for the ones at x = x0 and t < 0. The pseudo-source in

deconvolution interferometry generates the unperturbed impulse response G0(x, x0, t)

and the impulsive scattered waves GS(x, x0, t), as indicated in the future light cone

of Figure 3.1a. This pseudo-source, obtained by deconvolution, is influenced only

by unperturbed waves in its past light cone, which pertain to impulsive wavefield

G∗
0(x, x0, t). This observation holds for terms from the deconvolution interferometry

series (after the expansion of equation 3.10) of any order in the scattered wavefield,

as we demonstrate in the next Section.

In correlation interferometry (Figure 3.1b), the excitation at t = 0 is given
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by 〈|W (s, t)|2〉, where s = x0 for the pseudo-source synthesized by interferometry.

This excitation generates the unperturbed wavefield u0(x, x0, t) and the perturbation

uS(x, x0, t) in the future light cone in Figure 3.1b. The acausal waves in u∗0(x, x0, t)

and u∗S(x, x0, t) present in the past light cone of correlation interferometry influence

the excitation at x = x0 and t = 0. Therefore, unlike in deconvolution interfer-

ometry (Figure 3.1b), x0 is influenced by the acausal scattered waves in correlation

interferometry (Figure 3.1b). Note that u0(x, x0, t) and uS(x, x0, t) (and their acausal

counterparts) are not impulsive. Another difference with the deconvolution approach

is that correlation interferometry influences x = x0 for t > 0, and is influenced by

waves at x = x0 for t < 0 (Figure 3.1b). Although the light cone representations

in Figure 3.1 are valid for one-dimensional homogeneous media, it can be general-

ized to higher dimensions (Ohanian and Ruffini, 1994) and to inhomogeneous media.

These generalizations, however, are not necessary to our discussion on the physics of

interferometry.

Finally, we rely on Figure 3.2 to summarize the physics of the extra boundary

condition imposed by deconvolution interferometry (equation 4.15). From this condi-

tion (equation 4.15), it follows that G(rB, rB, t) = 0 when t 6= 0, which is represented

by the dashed white line in Figures 3.1a and 3.2a. If G is the pressure response, we

refer to this boundary condition in the interferometric experiment as the free point

boundary condition. We use this term because the physical meaning of this boundary

is analogous to that of a free surface boundary condition (where pressure is equal to

zero), but instead it only applies to a point in space (in this case, rB). When G

stands for the particle velocity response, the condition in equation 4.15 has the effect

of clamping the point rB, so that it cannot move for t 6= 0. In that case, we refer to

equation 4.15 as the clamped point boundary condition. Throughout this paper, we
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use the term free point when referring to the condition given by equation 4.15, since

in previous equations G is represents pressure waves (e.g., equations 6.2 and 3.6).

The boundary condition imposed by deconvolution interferometry in elastic media is

different than that we discuss here, as shown Chapter 4.

The effect of the free point boundary condition in a 1D homogeneous medium is

illustrated by Figure 3.2a. The medium is perturbed by a scatterer at xS. According

to our interpretation of Figure 3.1a, the medium perturbations occurs at t = 0, so the

black dashed line in Figure 3.2a shows that the medium perturbation only influences

the future light cone in Figure 3.2a. Starting at x = x0 and t = 0, the arrows in

Figure 3.2a describe the path of a wave that propagates toward the scatterer at xS,

bounces off the scatterer to be then scattered again at the free point at x = x0. This

wave keeps on scattering infinite times between xS and x0. As in the free surface

boundary condition, the free point at x0 reflects waves with a reflection coefficient

equal to -1. Note that the waves in Figure 3.2a change polarity at each bounce off

the free point at x0.

The extension of the free point concept to 3D inhomogeneous media is shown in

Figure 3.2b. In this example, deconvolution interferometry is conducted for receivers

at rA and rB, as in equation 3.10. The receiver at rB acts as a pseudo-source (white

triangle in the Figure). The medium perturbation is the point scatterer at xS. The

pseudo-source at rB sends a direct wave (solid arrow in Figure 3.2b), with traveltime

t1 toward the scatterer. After this direct wave scatters at xS, it propagates back to rB

and toward rA (dashed arrows), where it is recorded. This recorded singly scattered

wave corresponds to the D2
AB term in equation 4.12, with traveltime t = t1 + t2.

When it arrives at rB, the wave backscattered at xS scatters once more because of

the free point boundary condition. The free-point scattered wave (dotted arrow) then
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Figure 3.3. A simple model gain intuitive understanding about the physical meaning
of the terms in equation 4.12. Receivers are imbedded in an acoustic homogeneous
space containing a single reflector, bounded by a perfectly absorbing surface. Only
direct and single-scattered waves are considered. Sources are depicted by circles on
the surface, the two receivers are represented by triangles. LA, LB and L1 through
L4 are the lengths of the ray segments. The reflection coefficient r is constant with
respect to both position and incidence angle.

travels directly to rA, where it is recorded at t = 2t1 + t3. This arrival corresponds

to the D3
AB term in equation 4.12. When rA = rB, t2 = t1 and t3 = 0, and the

singly scattered and free-point scattered waves have the same traveltime. This agrees

with our previous discussion on the phase of the terms in equation 4.12. For a fixed

rB and varying rA, the traveltime of the free-point scattered wave is only controlled

by t3, since t1 stays constant. Note that t3 is also the traveltime of the direct wave

that travels from rB to rA, which is in turn given by the D1
AB term in equation 4.12.

Since the term D3
AB is controlled by the direct wave traveltime t3 for a fixed rB, it

has the same moveout as the direct wave in an interferometric shot gather with a

pseudo-source at rB. Figure 3.2b illustrates only one of the many free point scattered

waves produced by deconvolution interferometry.

Although the presence of spurious events such asD3
AB (equation 4.12) may appear

to be a problem for imaging interferometric gathers that result from deconvolution, we
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Figure 3.4. Depths obtained by shot-profile migration of stationary traveltimes of
deconvolution interferometry terms with varying receiver-to-receiver offset. Black
lines correspond to the terms that are of leading order in the scattered wavefield (see
previous Section). The black solid line represents migrated depths from traveltimes
associated to the D2

AB term (equation 4.12); whereas the black dashed line pertains
to the D3

AB term (also equation 4.12). The curves colored in blue, red and green are
associated respectively to terms which are quadratic, cubic and quartic with respect to
scattered waves. For a given order in the scattered waves, we show only the two terms
that have strongest amplitude. Of the blue curves, the solid curve relates to the T 2nd

1

in equation 3.19 and the dashed one pertains to T 2nd

2 (equation 3.20). The imaged
depths computed from the T 3rd

1 (equation 3.21) and T 3rd

2 (equation 3.22) stationary
traveltimes are shown by the solid and dashed red lines, respectively. Although the
quartic terms related to the green curves are not explicitly shown in the text, they
come from the deconvolution interferometry series in equation 3.18 for n equal to 3
and 4.

show in the Sections to come that these spurious events typically are not mapped onto

coherent reflectors. What is most important is that interferometry by deconvolution

is capable of successfully recovering the causal scattering response between any two

receivers, as shown by the D2
AB term.

Higher-order terms

In the previous section we limited our analysis to the terms of first order in GS.

Here, we analyze the higher-order terms. The full deconvolution series resulting from

the expansion of equation 3.11 is
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DAB =
CAB

|G0(rB, s)|
2

∞∑

n=0

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)n

. (3.17)

As shown in Appendix A, a physical analysis of the terms in equation 3.17 allows

us to simplify it to

DAB ≈
G(rA, s)

G0(rB, s)
+

CAB

|G0(rB, s)|
2

∞∑

n=1

(−1)n

(
GS(rB, s)

G0(rB, s)

)n

. (3.18)

In this equation, the first term yields physical unperturbed and scattered waves that

propagate between rB and rA, while the second term accounts for the effect of the

free point boundary condition in deconvolution interferometry. The objective of the

simplification in equation 3.18 is to keep only the terms that have non-zero phase

which bring the most prominent contributions to the series in equation 3.17. The ap-

proximation that leads to equation 3.18 involves neglecting terms from equation 3.17

which are zero-phase or that yield arrivals with negligible amplitudes (see Appendix

A). Note that the acausal terms proportional to (G∗
S/G

∗
0)

n in equation 3.17 are not

present in equation 3.18 because they cancel in the n → ∞ limit (see Appendix A).

This cancellation determines that the point x0 in Figure 3.1a is not influenced by

acausal scattered waves (see discussion in Section 3.3.2). The first term in equa-

tion 3.18 gives the terms D1
AB and D2

AB in equation 4.12. The term D3
AB is obtained

by the product of C1
AB and the first term of the sum in equation 3.18. It is important

to note that terms of a given order in the scattered wavefield come from different

values of n in equation 3.18. Let us take, for example,

T 2nd

1 = −GS(rA, s)G
∗
0(rB, s)

(
GS(rB, s)

G0(rB, s)

)

(3.19)

and
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Figure 3.5. Common receiver gathers for receivers placed at (a) 1500 m and at (b)
3000 m.

T 2nd

2 = G0(rA, s)G
∗
0(rB, s)

(
GS(rB, s)

G0(rB, s)

)2

(3.20)

where T o
i represents a given term Ti from equation 3.18 of order o in the scattered

wavefield GS. T 2nd

1 and T 2nd

2 are the most prominent terms which are of second-order

in the scattered wavefield, where T 2nd

1 comes from n = 1 while T 2nd

2 comes from n = 2.

When rA = rB, T 2nd

1 and T 2nd

2 will give rise to arrivals with twice the traveltimes of

GS(rA, rB). Since these two terms have opposite polarity (equations 3.19 and 3.20),

their contributions cancel. Likewise the terms

T 3rd

1 = GS(rA, s)G
∗
0(rB, s)

(
GS(rB, s)

G0(rB, s)

)2

(3.21)

and

T 3rd

2 = −G0(rA, s)G
∗
0(rB, s)

(
GS(rB, s)

G0(rB, s)

)3

(3.22)

result in traveltimes that are three times those of GS(rA, rB) when rA = rB. T 3rd

1

and T 3rd

2 are the most prominent terms from the series in equation 3.18 which are
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of third-order in the wavefield perturbations. They come respectively from setting

n = 2 and n = 3 in equation 3.18. The phase of of any the higher-order terms

in deconvolution interferometry (second term in equation 3.18; e.g., equations 3.19

through 3.22) can be physically explained by the interactions of the free point at rB

(equations 3.10 and 4.15) with the waves scattered by the medium perturbation. In

the example of Figure 3.2b, the higher-order spurious multiples arise from multiple

scattering between the scatterer at xS and the free point at rB.

As we demonstrate with our numerical example, some of these higher-order spu-

rious terms (such as in equations 3.19 through 3.22) may be present in the decon-

volution interferometry integrand. Hence, it is important to understand to what

extent these terms present a challenge to the proper imaging from interferometry by

deconvolution. We investigate this in the next Sections.

3.3.3 Deconvolution after summation over sources

Using the deconvolution approach described by equation 3.10 is not the only

option for doing interferometry without independent estimates of the source function.

The deconvolution of u(rA, s) and u(rB, s) is equal to

DAB =
u(rA, s) u

∗(rB, s)

u(rA, s) u∗(rB, s)
=

CAB

CBB
, (3.23)

where CBB is the auto-correlation of u(rB, s). In the previous Section we summed

this result over all sources. Interferometry can be done as in the previous Section, or

we can first integrate over sources, and then compute the spectral ratio

∮

Σ
CAB ds

∮

Σ
CBB ds

=
G(rA, rB) + G∗(rA, rB)

∮

Σ
CBB ds

. (3.24)
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Figure 3.6. Deconvolution and cross-correlation gathers for the first and last receivers,
whose lateral positions are, respectively, 1500 and 3000 m. (a) displays the decon-
volution gather obtained from deconvolving the modeled common-receiver gathers,
whereas (b) shows ray-theoretical traveltimes for the terms in equation 4.12, com-
puted according to integrands in equation 4.12 in Section 3.3.4. Analogous to (a),
(c) is the cross-correlation gather generated from source-by-source correlation of the
two receiver gathers. (d) shows the asymptotic traveltimes corresponding the phase
of the integrands in equation 3.5.
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The ratio on the left-hand side of the equation cancels the contribution of the wavelet

〈|W (s)|2〉 (equation 6.2). No independent estimate of the source function is required.

Other authors have suggested approaches similar to the one in equation 3.24. The

pilot-trace approach used in drill-bit seismology (e.g., Poletto and Miranda, 2004;

Rector and Marion, 1991) uses auto-correlations of the accelerometer recordings or

geophone data to build a deconvolution operator (Chapter 4). The Virtual Source

method (Bakulin and Calvert, 2006; Schuster and Zhou, 2006) also relies on a decon-

volution analogous to the one in equation 3.24.

As we did with the cross-correlation in equation 3.4, we can expand CBB and

integrate it over sources, giving:

∮

Σ

CBB ds =

∮

Σ

C1
BB ds +

∮

Σ

C2
BB ds +

∮

Σ

C3
BB ds +

∮

Σ

C4
BB ds (3.25)

From the integration of the four terms on the right-hand side of equation 3.25, we

can write

1
∮

Σ
CBB ds

=
1

[
|G0(rB, rB)|2 +

∮

Σ
C2

BB ds +
∮

Σ
C3

BB ds + |GS(rB, rB)|2
] ; (3.26)

where the denominator contains zero-phase terms (the power spectra), as well as

the causal and acausal zero-offset scattered wavefield uS(rB, rB). Using the weak

perturbation approximation (|G0|
2 >> |GS|

2), we can approximate
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[∮

Σ

CBB ds

]−2

≈
1

|G0(rB, rB)|2
[

1 + 1
|G0(rB ,rB)|2

∮

Σ
C2

BB ds + 1
|G0(rB ,rB)|2

∮

Σ
C3

BB ds
]

(3.27)

which gives us an expression of the same form as equation 3.13. Hence, we can expand

equation 3.27 in a power series of the same form as in our previous discussions (see

equations 3.13, 3.14 and 3.17). Considering only the very first term of the series

expansion, it gives

∮

Σ
CAB ds

∮

Σ
CBB ds

≈
G(rA, rB) + G∗(rA, rB)

|G0(rB, rB)|2
. (3.28)

This expression shows that deconvolving the integral over CAB by the integral over

CBB recovers both the causal and acausal response at rA for waves excited at rB. This

response is scaled by the power spectrum of the zero-offset unperturbed wavefield.

Note that equation 3.28 is approximate. Other terms of the series expansion of

equation 3.27 yield cross-correlations and convolutions between causal and acausal

u(rA, rB) and uS(rB, rB). Since, after Chapter 2,

∫

σ1

C2
BB ds =

∫

σ1

GS(rB, s)G
∗
0(rB, s) ds ≈ GS(rB, rB) , (3.29)

and

∫

σ1

C3
BB ds =

∫

σ1

G0(rB, s)G
∗
S(rB, s) ds ≈ G∗

S(rB, rB) . (3.30)

Other terms arising from the expansion of equation 3.27 are bound to be small because

not only they are products between G andGS terms, but also because they are divided

by |G0(rB, rB)|2n (with n = 2, 3, 4, . . .).
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Figure 3.7. Deconvolution interferometry terms which are nonlinear in the scattered
wavefield. The left panel shows the integrand of the deconvolution interferometry
integral (equation 3.10),computed from finite-difference modeling (same as in Fig-
ure 3.6a). In (b), the traveltimes corresponding to the second order terms T 2nd

1

and T 2nd

2 (equations 3.19 and 3.20) are shown respectively with solid and dashed blue
curves; while the solid and dashed red curves come from T 3rd

1 and T 3rd

2 (equations 3.21
and 3.22), respectively. The curves in (a) correspond to the curves of the same color
and type in Figure 3.4.
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3.3.4 Example: asymptotic analysis of deconvolution interferometry

In Section 3.3.2 we discussed some of the physics behind the terms in deconvo-

lution interferometry based on their integral representation. Here we illustrate the

ideas in the previous Sections using asymptotics. We use these asymptotic methods

to investigate the spurious arrivals in imaging gathers produced by deconvolution

interferometry (see Section 3.3.2). Although it is necessary to restrict this type of

analysis to simple models, the observations provide useful insight into the physics

of our problem. Snieder et al. (2006) used the same kind of asymptotic analysis to

study the terms arising from interferometry by cross-correlations (e.g., equation 3.4).

They also characterized spurious multiples that come from a limited source integra-

tion (see discussion concerning equation 3.8). Since our approach is analogous to that

in Snieder et al. (2006), we do not reproduce all steps in their derivation. Some of

these steps are reproduced in Appendix B.

The toy model we use is that of a single reflector in a homogeneous medium

(Figure 3.3). The unperturbed wavefields u0(rA,B, s) consist of the direct waves while

uS(rA,B, s) are the single-reflected waves. We use the far-field acoustic Green’s func-

tions in equation B.1 to represent the ray-geometric arrivals in Figure 3.3. If we

rewrite the term D1
AB in equation 4.12 according to equation B.1 we get

D1
AB =

1

(4πLB)2

∫
eik(LA−LB)

LALB

dxdy , (3.31)

where the integral over s (equation 4.12) has been converted to the integration over

the lateral coordinates x and y (representing the surface plane). The stationary-phase

evaluation (see Appendix A) of the integral in equation 3.31 gives
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D1
AB =

nc

32π2L2
B cosψ

G0(rA, rB)

(−iω)
; (3.32)

with the acoustic wavespeed c, and n representing sources per unit area (Snieder

et la., 2006). A straight raypath connecting rA, rB and the surface determines the

stationary source position that gives equation 3.32. The angle defined between this

stationary ray and the vertical defines the angle ψ. G0(rA, rB) is the unperturbed

Green’s function, in this case a direct wave, propagating from rB to rA. Equation 3.32

is consistent with our interpretation of the term D1
AB in Section 3.3.2. The (−iω)−1

in equation 3.32 indicates that after interferometry it is necessary to perform a time-

domain differentiation to obtain the Green’s function (Snieder et al., 2006). This is

a correction factor commonly found in interferometry (e.g., Wapenaar et al., 2004a;

van Wijk et al., 2006): it compensates for the source integration, and it depends

on which type of Green’s function is considered (Wapenaar et al, 2004b). Although

for simplicity we have not explicitly kept the iω factors in the integrals in previous

Sections, the exact forms of those expressions also have iω factors (Chapter 2).

The term D2
AB of equation 4.12 for our model reduces with equation B.1 to the

integral

D2
AB =

r

(4πLB)2

∫
eik(L1+L2−LB)

(L1 + L2)LB

dxdy , (3.33)

which is has a form similar to that of equation 3.31. This integral can also be evaluated

with the stationary phase method, giving

D2
AB =

nc

32π2L2
B cosψ

GS(rA, rB)

(−iω)
; (3.34)

where r is the constant reflection coefficient at the interface in Figure 3.3. The
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stationary source point that results in equation 3.34 is associated with a raypath that

starts at the surface, passes through rB, specularly reflects off the interface and is

recorded at rA. Since the stationary raypaths that give equations 3.32 and 3.34 are

different, the corresponding values of the obliquity factor cosψ are also different. The

stationary-phase evaluation of D2
AB (equation 3.33) results in GS(rA, rB): a causal

singly reflected wave excited at rB and recorded at rA.

Next, we consider the asymptotic behavior of the D3
AB term (equation 4.12).

Using the Green’s functions in equation B.1, D3
AB is given by

D3
AB = −

r

(4πLB)2

∫
eik[(L3+L4−LB)−(LA−LB)]

(L3 + L4)LAL
2
B

dxdy . (3.35)

If rA = rB, the phase of the integrand in equation 3.35 is the same as in

equation 3.33, so the resulting stationary-phase evaluation of D3
AB is proportional

to GS(rB, rB). This supports the physical interpretation of D3
AB provided in Sec-

tion 3.3.2, where we argue that for rA = rB the terms D3
AB and D1

AB have the same

phase and give the zero-offset scattered-wave traveltimes. For rA 6= rB, DAB is not

associated to any stationary paths that would exist for a real excitation placed at rB

without the free point boundary condition (equation 4.15).

The main objective in studying the spurious terms such as D3
AB is to determine

their influence in imaging data from deconvolution interferometry. Hence, we proceed

with a numerical asymptotic analysis of the spurious arrivals. Once we specify a

model such as the one in Figure 3.3, we compute the ray-based traveltimes of each

spurious arrival for all source positions, according to equation 3.18. From the maxima

of the phases of each spurious event, we determine their corresponding stationary

traveltime and source position. We did this for a fixed position rB as a function of a

laterally-varying rA. Given the receiver positions, stationary traveltimes and model
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parameters, we predict the migrated depth of any given term (e.g., D2
AB) through

common-shot migration (Bleistein et al., 2001). The result of this analysis is shown

in Figure 3.4. The geometry and model parameters used in the computations in

Figure 3.4 are the same as in the numerical model we discuss in the next Section. For

these computations, rA and rB are kept at the same constant depth level.

Only the term D2
AB represents physical scattered waves in Figure 3.4. As ex-

pected, D2
AB is mapped at the same depth for all offsets, as shown by the solid black

line in the Figure. On the other hand, the spurious terms in Figure 3.4 map to depths

that increase with increasing offset. This suggests that when a sufficiently large range

of offsets is used, most spurious events interfere destructively when imaged. The only

exception is the term T 2nd

1 , whose mapped depth varies slowly with offset. We suspect

that this might be because the phase of T 2nd

1 is equivalent to twice the phase of the

integrand of D2
AB (equation 4.12), thus representing artifact multiples arising from

convolving uS(rA, rB) with itself.

If only a short offset aperture is available ( e.g., in the offset range 0 to 500 m

in Figure 3.4), the spurious multiples may add constructively in the final image. We

argue that even if spurious events in Figure 3.4 map to image they will not be very

prominent because they are of higher order in the scattered wavefield. In addition,

these terms should cancel close to zero-offset because of the free point boundary

condition imposed by deconvolution interferometry (see discussion in Section 3.3.2).

This boundary condition requires the zero-offset wavefield to be zero at finite times

(see Section 3.3.2). Indeed, solid and dashed lines of a common color in Figure 3.4

pertain to terms that have opposite polarity.

Note that at zero-offset (Figure 3.4), 2nd-order spurious events map at twice the

depth of the physical reflector relative to the receivers (receiver depth is 750 m);
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Figure 3.8. Pseudo-shot (interferometric) gathers with the shot positioned at the
receiver at 1500 m. The gather in (a) is obtained by deconvolution before stacking
(equation 3.10), (b) is generated by cross-correlations (equation 6.2) and (c) is given
by deconvolution after summation over sources (equation 3.24). Source integration
of the gathers in Figures 3.6a and c yield the last trace in (a) and (b), respectively.

3rd-order events map at three times that depth, and so on. This observation relates

to the remarks made about the zero-offset traveltimes expected for the higher-order

terms in Section 3.3.2.

3.4 Numerical example

The model we use is composed of a water layer with a wavespeed of 1500 m/s.

A flat, horizontal interface was placed at 2500 m depth. The contrast at the interface

is produced by a velocity step from 1500 to 2200 m/s, with a constant background

density of 1000 kg/m3. The receivers were positioned in a horizontal line at 750 m

depth, starting at lateral position x = 1500 m and ending at 3000 m, with increments

of 25 m. The source line was also horizontal at a depth of 400 m, ranging from x = 500

m to 4500 m, with increments of 50 m. The data was modeled by 2D acoustic finite-
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differencing with absorbing boundary conditions. Figure 3.5 shows that the data

consists of direct and single-reflected waves. As in the previous Section, we refer to

these waves as u0(rA,B, s) and uS(rA,B, s), respectively.

First, we use the data in Figure 3.5 to analyze the integrands in equations 6.2

and 3.10. The deconvolution of the wavefield in Figure 3.5a with the wavefield in

Figure 3.5b yields Figure 3.6a, while the cross-correlation yields Figure 3.6c. The de-

convolution gather (Figure 3.6a) displays causal term D2
AB, while both causal (C2

AB)

and acausal (C3
AB) contributions are present in the cross-correlation gather (Fig-

ure 3.6c). This confirms our claim that deconvolution interferometry gives mostly

causal scattering contributions (see Section 3.3.2). The term C4
AB also does not have

a corresponding term in the deconvolution gather, as was predicted by equation 4.12.

Also, the waveforms in Figure 3.6a are sharper than those in Figure 3.6c because

deconvolution suppresses the source function. We use a water-level regularization

method to do deconvolutions. For a brief discussion on this method see Appendix A

in Chapter 4.

The arrival times predicted with perturbation theory (bottom plots in Figure 3.6)

provide an accurate representation of the modeled results in the top panels of Fig-

ure 3.6. In particular, the deconvolution series (equation 3.18, Figure 3.6b) describes

well the most prominent terms in deconvolution interferometry (equation 3.10, Fig-

ure 3.6a). As predicted by theory, the terms D2
AB and D3

AB have opposite polarity.

The extrema of the curves in Figure 3.6 are stationary source positions. Thus, the

stationary traveltime of each term is the time associated to the extremum of its curve

in Figure 3.6. The stationary traveltimes from D1
AB and C1

AB are t = ±1 s, repre-

senting causal and acausal direct waves. D2
AB and C2

AB result in a stationary time of

approximately 2.5 s, which coincides with the traveltime of a causal single-scattered
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Figure 3.9. Shot-profile wave-equation migrated images of the virtual shot gathers in
Figure 3.8. In this figure, (a), (b) and (c) are the images obtained from migrating the
gathers in Figure 3.8a, b and c, respectively. The true depth of the target interface
is 2500 m. The shot is placed at 1.5 km and receivers cover a horizontal line from 1.5
to 3.0 km.

wave. In previous Sections we showed that the stationary traveltimes given by D2
AB

and D3
AB only coincide when rA = rB. Since in Figure 3.6 rA 6= rB, the stationary

time of D3
AB is different from that of D2

AB.

There are other events present in the lower left-hand corner of Figure 3.6a which

are not present in Figure 3.6b. These events are described by higher-order terms of the

deconvolution series (equation 3.18). Figure 3.7 shows how the events are described by

terms of second and third order in the scattered wavefield. The events corresponding

to third-order terms have considerably smaller amplitude than the ones related to

second-order terms. Second-order terms are in turn weaker than the leading-order

terms (Figure 3.6a). A decrease in the power of the events with increasing order in

the perturbed wavefield is expected, given the form of equation 3.18. These examples

confirm the accuracy of the deconvolution series in describing the character of the

integrand in deconvolution interferometry (equation 3.10).
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The integration over sources (e.g., equations 6.2 and 3.10) corresponds to the

horizontal stack of the plots in Figures 3.6a and c. Stacking, for example, Figure 3.6c

results in a single trace that represents a wavefield excited at a lateral position of

1500 m and recorded at 3000 m. We create an interferometric shot gather with a

pseudo-shot placed at 1500 m by computing and stacking all of the deconvolution

and cross-correlation gathers (Figures 3.6a and c) for the receiver fixed at 1500 m

but varying the lateral position of the other receiver from 1500 to 3000 m. The

interferometric shot gathers are shown in Figure 3.8.

All gathers in Figure 3.8 show both causal and acausal direct waves. Only

the gathers produced from cross-correlation (Figure 3.8b) and deconvolution after

stack (Figure 3.8c) show causal and acausal reflections, agreeing with equations 6.2

and 3.28. The interferometric gather produced from deconvolution interferometry

(Figure 3.8a) indeed only shows the causal scattered wave. The first-order term

D3
AB (equation 4.12) can be seen in Figure 3.8a with opposite polarity and slower

moveout compared to the physical reflection. The reflection and the D3
AB spurious

events converge at zero-offset where they cancel. As observed in Figure 3.8a, this

is due to the effect of the free point boundary condition (equation 4.15) imposed

by the deconvolution of wavefields before source integration (see Section 3.3.2). As

in Figure 3.8a, the zero-offset trace of the gather in Figure 3.8c consists of a band-

limited spike at 0 s. This can be verified by setting CAB = CBB in equation 3.24. In

contrast to Figure 3.8a, Figure 3.8c does not contain the spurious events produced by

the free point boundary condition present when deconvolving the wavefields before

source integration. There are other events which are related to the truncated source

integration (see Section 3.3.1). These are, for example, the upward-sloping linear

events appearing between the direct arrivals and the reflections in all three gathers.
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The images obtained by shot-profile migration of the gathers in Figure 3.8 are

shown in Figure 3.9. The shot-profile migration was done by wavefield extrapolation,

with a split-step Fourier extrapolator. The reflector is placed at the correct depth in

all three images. Also, all three images are remarkably similar, despite the differences

between the gathers in Figure 3.8. The similarity between the images comes from

the fact that the spurious events in deconvolution interferometry have a negligible

effect in images made from offset-dependent data. Based on Figure 3.4, we argue

in Section 3.3.4 that the spurious events produced by deconvolution interferometry

typically do not map onto coherent reflectors. This justifies the absence of spurious

reflectors in Figure 3.9a. In Figure 3.9, we can also appreciate the effect of deconvo-

lution (Figures 3.9a and c) in compressing the waveform relative to cross-correlation

(Figure 3.9b).

3.5 Discussion and conclusions

By representing recorded wavefields as a superposition of direct and scattered

wavefields, we derived a series expansion yielding terms that follow from performing

deconvolution interferometry on receiver gathers before summing over sources. This

derivation suggests that interferometry by deconvolution before stacking over sources

gives only the causal scattered wavefield as if one of the receivers acted as a source.

Because deconvolution interferometry requires the zero-offset wavefield to be zero at

nonzero times, it generates spurious events to cancel scattered arrivals at zero-offset.

We refer to this condition as the free point boundary condition at the pseudo-source

location. With a simple model we illustrate this by using asymptotic approximations

to the terms in deconvolution interferometry using the stationary-phase method. We

also argue that interferometry can also be accomplished by deconvolution after sum-
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mation over sources, which would yield terms analogous to correlation-based inter-

ferometry.

Numerical examples with impulsive source data showed that deconvolution in-

terferometry can successfully retrieve the causal response between two receivers. This

response can be used to build interferometric shot gathers which in turn can be im-

aged. Imaging of deconvolution interferometric shot gathers proved to practically

eliminate the spurious arrival generated by the deconvolution method. Indeed, our

numerical asymptotic analysis suggests that the deconvolution-related spurious events

add destructively in the imaging of offset-variable data. It may be possible to create

a reverse-time imaging scheme that results in an image free of spurious artifacts. We

believe this could be done from the proper manipulation of boundary conditions in

numerical modeling by the finite-difference method (Biondi, 2006). Although our as-

sessment of the spurious events is model dependent, we believe that our observations

also hold for more complicated models (see Part II of this article).

Ideally, we want interferometry to give us the best possible representation of the

impulse response between two given receivers. Cross-correlation interferometry yields

an accurate representation of the waves propagating between the receivers, but it re-

quires an estimate of the power spectrum of the wavelet for it to give an impulsive

response. Deconvolution interferometry yields an impulsive response, but it does so

at the cost of generating artifacts. Another option is to design an inverse filter to do

interferometry (Sheiman, personal communication, 2006). For example, the inverse

filter may require the zero-offset trace in the pseudo-shot with a pre-determined band-

limited pulse. This inverse filter does not require any knowledge about the model,

and its output would be described the deconvolution series discussed here. If there is

some knowledge about the model, the inverse filter may be designed to replicate an
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estimate of a desired wavefield (e.g., Amundsen, 2001). In this case, the output of

the inverse filter will approximate an impulsive version of cross-correlation interfer-

ometry. We associate the form of the deconvolution interferometry series to that of

scattering series such as the Lippman-Schwinger series (Rodberg et al., 1967; Weglein

et al. 2003). Forward and inverse scattering series serve, for instance, as the basis to

methodologies in imaging and multiple suppression (Weglein et al., 2003). In analogy

to scattering-based approaches, it is possible to express the deconvolution interfer-

ometry series in forward and inverse forms as well. Hence, an inverse deconvolution

interferometry series may be designed for the imaging of pseudo-shots generated by

deconvolution interferometry.

The results we present here are consistent with previous deconvolution inter-

ferometry results. Although there is no explicit source integration in the work of

Snieder and Şafak (2006) and of Mehta et al. (2007a), their results agree with our

representation of deconvolution interferometry before integration over sources. In the

1D models, such as used by Snieder and Şafak (2006) and Mehta et al. (2007a),

the excitation produced by teleseismic events was naturally in the stationary path

between the receivers. This excludes the need for a full 3D source integration as

in equation 3.10. Moreover, we argue that the application commonly referred to as

receiver function (e.g., Shen et al. 1998, Mehta et al., 2007b) in global seismology is a

direct application of deconvolution interferometry. With the same type of 1D layered

model as in Snieder and Şafak (2006) and of Mehta et al. (2007a), the receiver func-

tions consist on the deconvolution of a radial receiver component with the vertical

component of the same receiver. This, in interferometry terms, yields a zero-offset

trace that corresponds to an excitation in the vertical direction whose wavefield is

recorded in the radial direction. Also, like in Snieder and Şafak (2006) and Mehta et
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al. (2007a), no source integration is required because in the 1D model all incoming

waves are in the stationary wave-path.

It is important to point out other perhaps less obvious relationships between our

work and that of other authors. With an elegant derivation and examples, Loewen-

thal and Robinson (2000) show that deconvolutions between measured dual wavefields

(e.g., particle velocity and pressure) can be used for model-independent redatuming

and for recovering reflectivity. Their derivation, in fact, is a proof of the applica-

tion of deconvolution interferometry for dual wavefields. Amundsen (2001) designs

deconvolution-type inverse operators to strip the influence of the water layer in marine

data, at the same time performing free-surface multiple attenuation and estimating

reflectivity. In a companion paper, Holvik and Amundsen (2005) use representation

theorems of the same type as discussed in Section 3.3.1 along with deconvolution for

elastic wavefield decomposition and multiple elimination. These papers are intimately

related to deconvolution interferometry as we propose it. We advocate that the proper

choice and manipulation of the wavefield pair u0 and uS give rise to different applica-

tions, with the example of dual wavefields by Loewenthal and Robinson (2001) or the

boundary-condition approach by Amundsen (2001) and Holvik and Amundsen (2005).

We also use these examples to highlight the potential of deconvolution-based interfer-

ometry in recovering data with amplitudes consistent with the subsurface reflectivity

function.

There are other important potential applications for deconvolution interferome-

try. As we summarized in Figure 3.1, deconvolution interferometry gives only causal

wavefield perturbations, while unperturbed waves are present at both positive and

negative times. For an ideal source coverage, the subtraction of the acausal wave-

field from deconvolution interferometry from its causal response results only in wave-
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field perturbations. This idea may be useful for processing data from time-lapse

experiments, as well as for pre-processing procedures such as direct- or surface-wave

suppression. In the context of imaging, we highlight that in the cross-correlation

imaging condition (Claerbout, 1985; Sava, 2006), the correlation serves the purpose

of reproducing a zero-offset pseudo-shot experiment placed on top of a reflector (af-

ter extrapolating data to the reflector position). This is a direct application of the

concept of correlation interferometry (e.g., Wapenaar and Fokkema). We believe that

deconvolution interferometry can also be used to impose deconvolution imaging con-

ditions (e.g., Muijs et al., 2007) that help to construct images whose amplitudes are

an estimate of subsurface reflectivity (Bleistein et al., 2001).

Our goal here was to demonstrate the feasibility of using deconvolutions to re-

cover the impulse response between receivers. Nonetheless, deconvolution interferom-

etry has proven to be an important tool for interferometric imaging from complicated

excitation. The Earth itself may be the cause of complicated source functions, as

in the case of Snieder and Şafak (2006) and of Mehta et al. (2007a). When using

internal multiples for imaging, we found deconvolution interferometry to be necessary

(Chapters 4 and 5). In other applications the complicated character of the excita-

tion may be related to the source itself. One such example is drill-bit seismology.

When independent measures of the drill-bit stem noise are not available, deconvolu-

tion interferometry is necessary. This is the focus of the next part of this manuscript

(Chapter 4). Here, we highlight the physical differences between three interferomet-

ric methods: 1) deconvolution before source integration, 2) cross-correlations and 3)

deconvolution after source integration. The comparison between methods 1) and 2)

serves the purpose of providing the reader with information that allows one to relate

the new content in this manuscript to much of the existing literature about inter-
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ferometry. The understanding of the methods 2) and 3) provides the basis for the

discussion about the specific use of deconvolution interferometry in drill-bit seismic

imaging, which is the subject of the second part of our study (Chapter 4).
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Chapter 4

INTERFEROMETRY BY DECONVOLUTION – APPLICATION TO

DRILL-BIT SEISMIC IMAGING1

4.1 Summary

In the practice of Seismic-While-Drilling (SWD), the goal is to determine the

subsurface impulse response from drill-bit noise records. Most of the existing SWD

technologies rely on pilot sensors and/or models to predict the drill-bit source func-

tion, which is then removed from the data. Deconvolution interferometry successfully

recovers the impulse response between receivers from drill-bit noise without the need

for an independent estimate of the drill-bit source function. We give a general review

of current SWD methods in the context of cross-correlation interferometry, followed

by a comparison of these methods with deconvolution interferometry. Unlike other

SWD processing methods, interferometry does not require knowledge about the drill-

bit position. We heuristically extend the concept of interferometry by deconvolution

to multi-component data in elastic media. In elastic media, the radiation pattern of

the interferometric pseudo-source are influenced by the radiation properties of the bit.

This dependence is a function of the medium properties and of the distance between

the bit and the recording sensors. Interferometry by deconvolution is of most use to

SWD applications where pilot records are absent or provide unreliable estimates of

the bit excitation. With a numerical SWD subsalt example, we show that decon-

1Submitted to Geophysics.
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volution interferometry provides an impulsive image of the subsurface that cannot

be obtained by correlations without an estimate of the source autocorrelation. This

numerical example also illustrates the potential of SWD and deconvolution interfer-

ometry for passive imaging in deep-water subsalt environments. Finally, we validate

the use of deconvolution interferometry in processing field SWD data acquired at

the San Andreas Fault Observatory at Depth (SAFOD). Since no pilot records were

available for these data, deconvolution outperforms correlation in obtaining an inter-

ferometric image of the San Andreas Fault zone at depth.

4.2 Introduction

The recording of drilling noise can be used for seismic imaging (Rector and

Marion; 1991). In the majority of seismic-while-drilling applications (e.g., Poletto and

Miranda, 2004) the data acquisition and imaging geometries fall under the category of

reverse VSP (RVSP) experiments, where knowledge of the position of the drill-bit is

required. With the autocorrelogram migration method, Schuster et al. (2004) and Yu

et al. (2004) recognized that interferometry could be applied to SWD data without

any knowledge of the drill bit position. Recently, Poletto and Petronio (2006) used

interferometry to characterize fault zones ahead of a tunnel being drilled.

Interferometry is a proven methodology for the recovery of the impulse response

between any two receivers from measurements of uncorrelated noise. This can be

accomplished in diffuse fields by cross-correlating the data recorded by two receivers

(Lobkis and Weaver, 2001; Larose et al., 2006). Wapenaar (2004) and Wapenaar et

al. (2004) provided general proofs that cross-correlations of deterministic wavefields

excited by uncorrelated noise result in the impulse response between receivers for

arbitrary media. When the measured data is excited by correlated noise sources,
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the result from cross-correlation interferometry contains the source power spectrum

(Snieder et al., 2006a; Wapenaar and Fokkema, 2006; Chapter 3). In the specific

case of SWD applications, the drill-bit noise signal (and its power spectrum) is a long

and complicated source-time function with a narrow band signature (Poletto and

Miranda, 2004). Hence, the extraction of an impulsive response from the application

of cross-correlation interferometry to SWD data requires an additional processing

step. This is the removal of the source signature (Wapenaar and Fokkema, 2006).

As shown by Chapter 3, interferometry can also be accomplished by deconvolu-

tion. One advantage of deconvolution interferometry over its correlation counterpart

is that it removes the source function without the need for an extra processing step.

The main objective of this paper is to validate deconvolution interferometry as a

method to recover impulsive signals from drill-bit noise without the need for an in-

dependent estimate of the drill-bit excitation function.

There are many existing examples of successful applications of SWD technol-

ogy. Most of the SWD methods rely on the so-called pilot sensors to independently

estimate the drill-bit excitation (Rector and Marion, 1991; Haldorsen et al. 1994;

Poletto and Miranda, 2004). Without relying on pilot records, Miller et al. (1990)

design multichannel weighting deconvolution filters based on statistical assumptions

about the source function. The monograph by Poletto and Miranda (2004) provides

a comprehensive description of pilot deconvolution technologies. Some pilot-based

SWD methods deconvolve the bit excitation directly from the recorded data (e.g.,

Haldorsen et al., 1994) while most methodologies rely on cross-correlations (e.g.,

Rector and Marion, 1991; Poletto and Miranda, 2004). There is a close connection

between correlation-based SWD methods and cross-correlation interferometry, which

we highlight in this paper. Pilot-based SWD technologies can be elaborate; the more
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sophisticated pilot recordings may use dual-field sensors (Poletto et al., 2004) or ac-

celerometers mounted close to the drill-bit (Poletto and Miranda, 2004). Recognizing

that pilot records are imperfect estimates of the drill-bit excitation, Poletto et al.

(2000) present a statistical technique that further optimizes pilot deconvolution. We

promote the use of deconvolution interferometry for the cases where pilot signals are

absent or provide poor estimates of the drill-bit excitation. As described by Poletto

and Miranda (2004), examples of data for which pilot deconvolution can be unsuc-

cessful are those excited by deep drilling wells, deviated wells, or when the drill-bit is

below strong geologic contrasts (e.g., below salt).

The majority of SWD experiments constitute RVSP geometries (Rector and Mar-

ion, 1991; Poletto and Miranda, 2004). Drilling noise has also been used for imaging

ahead of the drill-bit (i.e., “Look-Ahead” VSP) as shown by Armstrong et al. (2000)

and Malusa et al. (2002). Armstrong et al. (2000) showed examples of drill-bit

imaging in the deep-water Gulf of Mexico. Most SWD experiments are conducted

onshore with roller-cone drill-bits (Poletto and Miranda, 2004). Deep-water offshore

applications of SWD technology, such as described by Armstrong et al. (2000), are

rare. One of the reasons why deep-water offshore SWD is uncommon is that pilot

records yield poor representations of the bit excitation in these conditions (Poletto

and Miranda, 2004). With the numerical experiment in this paper we demonstrate

the potential of interferometry by deconvolution for treating passive recordings of

drilling noise in deep-water subsalt environments.

We first review SWD methods based on correlations and pilot deconvolution in

the context of interferometry. Next, we describe the role of deconvolution interferom-

etry (Chapter 3) in extracting the impulse response between receivers from drilling

noise. Within this description, we discuss the applications of the concepts presented
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by Chapter 3 to elastic media, and elaborate on how the drill-bit radiation proper-

ties influence the recovered elastic response. With a numerical example using the

Sigsbee salt model, we compare the performance of deconvolution and correlation

interferometry in passive drill-bit imaging. Finally, we present the results of using

deconvolution interferometry for the imaging of the San Andreas Fault zone from

SWD data acquired at Parkfield, CA.

4.3 Drill-bit seismic imaging and deconvolution interferometry

In this section we compare existing method for processing seismic-while-drilling

data with deconvolution interferometry.

4.3.1 The practice of seismic-while-drilling

The frequency-domain wavefield measured at rA excited by a working drill-bit

at s is given by

u(rA, s, ω) = W (s, ω) G(rA, s, ω) , (4.1)

where G(rA, s, ω) is the impulse response between s and rA, and W (s, ω) is the drill-

bit excitation function. For brevity, we omit the dependence on the angular frequency

ω in subsequent equations. As in most exploration imaging experiments, the objective

of drill-bit seismology is to image the subsurface from its impulse response, G, which

needs to be obtained from equation 6.1. The main issue for successful imaging from

drill-bit noise is removing the imprint of the source function W (Rector and Marion,

1991; Haldorsen et al., 1994; Poletto and Miranda, 2004). The first complication

imposed by drill-bit excitation is that the source is constantly active; in other words,

the source pulse is as long as the total recording time of the data. Additionally, the
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drill-bit is a source of coherent noise that is dominated by specific vibrational modes

associated with the drilling process (Poletto, 2005a). These strong drilling-resonant

modes give the time-domain drill-bit signature a predominantly monochromatic char-

acter. Apart from the coherent vibrations, weaker random vibrations that occur dur-

ing drilling make the drill-bit signal wide-band (Poletto, 2005a). We illustrate these

issues in our subsalt example, where we provide a numerical model for the drill-bit

excitation.

Current interferometric approaches to processing drill-bit noise records rely on

correlations (e.g., Schuster et al.; 2004, Yu et al., 2004; Poletto and Miranda, 2004).

The cross-correlation of wavefields measured at rA and rB is, in the frequency domain,

given by

CAB = u(rA, s) u
∗(rB, s)

= |W (s)|2G(rA, s) G
∗(rB, s) ;

(4.2)

where ∗ stands for complex conjugation. It follows from this expression that the cross-

correlation is influenced by the power spectrum of the drill-bit source function. In the

time domain, the power spectrum in equation 4.2 corresponds to the autocorrelation

of the drill-bit source-time function. This autocorrelation, despite being zero phase,

is similar in character to the excitation W (s, t): a long, complicated waveform with

a monochromatic appearance.

In the majority of drill-bit processing methods presented to date, the removal of

the drill-bit source function in equation 6.1 (or of its autocorrelation, equation 4.2)

relies on an independent estimate of the drill-bit excitation. This estimate typically

comes in the form of the so-called pilot record or pilot trace (e.g., Rector and Marion,

1991; Poletto and Miranda, 2004). The pilot records are the data acquired by ac-

celerometers placed in the rig/drill-stem structure. The most common form of pilot
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sensor mount is at the top of the drill-string. Pilot sensors may also consist of dual-

wavefield sensors that measure displacement and strain waves (Poletto et al., 2004).

The positioning and the type of sensors used in acquiring pilot records depends on the

specific SWD application. Poletto and Miranda (2004) provide a detailed explanation

of the different types of pilot sensor technologies and their applications.

Within the literature on SWD, there are different descriptions of the signal ac-

quired by the pilot sensors. Most of these descriptions are based on deterministic

physical models for wave propagation in the rig/stem/bit system (Rector, 1992; Rec-

tor and Hardage, 1992; Haldorsen et al., 1994; Poletto and Miranda, 2004). Poletto

et al. (2000) and Poletto and Miranda (2004) propose a statistical approach for the

description of the drill bit signal. Since for the purpose of deconvolution interferom-

etry we do not require a particular description of the pilot signal, it is convenient to

express it in the general form

P (rd, s) = W (s) Td(rd, s) ; (4.3)

Td is the transfer function of the drill-stem and rig assembly, and rd is the location

of the pilot sensor in the assembly. This transfer function includes reflection and

transmission coefficients of the rig/stem/bit system, drill-string multiples, etc (Poletto

and Miranda, 2004). The autocorrelation of the pilot signal in equation 4.3 gives

CPP = |W (s)|2 |Td(rd, s)|
2 . (4.4)

From this autocorrelation, and with additional knowledge about Td, it is possible to

design a filter F , of the form
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F (CPP ) ≈
1

|W (s)|2
. (4.5)

We use the notation F (CPP ) to indicate that F is a function of the autocorrelation

CPP . The deterministic (Rector, 1992; Rector and Hardage, 1992; Haldorsen et al.,

1994; Poletto and Miranda, 2004) or statistical (Poletto et al., 2000; Poletto and

Miranda, 2004) descriptions of Td aim to remove its influence (equation 4.3) in the

design of the filter F . We present F as an approximation of |W (s)|−2 in equation 4.5

because the theories that are used to eliminate the influence of Td are approximate

(e.g., Rector and Hardage, 1992; Poletto and Miranda, 2004). Multiplying the filter

F (equation 4.5) by the cross-correlation in equation 4.2 gives

F CAB ≈ G(rA, s)G
∗(rB, s) . (4.6)

According to this equation, F removes the power spectrum of the drill-bit excitation

from the correlation in equation 4.2. The application of F is what is referred to as pilot

deconvolution (Poletto and Miranda, 2004). The SWD RVSP methods rely on the

cross-correlations of geophone data (equation 6.1) with the pilot signal (equation 4.3)

to determine the time delay of waves that propagate between the drill-bit and the

receivers (e.g. Rector and Marion, 1991; Poletto and Miranda, 2004). Note that

for these methods it is necessary to know the drill-bit position s. Although the most

common applications of SWD RVSP correlate pilot and geophone signals (equation 4.2

correlates geophone signals), the removal of the drill-bit source function is done by

pilot deconvolution in a manner analogous to the one presented here.

Following the principles of interferometry (e.g., Lobkis and Weaver, 2001; Wape-

naar and Fokkema, 2006), the source average of the cross-correlations in equation 4.2
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gives
∮

Σ

CAB ds = 〈|W (s)|2〉 [G(rA, rB) + G∗(rA, rB)] ; (4.7)

the integration is done over a closed surface Σ that includes all sources s (Chap-

ter 3). According to equation 6.2, the source average of the cross-correlations gives

the superposition of the causal and acausal impulse responses between rA and rB.

This response is shaped by the source average of the excitation spectrum 〈|W (s)|2〉.

When using the noise from a single drill-bit, source integration reduces to a line in-

tegral, rather than an integration over a surface. This is not necessarily an issue

for interferometry from drill-bit noise for two reasons. The first reason is that the

desired response (right-hand side of equation 6.2) is obtained if the drill-bit samples

the stationary source points that give rise to the target arrivals (Snieder et al., 2006a;

Wapenaar and Fokkema, 2006). The second reason is that the long recording times

employed in drill-bit acquisition can help sampling multiply scattered waves. These

waves may make up for some of the missing sources that are required by the inte-

gration in equation 6.2 (Wapenaar, 2006; Chapter 3), depending on the scattering

properties of the medium.

The processing of SWD data with correlation interferometry as in equation 6.2

does not require knowledge of the drill-bit position s. This was observed by Schuster

et al. (2004), who, along with the companion paper by Yu et al. (2004), first proposed

the use of interferometry by correlation for imaging from drill-bit noise. Although not

explicitly referring to interferometry, Poletto and Miranda (2004) promote the stack

of cross-correlations over long listening times. In the context of drilling, listening

times in the order of days translate to varying the drill-bit position s. Hence, in

general, the stack of long listening times mentioned by Poletto and Miranda (2004)

is equivalent to an integration over s (equation 6.2).
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The term 〈|W (s)|2〉 in equation 6.2 plays the same role |W (s)|2 in equation 4.2.

The average of the excitation power spectra constitutes, in the time domain, a long

zero-phase waveform with a monochromatic character. The removal of this waveform

can also be achieved using the pilot record (equation 4.3). Poletto and Miranda

(2004) recognize that pilot deconvolution can be done before or after stacking over

long time records (which is equivalent to stacking over s). From integrating the pilot

autocorrelation (equation 4.4) over sources s we get

∮

Σ

CPP ds = 〈|W (s)|2〉〈|Td(rd, s)|
2〉 . (4.8)

〈|Td(rd, s)|
2〉 is the source average of the transfer function Td (equation 4.3). Given

that a model that describes Td is available (e.g., Rector and Hardage, 1992; Poletto

and Miranda, 2004), the result of integral in equation 4.9 can be used to build a filter

such as

Fav (〈CPP 〉) ≈
1

〈|W (s)|2〉
; (4.9)

where 〈CPP 〉 is the source average represented by the integral in equation 4.9. Ap-

plying the filter Fav to the integral in equation 6.2 gives

Fav

[∮

Σ

CAB ds

]

≈ G(rA, rB) + G∗(rA, rB) ; (4.10)

where the influence of the drill-bit source signature is removed. This is a general rep-

resentation of pilot deconvolution for the correlation-based interferometry of drill-bit

noise records. After pilot deconvolution, interferometry by correlations of SWD data

yields the causal and acausal impulse response for waves excited at rB and recorded at

rA. Poletto and Miranda (2004) give a comprehensive review of pilot deconvolution



97

methods. Note that the filtering of equation 6.2 by Fav involves deconvolving the

source integral of CAB by the source integral of CPP . This approach is similar in con-

cept to deconvolution interferometry after source integration described by Chapter

3.

There are a number of different approaches to processing SWD data. Most of

them rely on cross-correlation (e.g. Rector and Marion; Poletto and Miranda, 2004).

Some of these correlation-based processing techniques (e.g., RVSP techniques) require

knowledge of the drill-bit position s, and apply pilot deconvolution in a manner

similar to that in equations 4.5 and 4.6. Another approach to treating drilling noise

records is to use a source average of the cross-correlations (Poletto and Miranda, 2004;

Schuster et al., 2004; Yu et al., 2004) as in equations 6.2 through 4.10. Although we

describe SWD processing by the correlation of recordings made by geophones at two

arbitrary locations rA and rB, some SWD applications rely on correlations between

pilot and geophone signals (Poletto and Miranda, 2004). Methods based on pilot

trace correlations are affected by the drill-bit source function in the same way it

affects methods based on geophone correlations. Therefore, the pilot deconvolution

discussion above also applies to SWD processing by correlating pilot and geophone

traces (Poletto and Miranda, 2004). The majority of SWD technologies rely on the

acquisition of pilot records to remove the drill-bit source function.

4.3.2 Deconvolution interferometry

We present interferometry by deconvolution as an alternative to processing drill-

bit noise records. A detailed description of the method and physics of deconvolution

interferometry is given by Chapter 3. Here, we rely on the key concepts of that

work to highlight the differences between interferometry by deconvolution and other
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techniques in SWD data processing. We extend the physical interpretation of de-

convolution interferometry given by Chapter 3 heuristically to elastic media for the

special case of single-scattered waves. This extension is necessary for the discussion

on the processing of the SAFOD SWD data.

Consider the deconvolution of the wavefield measured at rA (equation 6.1) with

the wavefield recorded at rB, given by

DAB =
u(rA, s)

u(rB, s)
=

u(rA, s) u
∗(rB, s)

|u(rB, s)|
2

=
G(rA, s)G

∗(rB, s)

|G(rB, s)|
2 .

(4.11)

This deconvolution cancels the drill-bit source spectrum |W (s)|2, present in cross-

correlation (equation 4.2). Note that this cancelation occurs without the need for

an independent estimate of W (s). The next step in deconvolution interferometry

is to mimic its correlation-based counterpart (see equation 6.2) and integrate equa-

tion 4.11 over all sources s. The impulsive wavefields G are taken as a superposition

of an unperturbed wavefields G0 and wavefield perturbations GS (Chapter 3). The

perturbations GS can be interpreted as the waves scattered by the medium (Chapter

3; Weglein et al., 2003). In this context, in Chapter 3 we expand the deconvolution

in equation 4.11 into a power series over GS(rB, s)/G0(rB, s). After integrating over
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s and keeping the terms that are linear in the scattered waves GS, we get

∮

Σ

DAB ds =

∮

Σ

G0(rA, s)G
∗
0(rB, s)

|G0(rB, s)|
2 ds

︸ ︷︷ ︸

D1

AB

+

∮

Σ

GS(rA, s)G
∗
0(rB, s)

|G0(rB, s)|
2 ds

︸ ︷︷ ︸

D2

AB

−

∮

Σ

GS(rB, s)G0(rA, s)G
∗
0(rB, s)

G0(rB, s)
ds

︸ ︷︷ ︸

D3

AB

. (4.12)

Following the interpretation of Chapter 3, the term D1
AB recovers G0(rA, rB) and

G∗
0(rA, rB), which are the causal and acausal unperturbed impulse responses for waves

excited at rB and recorded at rA. The term D2
AB yields GS(rA, rB) that describes

causal scattered waves propagating from rB to rA. Recovering GS(rA, rB) from D2
AB

is the objective of deconvolution interferometry with the purpose of imaging scattered

waves. The last term in equation 4.12 describes a spurious arrival that arises from the

clamped point boundary condition imposed by deconvolution interferometry (Chapter

3).

As noted above, using deconvolution according to equation 4.11 to process SWD

data does not require an independent estimate of the drill-bit source function. This is

the first and main difference between deconvolution interferometry and the majority

of correlation-based methods used in SWD data processing. Apart from being an

alternative method for treating data from standard SWD experiments, interferometry

by deconvolution would be particularly useful when pilot records are either unavailable

or are poor estimates of the drill-bit excitation function. Poletto and Miranda (2004)

provide examples of when pilot recordings yield unreliable estimates of the drill-bit
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source function. This is the case, for example, when transmission along the drill-

string is weak, when the drilling well is deep (in the order of several thousands of

feet), or when the drilling well is deviated or when two or more nearby wells are

drilling simultaneously with the well that is equiped with pilot sensors. From the

standpoint of removing the excitation function, none of these cases is an issue for

deconvolution interferometry, as they are for pilot deconvolution. This is because

equation 4.11 holds regardless of the complexity of the excitation (equation 6.1).

As in interferometry methods based in correlation (Schuster et al., 1994; Yu

and Schuster, 2004), knowledge of the drill-bit position s is not necessary for the

processing of SWD data by deconvolution interferometry. The only requirement for

the successful application of deconvolution interferometry is that the drill-bit must

occupy the stationary source locations that give rise to targeted scattered waves

propagating between the receivers (Chapter 3; Snieder et al, 2006). Analogously to

the method originally proposed by Schuster et al. (2004) for the imaging of drill-

bit noise, it is possible to use deconvolution interferometry to reconstruct primary

arrivals from free-surface ghost reflections.

So far we have only discussed SWD processing and deconvolution interferometry

for acoustic media. Now we extend some of these concepts to elastic media, with

the objective of applying interferometry by deconvolution to multicomponent data.

The conclusions drawn in our previous discussions on removal of the drill-bit source

function, pilot deconvolution and deconvolution interferometry also hold for elastic

media. Here, the goal is to understand what is the result of combining different

receiver components when performing deconvolution interferometry. We start by

defining G(i,k)(rA, s) as the elastic frequency-domain impulse response excited by the

k-th component of the source at s, and recorded by the i-th component of the receiver



101

at rA. For our purposes it is not necessary to specify whether the Green’s functions

G(i,k) pertain to stress or to strain waves (Wapenaar, 2004; Wapenaar and Fokkema,

2006). We refer to component orientations according to the 1-, 2- and 3-directions in

Figure 4.1. Next, we take the deconvolution

DAiBj =
u(i,k)(rA, s)

u(j,k)(rB, s)
=

G(i,k)(rA, s)G
(j,k)∗(rB, s)

|G(j,k)(rB, s)|
2 , (4.13)

where u(i,k) = W G(i,k) is the recorded data. As in equation 4.11, the source function

W cancels. It follows from equation 4.13 that DAiBj is the deconvolution of the i-th

component of the receiver at rA with the j-th component of the receiver at rB. We

treat G(i,k) as the superposition of the unperturbed wavefield G
(i,k)
0 and the scattered

waves G
(i,k)
S (as in Chapter 3). The source integral of equation 4.13 can be expressed in

the same three-term form of equation 4.12. We call D2
AiBj the elastic term analogous

to D2
AB. The is term can be expressed as

D2
AiBj =

∫

σ1

G
(i,k)
S (rA, s)G

(j,k)∗
0 (rB, s)

∣
∣
∣G

(j,k)
0 (rB, s)

∣
∣
∣

2 ds

≈ K G
(i,j)
S (rA, rB) . (4.14)

where K is a constant. Following the reasoning given by Chapter 3 in interpreting

equation 4.12,
∣
∣
∣G

(j,k)
0 (rB, s)

∣
∣
∣

2

is a slowly varying function of s, and its source average

effectively gives a constant. The phase of the integrand in equation 4.14 is controlled

by the numerator (Chapter 3). In equation 4.14, σ1 is a segment of Σ that contains

the stationary source locations that give rise to the desired waves in G
(i,j)
S (rA, rB)

(Chapter 3 and 2007b). Analogously to D2
AB (Chapter 3), the term D2

AiBj yields

causal scattered waves that propagate from rB to rA. Equation 4.14 states that the
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scattered waves described by G
(i,j)
S (rA, rB) are excited by j-th component of a pseudo-

source at rB and are recorded by the i-th component of the receiver at rB. As in the

acoustic case (equation 4.12), the scattered waves in the second line of equation 4.14

are the objective of interferometry.

According to the Green’s function representation of Wapenaar and Fokkema

(2006), the full elastodynamic reconstruction of G(i,j)(rA, rB) using cross-correlations

requires a summation over the index k when integrating over sources, and the separa-

tion of P- and shear-wavefields at the surface of integration. Draganov et al. (2006)

validate the elastodynamic interferometric reconstruction described by Wapenaar and

Fokkema (2006) with a numerical example for a heterogeneous model. Although de-

convolution interferometry (Chapter3) has not been formally extend to elastic media,

we expect that the elastodynamic reconstruction of G
(i,j)
S (rA, rB) by deconvolution in-

terferometry also requires a summation over the index k. Note that in equation 4.14,

we do not perform a summation over the index k as in the approach by Wapenaar

and Fokkema (2006). In practice, this means that the integral in the first line of

equation 4.14 only yields a partial reconstruction of G
(i,j)
S (rA, rB) (second line of

equation 4.14). In the case of single-scattered waves reconstructed from the interfer-

ence of transmission and reflection responses (such as the data examples we provide

in this paper), the partial reconstruction of G
(i,j)
S (rA, rB) by the use of equation 4.14

can yield events with correct kinematics but distorted amplitudes (Draganov et al.,

2006). As we discuss here with our field data example, a kinematically-consistent

reconstruction of single-scattered waves using equation 4.14 is sufficient for the struc-

tural delineation of fault reflectors at the San Andreas fault zone (Chapter 5).

It is known that the deconvolution of any signal with itself results in a delta

function (δ(t)) in the time domain. For the acoustic case in equation 4.11, this is
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accomplished by setting rA = rB, which in turn gives the zero-offset trace in de-

convolution interferometry. In Chapter 3 we show that the time-domain zero-offset

response in deconvolution interferometry is given by G(rB, rB, t) = δ(t) in arbitrary

media. Since deconvolved waves satisfy the same homogeneous wave equation as the

original waves (Snieder et al., 2006b), spurious arrivals are generated by deconvolution

interferometry to cancel scattered waves that arrive at zero-offset at nonzero times.

This represents the effect of an extra boundary condition in deconvolution interfer-

ometry experiments: the point rB behaves, for the particle velocity impulse response,

like a clamped point in the medium (see discussion in Chapter 3) In our elastic case,

setting rA = rB and i = j in equation 4.13 results in unity, this translates to the

time-domain condition

DBiBi(t) = δ(t) . (4.15)

This condition does not hold if the receivers at rB and rA measure different field

quantities, i.e., one receiver measures stress while the other measures strain. Equa-

tion 4.15 holds for arbitrarily inhomogeneous and anisotropic media. The condition

in equation 4.15 sets a different type of boundary condition than those discussed

by Chapter 3 for the acoustic case. While deconvolution interferometry clamps the

point rB for t 6= 0 in acoustic media, in elastic media only the i-th component of

the wavefield deconvolution is clamped for t 6= 0. Clarifying the physical meaning of

the boundary condition imposed by deconvolution interferometry in elastic media is

beyond the scope of this paper, and is the subject of future research.

Analogously to interferometry by correlation (Wapenaar and Fokkema, 2006;

Draganov et al., 2006), it follows from equations 4.13 and 4.14 that the orienta-

tion of the pseudo-source in deconvolution interferometry is dictated by the choice of

component of the receiver at rB that is used for deconvolution. The choice of com-
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Figure 4.1. Illustration of drill-bit interferometry in elastic media. The red dot
indicates a drill-bit position that yields a stationary contribution to waves that prop-
agate between the receivers (light blue triangles). Red arrows shows the raypaths of
pure-mode stationary arrivals. The blue arrow represents the oscillatory point-force
excitation that describes the drill-bit source function. Solid and dashed blue circles
denote the P- and S-wave radiation patterns, respectively. These radiation patterns
follow the description of drill-bit radiation by Poletto (2005a). Receiver components,
numbered 1 through 3, are oriented according to the vectors in the lower left-hand
corner of the Figure. The medium consists of a homogeneous and isotropic half-space
with an irregular reflector
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ponent of the receiver at rA controls the orientation of the recording component in

the interferometric experiment. From elastic wave theory (Aki and Richards, 1980),

the analysis of point-source radiation shows that a single source component generates

impulse responses in all three receiver components, depending on the medium proper-

ties and on the source/receiver geometry. Because deconvolved waves satisfy the same

homogeneous wave equations as the original experiment (Snieder et al., 2006b), the

radiation pattern of the pseudo-source synthesized from deconvolution interferometry

is controlled by the radiation pattern of the original physical experiment.

In SWD experiments, the drill-bit can be approximately described by an oscil-

latory force oriented in the local direction of the well (Rector and Hardage, 1992;

Poletto, 2005a). Figure 4.1 portrays a schematic 2D representation of the drill-bit

far-field radiation pattern in homegeneous and isotropic media. The radiation pat-

tern shown in Figure 4.1 is similar to the point-force radiation pattern (Aki and

Richards, 1980), except that the amount of drill-bit energy that converts into shear-

waves (mostly SV-waves) is considerably larger than that from a traditional point-

force source (Rector and Hardage, 1992; Poletto, 2005a). In Figure 4.1, we depict

a drill-bit and instrumented well geometry that is consistent with the SAFOD case

study, which we discuss in one of the next Sections. The receiver that acts as a pseudo-

source in Figure 4.1 radiates waves according to the its recorded transmitted wavefield

(see red arrows in the Figure). The wave modes and polarizations of the transmit-

ted waves are dictated by the bit radiation pattern and the source/receiver geometry

(Poletto, 2005a; Aki and Richards, 1980). The physical excitation in Figure 4.1 is

associated to a vertically-oriented drill-bit point-force, whose radiation pattern (Rec-

tor and Hardage, 1992; Poletto, 2005a) is illustrated in the Figure. According to the

geometry and bit radiation pattern in Figure 4.1, the direct waves recorded by the
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top receiver are P- and S-waves polarized in the source/receiver plane. Hence, using

the same notation as in equations 4.13 through 4.14 and assuming the receivers mea-

sure only the far-field response, interferometry in the context of Figure 4.1 recovers

G
(i,2)
S (rA, rB). Also, the response G

(i,2)
S (rA, rB) is zero for i = 3 because SH-wave

excitation (polarized in the 3-direction) from a drill-bit source is negligible in the

conditions of Figure 4.1. From the drill-bit radiation pattern, we see that waves

propagating along the stationary path depicted by Figure 4.1 (red arrows) carry both

P- and shear-wave energy. The discussion surrounding Figure 4.1 illustrates how the

radiation properties of the pseudo-source recovered from interferometry depend on

the drill-bit excitation in SWD experiments. This dependence is model-dependent,

and becomes more complicated with the introduction of heterogeneity and anisotropy.

4.4 Subsalt numerical example

The drill-bit imaging numerical experiment we present here is conducted with the

2D Sigsbee salt model (Figure 4.2). In this experiment, we place a long 100-receiver

downhole array below the salt canopy, in a 45o deviated well. The first receiver is

placed at x = 14630 m and z = 4877 m , and the last receiver is at x = 16139 m and

z = 6385 m. The receivers are evenly spaced; and x and z translate to the lateral and

depth coordinates in Figure 4.2, respectively. The borehole array records the drilling

noise from a vertical well placed at x = 14478 m (Figure 4.2). The drill-bit noise is

recorded for a drill-bit depth interval that ranges from z = 4572 m to z = 6705 m.

The objective of this numerical experiment is to show interferometry can recover, from

drill-bit noise, up-going single-scattered waves that propagate between the receivers,

such as the one represented by the raypath in Figure 4.2 (represented by the dashed

arrow). The up-going scattered waves recovered by interferometry of drill-bit noise
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Figure 4.2. Structure of Sigsbee model and schematic acquisition geometry of the
drill-bit experiment. The colors in the model denote acoustic wavespeed. The dashed
black line indicates a well being drilled, which excites waves in the medium. The
waves are recorded in a deviated instrumented well, inclined 45o with respect to the
vertical direction. The solid line with triangles represents the instrumented well. The
dashed arrow illustrates a stationary contribution to singly reflected waves that can
be used to image the salt flank from the drilling noise.

can be used to image the Sigsbee structure from below.

To replicate drill-bit wave excitation in the numerical experiment, we first mod-

eled 200 evenly-spaced shots within the drilling interval of interest. These shots were

modeled by an acoustic finite difference method (Claerbout, 1985). Next, we con-

volved the shots with a 60 second-long model of the drill-bit excitation (Figure 4.3).

The model for the drill-bit excitation is that of a roller-cone bit (Polleto, 2005a). We

add band-limited noise (see Figure 4.3) to the model by Poletto and Miranda (2004)

to make the drill-bit signal wide-band. Similar to the numerical example in Poletto

and Miranda (2004), the bit and drilling parameters we used in our model are listed

in the caption of Figure 4.3. The excitation function in Figure 4.3 represents the

portion of the drilling energy that is radiated in the rock formation (Poletto 2005a,
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Figure 4.3. Numerical model of the drill-bit excitation. (a) shows the power spec-
trum of the drill-bit source function. Note that although it is wide band, the power
spectrum of the source function in (a) has pronounced peaks that correspond to vibra-
tional drilling modes. (b) is the drill-bit source function in the time-domain. We show
only the first 4 s of the 60 second-long drill-bit source function used in the modeling.
The assumed drill-bit is a tri-cone bit an outer diameter of 0.35 m, an inner diameter
of 0.075 m and a density of 7840 kg/m3. Each cone is comprised of three teeth rows
as in the example by Poletto and Miranda (2004). Drill-string P-wave velocity is of
5130 m/s. The drilling was modeled with a weight on bit of 98 kN, torque on bit of 6
kNm, 60 bit revolutions per minute, a rate of penetration of 10 meters per hour and
four mud pumps with a rate of 70 pump strikes per minute.

Poletto and Miranda, 2004).

Figure 4.3a shows the power spectrum of the modeled bit signal, while Figure 4.3b

shows a portion of the drill-bit source function in the time-domain. As discussed in

the previous Section, the time-domain drill-bit excitation has a narrow-band character

(Figure 4.3b) because the source power spectrum is dominated by vibrational drilling

modes (Poletto, 2005a; Poletto and Miranda, 2004). This behavior is also present

in the data recorded by the borehole receivers. The common receiver gather from

receiver 50 in Figure 4.4a shows that the simulated data is dominated by the character

of the drill-bit excitation function (Figure 4.3b). The records in Figure 4.4a depict a

moveout that characterizes the direct-wave arrival from the drill-bit. The weak events
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Figure 4.4. (a) Synthetic drill-bit noise records at receiver 50. Only 5 s out of
the 60 s of recording time are shown. The narrow-band character of the records
is due to influence of specific drilling modes (Figure 4.3a). (b) Deconvolution-based
interferometric shot gather with the pseudo-source located at receiver 50. (c) Pseudo-
shot gather resulting from cross-correlation with same geometry as (b). Receiver 1 in
(a) and (b) is the shallowest receiver of the borehole array (Figure 4.2).

with positive slopes in the left-hand portion of Figure 4.4a are salt-bottom reflections

from when the drill-bit is close to the bottom of the salt (see geometry in Figure 4.2).

Interferometry of recorded data such as in Figure 4.4a results in pseudo-shot

gathers as in Figures 4.4b and c. The use of deconvolution interferometry as shown

in the left-hand side of equation 4.12 (Chapter 3) for a fixed rB at receiver 50 results

in Figure 4.4b. The pseudo-shot gather in Figure 4.4c is obtained from correlation

interferometry (equation 6.2; e.g., Draganov et al., 2006) for the same geometry as

Figure 4.4b. Although both Figures 4.4b and c represent waves excited by a pseudo-

source at receiver 50, the wavefield in Figure 4.4b is approximately impulsive, while

the data in Figure 4.4c is dominated by the autocorrelation of the drill-bit source

function. Because the excitation function is canceled in deconvolution interferome-

try (Chapter 3; equation 4.11), the pseudo-source in Figure 4.4 is impulsive. The
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source power spectrum in equation 4.2 results, in the time-domain, in the dominant

reverberation in the pseudo-shot generated by correlation (Figure 4.4c). When pilot

sensors are available, pilot deconvolution methods (e.g., Rector and Marion, 1991;

Poletto and Miranda, 2004) can be employed to remove the source autocorrelation

from data such as in Figure 4.4c (equation 4.10).

Many of the features of the deconvolution pseudo-shot gather in Figure 4.4b are

explained by the theory presented by Chapter 3; the interferometric shot gather gen-

erated by deconvolutions shows causal and acausal direct waves, and causal scattered

arrivals. According to Chapter 3, the zero-offset trace obtained by deconvolution

interferometry is a band-limited delta function at t = 0. This can also be observed in

Figure 4.4 for the trace at receiver 50 (i.e., the zero-offset trace). The presence of this

delta function at zero-offset imposes the so-called clamped point boundary condition

in acoustic media (Chapter 3). Because of this boundary condition, the gather in

Figure 4.4 contains spurious arrivals. The visual identification of these arrivals in the

gather is not straightforward because the recorded wavefield is complicated, given

the model complexity (Figure 4.2). These spurious arrivals, however, typically do not

translate into image artifacts (Chapter 3).

Given the acquisition geometry in this numerical experiment (Figure 4.2), there

is a point, to the left-hand side of the receivers, where drill-bit position aligns with

the array direction. This drill-bit position samples a source stationary point for the

direct waves that travel between the receivers. At this stationary position, the drill-bit

excites waves that travel straight down the receiver array. These waves are responsible

for the recovery of the direct-wave events with positive slopes in Figure 4.4. With

the drilling geometry shown in Figure 4.2 the drill-bit never reaches a position where

it aligns with the receivers to the right-hand side of the array. Therefore, the drill-
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(a) (b)

Figure 4.5. Images obtained from drill-bit noise interferometry. The images, in grey
scale, are superposed on the Sigsbee model in Figure 4.2. Panel (a) is the image
obtained from shot-profile wave-equation migration of pseudo-shot gathers generated
from deconvolution interferometry (such as in Figure 4.4b). The image in (b) is the
result of migrating correlation-based interferometric shot gathers. The red lines in
the images represent the receiver array.



112

bit does not sample a stationary source point that emits waves that travel directly

upward along the receiver array. Hence, the direct-wave events with negative slopes in

the pseudo-shot gather (Figure 4.4b) have a distorted curved moveout instead of the

correct linear moveout shown by the direct waves that have positive slopes. A similar

phenomenon was observed by Mehta et al. (2006), who show that the distortions

caused by poor source sampling over stationary source positions can be attenuated

by tapering the ends of the integrand in equation 6.2.

We generate interferometric shot gathers such as the ones in Figures 4.4b and c

for pseudo-sources at each of the receivers in the array. This yields 100 pseudo-shots,

which are recorded by the 100-receiver array. We use shot-profile wave-equation mi-

gration to image the interferometric data. The migration is done by wavefield extrapo-

lation with the spilt-step Fourier method (Biondi, 2006). The wavefield extrapolation

is done in a rectangular grid conformal to the receiver array, where the extrapolation

steps are taken in the direction perpendicular to the array. Figure 4.5 displays the

images obtained from migrating the pseudo-shot gathers from deconvolution interfer-

ometry (Figure 4.5a), and from the correlation-based method (Figure 4.5b).

In interferometric experiments, the image aperture is dictated by the geometry

of the receiver array (red lines in Figure 4.5). The positioning of physical sources

that are used in interferometry along with the medium properties control the actual

subsurface illumination that is achieved by interferometry. When the sources com-

pletely surround the receivers, the interferometric pseudo-source radiates energy in all

directions, similarly to a real physical source (Wapenaar and Fokkema, 2006; Larose

et al., 2006). When the physical excitation generated by the sources is one-sided

(Wapenaar, 2006; Chapter 3), pseudo-source radiation is uneven. Therefore, that

the subsurface illumination in the images in Figure 4.5 is controlled by the illumina-
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tion given by the original drill-bit/receiver geometry. In our case, the illumination

given by interferometric shots is different from that obtained by placing real physical

sources at the receiver locations; hence, the resulting image from these active shots

would be different, in terms of illumination, from those in Figure 4.5. This is an

important distinction between the imaging interferometric pseudo-shots and imaging

actual shots placed at the receiver locations. We have to make this distinction be-

cause the physical sources in the experiment (Figure 4.2) do not constitute the closed

surface required for equations 6.2 and 4.12 to hold.

Comparing the images in Figure 4.5 with the Sigsbee model in Figure 4.2, shows

that the image from deconvolution interferometry (Figure 4.5a) provides a better

representation of the subsurface structure than does the image from correlation inter-

ferometry (Figure 4.5b). The salt reflectors (top and bottom) are better resolved in

in Figure 4.5a than they are in Figure 4.5b. Also, it is possible to identify subsalt sed-

iment reflectors in Figure 4.5a which are not visible in Figure 4.5b. The reflectors in

Figure 4.5a are well resolved because deconvolution interferometry successfully sup-

presses the drill-bit source function when generating pseudo-shot gathers (Figure 4.4).

The image from deconvolution interferometry does not present severe distortions due

to the spurious arrivals characteristic of deconvolution pseudo-shot gathers (Chap-

ter 3). As discussed by Chapter 3, these spurious events typically do not map onto

coherent reflectors on shot-profile migrated images like the one in Figure 4.5a. The

image from correlation interferometry (Figure 4.5b) portrays a distorted picture of

the Sigsbee structure (Figure 4.2) because the correlation-based pseudo-shot gathers

are dominated by the power spectrum of the drill-bit excitation (Figure 4.4c; equa-

tion 6.2). The narrow-bandcharacter of the drill-bit source (Figures 4.3b, 4.4a and

4.4c) is responsible for the “ringy” appearance of the image in Figure 4.5b.
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(b)(a)

Figure 4.6. Panel (a) shows the large-scale structure of the P-wave velocity field
(velocities are colorcoded) at Parkfield, CA. The circles in (a) indicate the location
of the sensors of the SAFOD pilot-hole array used for the recording of drilling noise.
The SAFOD MH is denoted by the triangles. The location of the SAFOD drill site
is depicted by the star. Depth is with respect to sea level, the altitude at SAFOD
is of approximately -660 m. Panel (b) shows the schematic acquisition geometry of
the downhole seismic-while-drilling (SWD) SAFOD dataset. Receivers are indicated
by the light-blue triangles. The structures outlined by black solid lines to the right-
hand side of the figure represent a target fault. As indicated by (b), receivers are
oriented in the Z-(or downward vertical), NE- and NW-directions. (b) also shows
a schematic stationary path between the drill-bit and two receivers. Both panels
represent Southwest to Northeast (from left to right) cross-sections at Parkfield.
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Drill-bit imaging technology based on pilot recordings (e.g., Rector and Marion,

1991; Haldorsen et al., 1994; Poletto and Miranda, 2004) provides images that are ac-

curate representations of subsurface geology, such as the image in Figure 4.5a. In the

context of SWD, deconvolution interferometry is an alternative processing methodol-

ogy that does neither require an independent estimate of the drill-bit source function,

nor any assumptions of wave propagation within the drill-string. We present the Sigs-

bee SWD numerical example with the intention of modeling a situation where pilot

recordings are absent or would yield a poor representation of the drill-bit excitation.

Our numerical example also demonstrates that deconvolution interferometry can also

be used for passive drill-bit imaging, where no knowledge about the drill-bit position

is required.

4.5 SAFOD drill-bit data

The San Andreas Fault Observatory at Depth (SAFOD) is located at Parkfield,

CA. Its objective is to actively study the San Andreas Fault (SAF) zone from borehole

data, as well as to monitor the fault zone activity. SAFOD consists of two boreholes,

the Pilot-Hole (PH) and the Main-Hole (MH). The geometry of the PH and MH rela-

tive to the to surface trace of the SAF is displayed in Figure 4.6a. The data we analyze

consists of the noise excited by the drilling of the MH, recorded by the 32-receiver

array permanently placed in the PH. The geologic context of this experiment and the

full interpretation of the results we show here, along with active-shot seismic data,

are presented in Chapter 5. We focus here on the use of deconvolution interferometry

to obtain an image of the SAF, and on the differences between the deconvolution-

and correlation-based approaches in the processing of the SAFOD SWD data.

The main objective of the SAFOD borehole SWD experiment is to provide broad-
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Figure 4.7. Drill-bit noise records from the SAFOD Pilot-Hole. Because the drill-bit
is closest to receiver 26, the data recorded at this receiver, shown by panel (a), is
not contaminated by electrical noise. For the same drill-bit position, panel (b) shows
the data recorded at receiver 23. Panel (c) shows the result of filtering the electrical
noise from the data in panel (b). These data show the first 3 s of the full records
(which are 60 s long). For the records shown here, the drill-bit position is practically
constant. These data are from the vertical component of recording.
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side illumination of the SAF that is not possible from surface measurements. Fig-

ure 4.6b illustrates how single reflections from the SAF can potentially be recovered

by the drilling noise records measured at the SAFOD PH array. The stationary path

indicated by the red and black arrows in Figure 4.6b shows that the interference be-

tween the drill-bit direct arrivals with fault-scattered waves can be used to reconstruct

primary fault reflections propagating between the receivers. Because the distance be-

tween the MH and PH is only in the order of 10 meters (Boness and Zoback, 2006), the

drill-bit only gives stationary contributions to waves emanating from a given receiver

when drilling next to that receiver. This is an important consideration in identifying

which portion of the recorded data is useful for processing (see below).

The acquisition of the SAFOD PH drill-bit noise records began in June 2004, and

continued until late August 2004 (Taylor et al., 2006). The MH intersected the PH on

July 15th (Figure 4.6a). The drill-bit noise recorded after the MH crossed the PH is

not of interest for our interferometry purposes because, unlike the drill-bit positions

illustrated by Figure 4.6b, it does not yield stationary contributions that give primary

fault reflections that propagate between the receivers. Due to field instrumentation

issues (S. T. Taylor, 2006; personal communication), most of the data recorded by the

PH array before July 15th consists of electrical noise only. A window of approximately

20 hours prior to the intersection of the PH by the MH coincides with the portion

of the PH data for which the instrumentation problem was fixed. The data acquired

within this window are used in the analysis we show here.

According to the MH drilling records, the depth interval that was sampled by

the usable drill-bit data extends from approximately 350 m to 450 m (in the scale in

Figure 4.6a). We use the data recorded in this interval to generate interferometric shot

records. Within the 350-450 m bit interval, the drill-bit passes by the PH receiver 26.
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Since the stationary contributions of the sources to recovering primary reflections from

the SAF only occur when the bit is next to a receiver, the data recorded by receiver

26 in the depth interval of 350-450 m can be used as the filter for interferometry. This

translates to setting rB in equations 6.2, 4.12 or 4.13 to the coordinates of receiver 26.

Hence, out of the 32 receivers of the SAFOD PH array, it is only possible to create

interferometric shot gathers with a pseudo-source at receiver 26.

A small portion of the recorded data is shown in Figure 4.7. The data in Fig-

ure 4.7a are from the vertical component of receiver 26, while the data in Figures 4.7b

and c correspond to receiver 23. Since the records shown in Figure 4.7 are subsequent

recordings of the drill-bit noise of 1 minute duration (of which only the first 3 s are

shown in Figure 4.7), the drill-bit position for the records in the Figure is practically

constant. The data recorded by receiver 26 shown in Figure 4.7a are low-pass filtered

to preserve signal up to 75 Hz. A similar filter, preserving frequencies up to 55Hz,

is applied to the original data from receiver 23 in Figure 4.7b, resulting in the data

in Figure 4.7c. The data recorded by receiver 23 (Figure 4.7b) is heavily contami-

nated by electrical noise, at frequencies of 60, 120 and 180 Hz. This electrical noise is

practically negligible in the data from receiver 26, as shown by Figure 4.7 where the

60 Hz monochromatic oscillation cannot be seen. Because the bit is close to receiver

26, the drilling noise is louder than the electrical noise in Figure 4.7a. After low-pass

filtering, the data from receiver 23 (Figure 4.7c) shows a similar character to that

from receiver 26 (Figure 4.7a). As discussed in previous sections (and illustrated by

Figure 4.3), the SAFOD drill-bit noise data shows a narrow-band character, typical

of the vibrational modes from drilling. The drilling of the SAFOD MH was done with

a roller-cone bit.

A critical issue with the processing of the SAFOD SWD data is that pilot records
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Figure 4.8. Pseudo-shot gathers from deconvolution interferometry. In these gath-
ers, receiver 26 acts as a pseudo-source. Each panel in the Figure is the result of
deconvolving different combinations of receiver components: the deconvolution of the
Z- with Z-components yields (a), Z- with NE-components give (b), NE- with NE-
components result in (c), and NW- with Z-components yield (d). Physically, panel
(a) shows waves recorded by the vertical component for a pseudo-shot at receiver 26,
excited by a vertical point-force. (b) is also the vertical component for a pseudo-shot
at PH-26, but unlike the wavefield in (a), it represents waves excited by a point-force
in the NE-direction. Likewise, (c) pertains to both excitation and recording in the
NE-direction, while waves in (d) are excited by a vertical point-force and are recorded
in the NW-direction. The red arrows show reflection events of interest. Note that
receiver 32 is the shallowest receiver in the SAFOD PH array (Figure 4.6). Receiver
spacing is of 40 m. The component orientations we use here are the same as those in
Figure 4.6b.
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Figure 4.9. Pseudo-shot gathers from correlation interferometry. Here, each panel is
associated to the correlation of the same receiver components as in the corresponding
panels in Figure 4.8. The physical interpretation of excitation and recording directions
is the same as for Figure 4.8. Unlike the data in Figure 4.8, the source function in
these data is given by the autocorrelation of the drill-bit excitation.
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are not available. Drill-string accelerometers were not placed in the SAFOD rig until

August 2004 (Taylor et al., 2006), after the acquisition of the SAFOD PH data we

process here. Since no pilot records are available, pilot-based SWD processing (Rec-

tor and Marion, 1991; Haldorsen et al., 1994; Poletto and Miranda, 2004) cannot

be applied to the PH drill-bit data. Thus, these data are a natural candidate for

the application of deconvolution interferometry. Figure 4.8 shows four pseudo-shot

gathers derived from deconvolution interferometry using different combinations of re-

ceiver components (see equations 4.13 through 4.14). We only display the traces for

receivers 15 through 32 in Figure 4.8 because electric noise in receivers 1-14 prevents

the recovery of coherent signals. Before computing the pseudo-shots in Figures 4.8

and 4.9, all data were low-passed to preserve frequencies up to 55 Hz. For the inter-

ferometry, we divide each minute-long record into two 30-second long traces. With

approximately 20 hours of recording time, the resulting traces in the pseudo-shot

records are the result of stacking in the order of 2000 deconvolved or correlated traces

(see equations 6.2 and 4.12). For a discussion on our numerical implementation of

deconvolution, see Appendix A.

The panels in Figure 4.8 show that combining different components in decon-

volution interferometry yields different waveforms. Scattered arrivals, indicated by

red arrows, can be identified in Figures 4.8a and b, but not in c and d. The first

reason for the difference between the results in the four panels of the Figure lies

in equations 4.13 through 4.14. According to these equations, deconvolving data

recorded in the i-component with data recorded by the j-component results in the

interferometric impulse response recorded by the i-component and excited by the j-

component. This means that the data in Figure 4.8a represents a vertical excitation

at receiver 26 recorded by the vertical component at all receivers. Likewise, Fig-
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ure 4.8b represents a vertical excitation and the recording of data in the Northeast

direction (NE-component). Similar interpretations follow for the other two panels in

the Figure, and are given in the Figure caption.

In Section 4.3.2, we discuss the influence of the drill-bit radiation properties on

the radiation pattern of the pseudo-source synthesized by interferometry. The radia-

tion characteristics of the pseudo-source together with signal-to-noise ratio in different

recording components of the receiver away from the drill-bit (and from receiver 26) is

also responsible for the differences between the panels of Figure 4.8. Because coherent

arrivals can be seen in Figures 4.8a and b, two conclusions can be drawn. First, the

signal-to-noise ratio in the vertical component (Z-component) of the receivers is suf-

ficiently high to record scattered waves. Second, Figure 4.8a shows that the recorded

drill-bit direct wave has nonzero polarization in the Z-direction. This is caused by

the fact that the pseudo-source radiation is controlled by the radiation pattern of the

bit (Section 4.3.2), and this case most of the energy radiated by the bit is polarized

in the vertical direction.

Since Figure 4.8b shows coherent events (indicated by red arrows) that are re-

constructed from energy recorded by the Northeast component, it follows that the

direct-wave response from the bit excitation has a nonzero polarization component

in the NE-direction as well. In these data, receiver 26 records drill-bit direct waves

polarized both in the Z- and NE-directions because the receiver is in the bit’s near-

field (the PH and MH are a few meters apart). The measured near-field response to

an excitation in the Z-direction (the drilling direction is close to vertical) is polarized

both in the vertical and in-plane horizontal components (Aki and Richards, 1980;

Tsvankin, 2001). The waves scattered from the SAF have far-field polarization be-

cause the fault zone is approximately 2 km away from the PH. The lack of scattered
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Figure 4.10. Shot-profile wave-equation images of interferometric shot gathers with
a pseudo-source at receiver 26. The left panels are the result migrating pseudo-shot
gathers from deconvolution interferometry while the panels on the right result from
cross-correlation. The migration of the data in Figure 4.8a and b gives panels (a)
and (c), respectively. Analogously, panels (b) and (d) are obtained from migrating
the data in Figures 4.9a and b. The yellow boxes outline the subsurface area that is
physically sampled by P-wave reflections. The data were migrated with the velocity
model in Figure 4.6a.



124

signals in Figures 4.8c and d are mostly have a poor signal-to-noise ratio in the the

Northeast and Northwest components (NE- and NW-components) of the receivers far

from the bit.

The zero-offset trace (the trace at receiver 26) in Figures 4.8a and c is a band-

limited delta function centered at t = 0. This is a demonstration of the deconvolution

interferometry boundary condition in equation 4.15. The acoustic counterpart of this

boundary condition generates introduces spurious arrivals in the pseudo-shot gathers

(Chapter 5). In Figure 4.8a, we do not observe pronounced spurious arrivals associ-

ated with the scattered events (marked by red arrows). As highlighted in Section 4.3.2,

the boundary condition in equation 4.15 does not have the same physical meaning as

in the acoustic case (Chapter 3). A thorough understanding of the physical meaning

of equation 4.15 is beyond the scope of this paper.

The pseudo-shot gathers in Figure 4.8 were generated by deconvolution interfer-

ometry while the ones in Figure 4.9 are the result of correlation interferometry (e.g.,

Wapenaar, 2004; Draganov et al., 2006). Analogously to the observations made in

the previous Section, the correlation-based interferometric shot gathers (Figure 4.9)

are influenced by the autocorrelation of the drill-bit source function, giving them a

monochromatic appearance. The scattered events seen in Figures 4.8a and b cannot

be identified in Figures 4.9a and b. In a more standard SWD processing routine, the

autocorrelation of the source function could be removed from the data in Figure 4.9

by means of pilot deconvolution (Rector and Marion, 1991; Poletto and Miranda,

2004). We reiterate that this type of processing is not possible in our case because

pilot records are not available.

Together with geologic information from the MH data and with an active shot

acquired by sensors in the MH, in Chapter 5 we associate the event arriving with a
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Figure 4.11. Final images from the interferometry of the SAFOD drill-bit noise record-
ings. The image in (a) is the result of stacking the images from deconvolution inter-
ferometry in Figures 4.10a and c. The right-hand side arrow shows the location of
San Andreas Fault reflector. The other arrow highlights the reflector associated to a
blind fault zone at Parkfield. The stack of the images from correlation interferometry
in Figures 4.10b and d gives the image in (b). We muted the portion of the stacked
images that is not representative of physical reflectors. The area of the image in (a)
and (b) corresponds to the area bounded by yellow boxes in Figure 4.10.
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zero-offset time of approximately t = 1.0 s (second arrow from top) in Figures 4.8a

and b to the primary P-wave reflection from the SAF. The event at 0.5 s (marked by

top arrow) is the reflection from a blind fault zone that was intercepted by the SAFOD

MH (Solum et al., 2006; Boness and Zoback, 2006). The bottom arrow in Figure 4.8a

indicates a an event with approximately 2.0 s of zero-offset time that whose slope is

determined by shear-wave velocity. We interpret this arrival as a pure-mode shear-

wave reflection from the SAF. Since only the pseudo-shots in Figures 4.8a and b

present physically meaningful arrivals, we only show migrated images from these two

panels.

The migration of the pseudo-shot data was done with the same methodology

as in the Sigsbee numerical example. We use shot-profile migration by wavefield ex-

trapolation (Biondi, 2006), where the extrapolation steps are taken in the horizontal

coordinate away from the SAFOD PH (Figure 4.6). Migrated images are shown in

Figure 4.10. The images of the pseudo-shots from deconvolution interferometry (left

panels) show reflector-like features that cannot be identified on the images from corre-

lation interferometry (right panels). The images from correlation-based pseudo-shots

have a narrow-band character that is similar to that of the pseudo-shots themselves,

caused by the presence of the autocorrelation of the drill-bit excitation function (Fig-

ure 4.9). This is the same phenomenon we show in the images from the Sigsbee

model (Figure 4.5), with the difference that the Sigsbee images are produced from

100 pseudo-shots. Because the SAFOD images result from migrating a single shot,

the reflectors are curved toward the edges of the images (top and bottom of images in

Figure 4.10) due to effect of the migration operator and the relatively small aperture

of the receiver array used to reconstruct the data.

The final image from the SAFOD SWD data was obtained by stacking the top
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images with the bottom ones in Figure 4.10. We do this with the intention of en-

hancing the reflectors that are common in both images. The final SAFOD images

are shown in Figure 4.11. Figure 4.11 only shows the portion of the images that

yield physically meaningful reflectors, which is highlighted by the yellow rectangles

in Figures 4.10a and c. The image from deconvolution interferometry (Figure 4.11a)

shows reflectors that cannot be seen in the image from correlation interferometry

(Figure 4.11b). In Chapter 3 we show that the reflector at x ≈ 2000 m indicated

by the right arrow coincides with the contact of the SAF with metamorphic rocks to

the Northeast. The reflector at x ≈ 1600 m coincides with a possibly active blind

fault zone at Parkfield. The observations made in Chapter 5 are based on the data

we present here together with active-shot data measured at the MH and with fault

intersection locations from the MH (Solum et al, 2006; Boness and Zoback, 2006).

4.6 Discussion and conclusions

We present the method of interferometry by deconvolution, described by Chap-

ter 3, as an alternative to the processing of seismic-while-drilling (SWD) data. In

these types of datasets, the signature of the drill-bit source function complicates the

recovery of the subsurface response (e.g., Poletto and Miranda, 2004). Most SWD

processing methods rely on the so-called pilot sensors to obtain an independent es-

timate of the drill-bit excitation that is used to remove the drill-bit source function

(Rector and Marion, 1991; Haldorsen et al., 1994; Poletto and Miranda, 2004). Here,

we review SWD methods based on pilot recordings in the context of seismic interfer-

ometry by cross-correlations (e.g., Poletto and Miranda, 2004; Draganov et al., 2006).

The method of deconvolution interferometry is capable of recovering the subsurface

response from SWD data without the need for an independent estimate of the drill-bit
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excitation. Additionally, the knowledge about the drill-bit position is not a require-

ment for the application of interferometry (see also Schuster et al., 2004), as it is for

other SWD applications (e.g., Poletto and Miranda, 2004). Interferometry requires,

however, that the drill-bit must sample the source stationary points that give rise to

the target scattered waves (Chapter 3; Snieder et al, 2006).

Extending concepts presented by Chapter 3, we discuss the application of decon-

volution interferometry in elastic media. With physical arguments we state that the

interferometric response obtained by the deconvolution of the i-component of a given

receiver by the j-component of another receiver results in single-scattered waves that

propagate between these two receivers. These waves are the impulse response from a

j-oriented point-force excitation at one of the receivers, recorded by the i-component

at the other receiver. Because the deconvolved data satisfies the same wave equation

as the original physical experiment, the radiation properties of the drill-bit (Poletto,

2005a) determine the radiation pattern of the pseudo-source synthesized by interfer-

ometry. In the case of receivers positioned far from the drill-bit and highly heteroge-

neous media, deconvolution interferometry can potentially extract a response that is

closer to a full elastic response, as discussed by Wapenaar and Fokkema (2006).

Our numerical experiment with the Sigsbee model seeks to reproduce a passive

subsalt SWD experiment where pilot recordings are absent. Using modeled drill-bit

noise (Poletto, 2005a), we produce images of the Sigsbee salt canopy from the receiver

array sitting below the salt. The image from deconvolution interferometry provides

a reliable representation of the structure in the model because the deconvolution

removes the drill-bit excitation function from the data. When distorted by the dom-

inant vibrational modes of the drill-bit source function, the image from correlation

interferometry gives a poorer representation of the model structure when compared
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with the deconvolution image. The choice of the Sigsbee model shows the feasibility

of the passive application of drill-bit imaging in subsalt environments. SWD typi-

cally is not done in such environments because the wells are deeper than they are

onshore, and the transmission through the drill-string is weaker which makes rig pilot

records unreliable estimates of the drill-bit excitation (Poletto and Miranda, 2004).

Additionally, many subsalt wells are drilled with PDC bits, which radiate less energy

than the roller-cone bit (Poletto, 2005a). The signal from PDC bits is thus difficult

to measure from the surface or from the sea bottom. This difficulty can be overcome

with downhole receiver arrays, as in our example. Although we used a model for

a roller-cone bit, we expect results of deconvolution interferometry of noise records

from PDC bits (Poletto 2005a) to be similar to ours .

Using field data acquired at the Pilot Hole of the San Andreas Fault Observatory

at Depth (SAFOD), we validate the method of deconvolution interferometry in recov-

ering the impulse response between receivers from drill-bit noise records. The SAFOD

SWD data are ideal for the application of deconvolution interferometry because pilot

recordings are not available. From interferometry by deconvolution, we synthesize

scattered waves that propagate from receiver 26 toward the other receivers that are

not visible in pseudo-shot gathers from correlation interferometry. Single-scattered

P-waves were obtained mostly by the deconvolution of the vertical component of

recording of the PH receivers, with the vertical and Northeast components of receiver

26. Shot-profile migration of the interferometric shots generated by deconvolution

yield coherent reflectors. From the images presented here together with active-shot

data and fault intersection locations from the MH, in Chapter 5 we identify the San

Andreas Fault reflector as well as a possibly active blind fault at Parkfield, CA.

Their conclusions rely on the processing we describe here, where interferometry by
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deconvolution plays an important role in imaging the fault reflectors (Chapter 3).

More than just an alternative to processing SWD data as it is typically acquired,

deconvolution interferometry opens possibilities for using passive measurements of

drill-bit or rig noise for imaging. Poletto (2005b) provides a thorough comparison be-

tween drill-bit and conventional seismic sources. The fact that seismic interferometry

techniques do not require knowledge about the source position allows for pseudo-

acquisition geometries that cannot be accomplished by standard SWD experiments.

The geometries in of the Sigsbee and SAFOD datasets presented in this paper are

examples of non-conventional acquisition that can be treated by interferometric tech-

niques. The use of the free-surface ghosts to reconstruct primary reflections that

propagate between receivers (Schuster et al., 2004; Yu et al., 2004) is another ex-

ample where deconvolution interferometry can also be applied. Interferometry of

internal multiples (Chapter 6) can potentially be accomplished from SWD as well.

The passive imaging from working drill-bits could help in the monitoring of fields in

environmentally sensitive areas, where active seismic experiments are compromised.

These areas now become more of a concern as the search for unconventional reservoirs

increases. One such area is the Tempa Rossa field in Italy (D’Andrea et al., 1993).

While active seismic activity in this field is hindered by environmental regulations, its

future production is expected to reach 50000 oil barrels per day. Environment-friendly

seismic monitoring of oil fields like Tempa Rossa could potentially be accomplished

with recordings of the field’s drilling activity and with deconvolution interferometry.
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Chapter 5

BROADSIDE IMAGING OF THE SAN ANDREAS FAULT1

5.1 Summary

The San Andreas Fault Observatory at Depth provides perhaps the most com-

prehensive set of data on the structure and dynamics of the San Andreas fault. We

use two independent experiments recorded by the seismometer arrays of the SAFOD

Pilot and Main Holes to resolve the localized structure of the San Andreas fault zone

and of an intermediate fault zone at depth. From Pilot Hole recordings of the drilling

noise coming from the Main Hole, we reconstruct the waves that propagate between

the Pilot Hole sensors and use them to image the fault zone structure. The use of

correlated drilling noise leads to a high-resolution image of a major transform fault

zone. Another independent image is generated from the detonation of a surface ex-

plosive charge recorded at a large 178-sensor array placed in the Main Hole. The

images reveal the San Andreas fault as well as an active blind fault zone that could

potentially rupture. This is confirmed by two independent methods. The structure

and the activity of the imaged faults is of critical importance to understanding the

current stress state and activity of the San Andreas fault system.

1Submitted to Nature.
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5.2 The SAFOD project

The San Andreas Fault Observatory at Depth (SAFOD) was conceived to closely

study and monitor the earthquake dynamics and structure of the San Andreas Fault

(SAF) at Parkfield, CA (http://www.icdp-online.de/sites/sanandreas/index/index.html).

Characterizing the structure and dynamics of the SAF strike-slip system is crucial for

understanding the geodynamics of transform plate boundaries and their associated

seismicity. In particular, the SAF at Parkfield has historically been seismically ac-

tive, with seven catalogued earthquakes of magnitude six approximately (Bakun and

McEvilly, 1984; Roeloffs and Langbein, 1994); the latest one occurred in September

2004 (Kerr, 2006).

Consisting of a vertical borehole, the Pilot Hole (PH), and of a deviated well that

intersects the SAF, the Main Hole (MH), SAFOD is designed to sample and monitor

the SAF system from within the subsurface at Parkfield. Together with surface

observations, data from SAFOD already contributed greatly to the understanding

of the SAF system at Parkfield. Figure 5.1a is a scaled schematic cartoon that

summarizes and connects results from several publications that analyze data from the

SAFOD site. Much of the information on the surface geology and on the basement

and sedimentary structures at Parkfield comes from geologic mapping (Rymer et al.,

2003) and from surface refraction (Catchings et al., 2003) and reflection (Hole et al.,

2001; Catchings et al., 2003) seismic data. The lateral delineation of the Salinian

granite to the SW of the SAF has also been inferred from magnetotelluric (Unsworth

et al., 2000; Unsworth and Bedrosian, 2004) measurements and from joint inversion

of gravity and surface seismic data (Figure 5.1b; Roecker et al., 2004; and Thurber

et al., 2004). Analysis of PH rock samples (Solum et al., 2004) and of their in-situ

physical properties (Boness and Zoback, 2004) helped determine the lithology and
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the stress state around the PH. Likewise, recent studies of rock samples from drilling

(Solum et al., 2006) and well-logs (Boness and Zoback, 2006) from the MH have shed

light on the subsurface geology along the SAFOD MH. It was not until 2006 that the

SAFOD MH first intersected the SAF (Figure 5.1a), and the upcoming coring of the

SAF system during the Phase 3 drilling of the MH (summer 2007) promises to bring

important information on the internal composition of the SAF.

Previous to the drilling of the SAFOD MH, microseismic events along with sur-

face active-shots recorded at the PH seismometer array were used to make some of

the first images of the SAF at depth (Chavarria et al., 2003) which also contributed

much to our understanding of the subsurface geology at Parkfield (Figure 5.1a). As a

continuation of the subsurface imaging at Parkfield, we use drilling noise recorded at

the PH and an active-shot experiment recorded at the SAFOD MH to obtain high-

resolution images of the SAF system between depths of 0 to approximately 1.5 km

(from sea level; this corresponds to approximately 0.6 to 2.1 km from the surface).

These images help to resolve the wave-scattering structures associated to the SAF as

well as at least one other heavily faulted zone between the SAFOD drilling site and

the SAF. Images such as the ones we present here are critical for the development of

detailed models of the SAF plate and earthquake dynamics.

5.3 Imaging the SAF from passive and active seismic data

The SAFOD data we use were acquired in two experiments. The first experiment

was carried out in July 2004, when the SAFOD PH receiver array (Figure 5.1b) was

switched on to constantly monitor the drilling noise during the early stages of the

drilling of the SAFOD MH. We used the drill-bit noise recordings of the SAFOD PH

array to create an image of the SAF. In a second independent experiment, conducted
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(a) (b)

Figure 5.1. Panel (a) shows our current knowledge of the structure of the San Andreas
fault system at Parkfield, CA. The main geologic formations are indicated by different
colors and by their corresponding acronyms, these are: the Tertiary Ethegoin (Te),
Tertiary Ethegoin-Big Pappa (Tebp), Tertiary undifferentiated (Tund), Cretaceous
Franciscan rocks (Kfr), Cretaceous Salinian Granite (Ksgr), and the pre-Cretaceous
Great Valley (pKgv). The SAFOD main-hole (MH) is indicated by the blue solid line.
Black solid lines in (a) represent faults. BCFZ refers to the Buzzard Canyon Fault
zone. The areas where the finer-scale structure of the SAF system were unknown are
indicated by question marks. The red triangles, numbered 1 through 5, show approx-
imate locations of intersections of the MH with major zones of faulting (Solum et al.,
2006). Triangle number 5 represents the point where the MH penetrated the SAF in
2006. Panel (b) shows the large-scale structure of the P-wave velocity field (velocities
are colorcoded) that approximately corresponds to the schematic representation in
(a). The circles in (b) indicate the location of the sensors of the SAFOD pilot-hole
array used here for the recording of drilling noise. The SAFOD MH array, used in the
active-shot experiment, is indicated by the triangles. The location of the active shot
is depicted by the star. Depth is with respect to sea level, the altitude at SAFOD is
of approximately −660 m.
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(a) (b)

Figure 5.2. Schematic acquisition geometries of SAFOD data. Receivers are indicated
by the light-blue triangles. The structures outlined by black solid lines to the right-
hand side of the figure represent a target fault. (a) shows the acquisition geometry
of the downhole seismic-while-drilling (SWD) dataset. It consists of multiple 60
second-long recordings of drill-bit noise excited at different depths, recorded at 32 3-
component receivers in the PH. As indicated by (a), receivers are oriented in the Z-(or
downward vertical), NE- and NW-directions. (a) also shows a schematic stationary
path between the drill-bit and two receivers. Interferometry recovers only the portion
of the propagation path represented by black arrows in (a). The active-shot geometry
in (b) is comprised of 178 3-component receivers placed in the MH. The dashed red
arrow in (b) represents all waves that propagate towards the NE (right-hand side
of the figure), while the solid red line represents all waves going toward SW (left-
hand side of (b)). The inclination of the deviated portion of the MH is of about 45o

with respect to the vertical. The receiver components of the SAFOD MH array are
co-oriented with those of the PH array, whose orientations are shown in (a).
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in 2005, a large 178-receiver array was placed in the SAFOD MH (Figure 5.1b) to

record the active shooting of an 80-pound explosive charge placed at the surface

near the SAFOD MH. We also used this shot record to image the SAF. These two

experiments differ not only on the geometry of the data acquisition (i.e., source and

receiver positioning), but also in the physical character of the excitation that generates

the recorded waves. To account for the differences between the PH and the MH

data, we applied different processing to each dataset and to subsequently produce

the images. Figure 5.2 provides schematic representations of the data acquisition

geometry for the PH drill-bit noise recordings and for the MH active-shot experiment.

To create an image of the SAF zone from the drill-bit noise records we rely

on the concept of seismic interferometry (Curtis et al., 2006; Larose et al., 2006).

Interferometry recovers the response between any two receivers in an arbitrarily het-

erogeneous and anisotropic medium as if a source was placed at one of the receiver

locations(Lobkis and Weaver, 2001; Snieder et al., 2006). We only briefly highlight

the issues of interferometry that are of particular concern to the processing of the

SAFOD PH drilling noise records.

Typically, interferometry makes use of cross-correlations between recorded data

to recover waves propagating between receivers (Lobkis and Weaver, 2001). By doing

so, the recovered receiver response includes an average of the power spectra of the ex-

citations(Lobkis and Weaver, 2001, Snieder et al., 2006). Removing the contribution

of the source power spectrum is an issue when recovering signals from drill-bit noise

because in this case the wave-generation mechanism is constantly active, and the

spectrum is heavily dominated by specific vibration modes associated to the drilling

process (Poletto and Miranda, 2004). An example of this behavior from SAFOD

PH-array records can be found in Figure 5.4a.
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It is possible, however, to remove the drill-bit source signature from drilling noise

records (Poletto and Miranda, 2004). The standard industry practice is to estimate

the drill-bit signature by placing accelerometers on the drill-stem (Poletto and Mi-

randa, 2004; Rector and Marion, 1991). This estimate is then used to extract the

drill-bit noise signature from the cross-correlations of the recorded data, leaving only

the approximate impulse response of the Earth (Lobkis and Weaver, 2001; Poletto

and Miranda, 2004). Following this accelerometer-based approach, drill-bit imaging

has been previously applied to surface recordings of MH drilling noise at Parkfield

(Taylor et al., 2005). In our case, such accelerometer recordings are not available.

As an alternative to interferometry by cross-correlations, we used an interferometry

technique based on deconvolutions (Chapter 3). This technique synthesizes the re-

sponse between receivers from incoherent excitations as if one of the receivers acted

as a pseudo-source, while canceling the effect of the drill-bit source signature without

the need for drill-stem accelerometers.

In Figure 5.3a we show the result from processing approximately 17 hours of

drilling noise records into a shot record with a pseudo-source at receiver PH-26. With

the pseudo-source centered at 0 s, PH-26 acts as the pseudo-shot responsible for the

excitation of waves (Chapter 3). Figure 5.3a shows the direct wave that propagates

from receiver PH-26 and is recorded at the other receivers. The reflection events

highlighted in Figure 5.3a are caused by faults in the SAF system. The data in

Figure 5.3a represents waves excited by a vertically-oriented force (see Figure 5.4).

In addition, we are also able to recover the excitation at receiver PH-26 associated

to a Northeast-oriented force (see Figure 5.4c). The SAFOD interferometric image

we will discuss here is a product from imaging the pseudo-shots at PH-26 excited by

forces oriented both in the vertical and in the Northeast (NE) directions.
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Figure 5.3. (a) Vertical component of the interferometric shot gather for a pseudo-shot
position at pilot-hole receiver PH-26. Red arrows indicate reflections of interest. The
reflection event that arrives at approximately 1.0 s at receiver PH-24 is interpreted to
correspond to a P-wave reflection from the SAF zone. Due to the noise levels, only
a subset of the 32 receivers of the PH array is sensitive to the incoming signals from
the SAF zone. (b) Data recorded by the vertical component of motion in the SAFOD
MH array from the active-shot experiment. The red arrows indicate two left-sloping
events that are associated to P-wave reflections from faults within the SAF system.
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Figure 5.4. (a) Short samples of sequential recordings of drilling noise from the
receiver PH-26. The visually monochromatic character of the records is due to drilling
vibrational modes. (b) Vertical component of the interferometric shot gather for a
pseudo-shot position at pilot-hole receiver PH-26. The recording at (b) represents
waves excited by a vertical point-force. (c) is also the vertical component for a
pseudo-shot at PH-26, but unlike the wavefield in (b), it represents waves excited by
a point-force in the NE-direction. The complicated character of the drilling noise in
(a) is attenuated by the interferometry procedure that produces the data in (b) and
in (c). Note that receiver PH-32 is the shallowest receiver in the SAFOD PH array
(see Figure 1b in main text).
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Unfortunately, out of almost two months of recording drilling noise at the PH

array, only about a day and a half of the data is useable for interferometry purposes

due to data acquisition problems. Within this time window, the drill-bit is closest to

receiver PH-26 (the distance between the MH and PH at that depth is of only a few

meters). It is at this drill-bit position that we find the most prominent contribution

from the waves excited by the drill-bit for the reconstruction of the waves that prop-

agate between receiver PH-26 and the remaining receivers. We refer to this point as

a stationary position for the drill-bit source (Snieder et al., 2006). To recover signals

propagating between receivers, it is necessary to have physical sources at the station-

ary points that link a pair of receivers to a target reflector (Snieder et al., 2006). The

only drill-bit stationary point sampled within the good-quality PH records recovers

waves that emanate from receiver PH-26. This restriction limits the area of the SAF

zone from which we can produce a physically meaningful image to the area shown in

Figure 5.6a.

The shot gather from the SAFOD MH active-shot experiment (Figure 5.3b)

shows a reflection as a left-sloping event arriving at main-hole receiver MH-98 at

approximately 1.0 s (indicated by the top-most arrow). Another weaker left-sloping

event that arrives at approximately 1.2 s at receiver MH-98 (lower-most arrow) is

associated with a P-wave reflection from the SAF zone. Since the receivers MH-98 to

MH-178 are in the deviated, deeper-most portion of the SAFOD MH (see Figure 5.1b),

right-sloping events are mostly associated with right-going waves, whereas left-sloping

events are associated with left-going waves (see also Figure 5.2b). This observation

only holds for a subset of the receivers of the large 178-receiver MH array: the ones

which lie in the deviated portion of the MH. These would be receivers MH-98 through

MH-178 (Figure 5.3b), whose locations are shown in Figure 5.1b. For the purpose
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of imaging the SAF system from the MH array, it is important to discern between

right- and left-going waves in the data because fault reflection information for this

acquisition geometry is predominantly contained in left-going waves. With frequency-

wavenumber filtering (Biondi, 2006), we extract only the left-sloping events from

Figure 5.3b. We use only these events to image the SAF zone.

The process of mapping data such as in Figure 5.3 into a subsurface image

(Figure 5.6) is what we refer to as imaging or migration. Imaging typically requires a

velocity model of the subsurface; the one we use is shown in Figure 5.1b. This model

was estimated from surface seismic tomography (Thurber et al., 2004). We do the

imaging of the PH and MH data (Figure 5.3) with two different methodologies. For

imaging from the PH data we use the technique of shot-profile migration by wavefield

extrapolation (Biondi, 2006). The wavefield extrapolation is done by the split-step

fourier phase-shift plus interpolation method. The MH active-shot data in Figure 5.3b

is imaged by reverse-time migration (Biondi, 2006).

5.4 High-resolution images and the SAF

The images from the SAFOD PH and MH arrays are shown in Figures 5.6a and

b (also in Figures S3a and b). The interferometric image from PH array (Figures 5.6a

and S3a) provides a different area of “illumination” of the subsurface than the active-

shot image from the MH array (Figures 5.6b and S3b). This is a consequence of

the differences in the acquisition geometry of these two experiments. The images

displaying all subsurface positions corresponding to the velocity model in Figure 5.1b

are shown in the support Figure 5.5. A numerical model was build for the MH

active-shot data to aid us in understanding what is the subsurface area that could be

illuminated by the active-shot experiments, as well as what would be the character of
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Figure 5.5. (a) Image obtained from stacking the results of migrating the SAFOD
interferometric shot gathers in Figures S5.4c and d. After migrating only the left-
going waves from the SAFOD MH active-shot data (Figure 2b in main text), we obtain
the image in (b). The red arrows point to features that are common to both images.
These features are the same as indicated by the red arrows and numbers 1 through
3 in main-text Figure 3. The dashed yellow boxes in (a) and in (b) highlight the
portions of the images that are shown in main-text Figures 3a and 3b, respectively.
Both yellow boxes in fact represent the subsurface area that is physically sampled
by P-wave reflections, which in turn depends on the acquisition geometry of each
experiment (see Figure S5.2). The red triangles show the approximate locations where
the SAFOD MH intersected major fault zones (see main text Figure 1b). Distances
in the x-axis in (a) and (b) are with respect to the location of the SAFOD drill site
at the surface. The surface trace of the SAFz is at approximately x = 2000 m.
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image artifacts caused by waves diffracted by the Salinian granite. From the portion

of the synthetic image that showed physically meaningful reflectors we chose the area

of illumination of the SAFOD MH image in Figure 5.6b. The support Figure 5.7

shows the results from the numerical modeling of the SAFOD MH active-shot data.

Since both images are built from single-shot data (a pseudo-shot in the PH

interferometric data and the active-shot in the MH data), they are prone to artifacts

associated with the limited illumination (Biondi, 2006). Additionally, the method of

interferometry by deconvolutions may produce image artifacts (Chapter 3). It is thus

critical to establish which reflectors in the images in Figure 5.6 (and in Figure 5.5)

pertain to actual faults or interfaces in the subsurface.

We rely on two independent criteria to gain insight into which reflectors in Fig-

ure 5.6 (and in Figure 5.5) represent real faults and/or interfaces. The first criterion

is based on the consistency of events between different images. Note that all of the

available images were generated from independent experiments. In our case, on one

hand we have the drilling noise recordings at the PH array, and on the other hand

we have the the active-shot MH data. The images from Chavarria et al. (2003) (Fig-

ure 5.6) come from PH recordings of both surface active shots and microseismicity

from the SAF. Not only were the data in these three experiments different, but also

the corresponding images were generated by distinct methodologies. Consequently,

reflectors that are consistent in two or more images are likely to be representative of

actual subsurface structures.

The second criterion for interpreting reflectors in Figure 5.6 is the correlation

between the location of fault zone intersections at the SAFOD main-hole (Solume et

al., 2006) and the position of reflectors which are consistent in two or more images.

The position of the five main fault zones intersected by the MH are shown schemat-
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(a) (b)

Figure 5.6. Images from the drill-bit noise recordings and from the active-shot ex-
periment (in grey-scale, outlined by black-boxes). These images are overlayed on the
result obtained from Chavarria et al. (2003). The overlay in (a) is the interferometric
image from the SAFOD PH array, compiled after synthesizing drilling noise records
into a pseudo-shot at the location of receiver PH-26. (b) shows an overlay of the
image obtained from reverse-time imaging of the active-shot recorded at the SAFOD
MH. The arrows mark the most prominent reflectors in the images. The reflectors
numbered 1 through 3 coincide in both images. Reflectors 2 and 3, and possibly 4
are associated with fault zones. The SAF zone is visible at reflector 2 in both images.
The location of the SAFOD MH in the background color images is schematic, since
the MH was drilled after the work by Chavarria et al. (2003) was published. See
also Figures S3a and S3b for the full images from the drill-bit noise recordings and
active-shot data.
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ically in Figure 5.1a and are superposed on the full images from the SAFOD PH

and MH arrays in the support Figure 5.5. The comparison between MH fault inter-

sections (Solum et al., 2006;Boness and Zoback, 2006) and reflectors in the images

(Figure 5.5) is not always straight forward because the subsurface area illuminated

by the images does not coincide with the MH well-path. Despite this difficulty, we

provide our interpretation of the correlation between the MH fault intersections and

imaged reflectors based on the overlay of these data (Figure 5.5) and on our current

conceptual geologic model of the subsurface at SAFOD (Figure 5.1a).

In the interferometric image from the PH drilling noise records (Figure 5.6a) we

highlight four distinct reflection events. The events 1 through 3 coincide both in the

interferometric and active-shot images (Figures 5.6a and b, respectively; see support

also Figure 5.5). Reflector 2 (Figure 5.6) is associated with the SAF, because its lateral

position coincides with the lateral position of the surface trace of the SAF (marked

by a vertical solid line at 0 km in the background images in Figure 5.6). In both

the PH and MH images, the position of reflector 2 is consistent with the scattering

zone associated with the SAF zone from Chavarria et al. (2003). Even though our

images of the SAF (reflector 2, Figure 5.6) do not illuminate the fault all the way to

its point of intersection with the SAFOD MH, the change in dip of the SAF in the

active-shot image at approximately 1100 m depth is consistent with the intersection of

the MH with fault zone 4 (Figures 5.1a and S3b). Since the anomaly that represents

the SAF in the image by Chavarria et al. (2003) is caused by direct-wave energy

coming from microseismicity within the SAF, the relative positioning between the

SAF reflector in the MH active-shot image and the corresponding reflector in the

background image suggests that reflector 2 may be due to P-wave energy scattered

at the contact of the Franciscan rocks to the NE with the SAF zone to the SW
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(Solum et al., 2006; Boness and Zoback, 2006). The PH interferometric and MH

active-shot images resolve structures larger than approximately 75 to 100 m in size,

presenting higher resolution when compared to the previous images of the SAF at

Parkfield (Hole et al., 2003; Chavarria et al., 2003). The geometry of our experiments

(especially of the PH drill-bit records) is ideal for the broad-side imaging of the SAF,

complementing the previous Parkfield experiments (Hole et al., 2003; Chavarria et

al., 2003).

Although the reflector 1 is consistent between the PH interferometric image and

the MH active-shot image, we do not associate it to any known faults. The reason for

this is that there is no surface trace of a fault at the location of reflector 1; nor has a

major fault zone yet been intersected by the SAFOD MH after the SAF. If reflector

1 is indeed an artifact produced from the imaging procedures applied to both the PH

and the MH data, it was not reproduced by the numerical modeling of the SAFOD

MH data. Since the modeling in Figure 5.7 was acoustic (accounting only for P-

wave propagation), reflector 1 could be due to erroneous imaging of recorded P-to-S

converted waves. Note that our imaging procedures also assume that the medium

is acoustic, so any recorded converted waves will be imaged as artifact reflectors

placed farther than their P-wave counterparts. This, we believe, is what happens to

reflector 1; a P-to-S converted reflection perhaps related to the SAF P-wave reflector

at reflector 2 (Figure 5.6).

The fact that reflector 4 can only be seen in the PH interferometric image is not

necessarily inconsistent with the MH image because even if the reflector pertained to

a physical event, its location makes it mostly invisible for the MH active-shot image

(the reflector is located between the shot and most of the receivers in the MH array).

The location of reflector 4 in Figure 5.5a suggests a possible correspondence with the
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Figure 5.7. Acoustic numerical modeling of the SAFOD MH active-shot data. (a)
shows the structure of the reflectivity model used to generate the synthetic data. The
velocity model used is the same as the one used for imaging (Figure 1b in main text).
The black block in the reflectivity model in (a) represents the Salinian granite (see
Figure 1a in main text), whereas the grey structures to the left of the model generate
two vertical fault-like features. After applying the same imaging procedure as for the
field SAFOD MH data (Figure 5.5), we end up with the image in (b). The red arrows
mark the position of the target reflectors both in the model (a) and in the image
(b). The reflections of waves generated by the diffraction of energy in the corner of
the granite block appear as image artifacts (marked by yellow arrows). Without the
numerical model, these artifacts could potentially be misinterpreted as dipping fault
structures. The objective of the numerical modeling is not to closely replicate all
features of the data (Figure 2b in main text). Instead, the objective of the model
is two-fold: it helps us understand which portion of the subsurface is “illuminated”
by P-wave reflections in the active-shot experiment, and it gives us an idea of how
P-waves that are diffracted and/or guided by the granite structure may appear in the
image.
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SAFOD MH intersection with fault zone number 2 (Figures 5.1a and S3a). If such a

correspondence is true, then reflector 4 is likely to represent the contrast between the

Salinian granite and the sediments, which is bordered by fault zone 2 (Figure 5.1a).

Reflector 3 in Figure 5.6 is also associated with a fault zone. It is present in

both the PH interferometric and in the MH active shot images, and its location

coincides with the scattered energy observed by Chavarria et al. (2003) in their P-

wave migration images (see Figure 3C and 3B of their paper). We associate this

reflector with fault intersection number 4 (Figure 5.1a) in the SAFOD MH array

(Solum et al., 2006; Boness and Zoback, 2006). The location of the fault intersection

is close to the portion of the fault illuminated by the MH active-shot image (see

Figure 5.5b). Also, the fault image dips in the SW direction towards the point of

intersection between the SAFOD MH and fault number 4 (Figures 5.1a and S3b).

The location of this fault zone at reflector 3 coincides with a well-resolved localized

cluster of microseismic events detected both by surface records (Nadeau et al., 2004)

and by the PH array (Oye et al., 2004). The images in Figure 5.6 show considerably

higher resolution than the previous images from Chavarria et al. (2003) in imaging the

intermediate fault zone corresponding to fault number 4 (Figure 5.1a). The imaging

of this intermediate fault zone (and its subsequent intersection at the SAFOD PH) is

important to the understanding of the structure of the SAF system, especially because

there is no trace of this fault system at the surface. Since it is a blind fault (Yeats

and Hutfile, 1995; Talebian et al., 2004), determining the activity status of fault 3 is

critical in assessing its seismogenic risk. The existence of this feature interpreted from

two independent observations provides the basis for a better fault zone understanding

and its hazard assessment. Unknown blind faults have been the cause of major fatal

earthquakes, such as the 1994 Northridge earthquake (Yeats and Hutfile, 1995) and
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the 2003 Bam earthquake in Iran (Talebian et al., 2004).

The dip of the SAF reflector and of the intermediate fault reflector support

the interpretation of the SAF system being structurally characterized by a flower

structure (Figure 5.1a). Previous surface seismic profiling also suggested the presence

of intermediate fault zones (Hole et al., 2001) such as the one confirmed here. It

remains to be understood whether this intermediate faulting is associated with the

same flower structure as the SAF, potentially representing an earlier trace or an active

branch of the SAF, or if these secondary faults belong to a separate flower structure

(Chavarria et al., 2003). According to Solum et al. (2006), well casing deformation

was only observed at fault intersection 5 (associated to the SAF, Figure 5.1a). The

other four fault zones showed no signs of fault activity since so far there was no casing

deformation associated to them. If the imaged intermediate fault zone (reflector 3,

Figure 5.6) is indeed an inactive fault zone, it might well represent an earlier trace of

the SAF. On the other hand, the clusters of microseismic activity previously observed

(Nadeau et al., 2004; Oye et al., 2004) are likely associated to the imaged blind fault

zone (reflector 3, Figure 5.6), which suggests that this fault zone is likely to be an

active part of the current SAF system.

Other important factors for understanding fault activity and seismogenic poten-

tial are fault zone mineralogy, fluid content and pore-pressure. It has been previously

suggested that there may be high-pressured fluids within the SAF zone at Parkfield

(Unsworth et al., 2000; Unsworth and Bedrosian, 2004; Chavarria et al., 2003). Both

the SAF reflector and reflector 3 in Figure 5.6 are consistent with the lateral posi-

tioning of the known low resistivity anomaly inferred by magnetotelluric soundings

at Parkfield (Unsworth et al., 2000; Unsworth and Bedrosian, 2004). Indeed, the

analysis of the inferred fault material from the SAF and from the imaged interme-
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diate fault zone (Solum et al., 2006) shows a high concentration of clay minerals,

which are typically associated with low resistivity materials and with fluid-rich rocks.

Furthermore, the analysis of rocks from the deeper SAF Solum et al. (2006) also

showed the presence of serpentine, a mineral that could potentially generate fluid

seals within the SAF leading to the creation of high-pressured fluid pockets inside

the fault (Unsworth et al., 2000; Unsworth and Bedrosian, 2004). From the available

seismic data, it is not yet possible to determine if the observed fault reflections are

caused by fault-trapped fluids, by the contrast in material properties across the faults

(Solum et al., 2006) or by a combination of these factors.

Nonetheless, the understanding of the structure of the SAF system has gained

much from the imaging from the PH drill-bit noise and the MH active-shot exper-

iments conducted at SAFOD. Our current images from these experiments not only

provide better resolution in the structural definition of the faults within the SAF, but

were also played a decisive role in the characterization of a blind fault zone between

the SAFOD PH and the SAF. The high-resolution structural characterization of the

SAF system is critical to the understanding of fault-growth and earthquake mechan-

ics at Parkfield. The results we present here prove that imaging from noise can be

crucial for illuminating complex fault zones in areas where observations from active

experiments are insufficient. With the help of further continuous coring and analysis

of fault material from the SAFOD MH Phase 3 drilling (to be conducted Summer

2007), the nature of the observed fault reflections will be perhaps better understood.
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Chapter 6

TARGET-ORIENTED INTERFEROMETRY – IMAGING INTERNAL

MULTIPLES IN SUBSALT VSP DATA1

6.1 Summary

Seismic interferometry has become a technology of growing interest for imaging

borehole seismic data. We demonstrate that interferometry of internal multiples can

be used to image targets above a borehole receiver array. We use an interferometry

technique, based on representation theorems for perturbed media, that targets the

reconstruction of specific primary reflections from multiply reflected waves. In this

target-oriented interferometry approach, we rely on shot-domain wavenumber sepa-

ration to select the directions of waves arriving at a given receiver. We provide a

description of this method along with two conceptual applications, and compare it

to other approaches to seismic interferometry. Using a numerical Walk-Away VSP

experiment recorded by a subsalt borehole receiver array in the Sigsbee salt model,

we use the interference of internal multiples to image the salt structure from below.

In this numerical example, the interferometric image that targets internal multiples

reconstructs the bottom and top salt reflectors above the receiver array, as well as

subsalt sediment structure between the array and the salt. Because of the limited

source summation in this interferometry example, the interferometric images show

artifact reflectors within the salt body. We apply this method to a field Walk-Away

1Submitted to Geophysics.



156

VSP from the Gulf of Mexico. With the field data, we demonstrate that the choice

of shot-domain wavenumbers in the target-oriented interferometry procedure controls

the wavenumbers in the output pseudo-shot gathers. Target-oriented interferometric

imaging from the 20-receiver array recovers the top of salt reflector that is consistent

with surface seismic images. The interferometric images of the subsalt sediments

below the array shows a dip discrepancy with the active-shot WAW image. These

differences are attributed to the presence of artifacts in both images, as well as to dif-

ferences in shot/receiver geometry and uncertainties in the velocity model. The best

images from the field data are obtained from deconvolution interferometry, because

the pseudo-shots generated by cross-correlation contain the autocorrelation of the air

gun source function.

6.2 Introduction

Most of exploration seismic imaging is done from surface seismic records. In areas

of high structural complexity (e.g., near salt bodies), borehole seismic data may give

detailed subsurface information that cannot be obtained from surface seismic data.

Hornby et al. (2005) give an example where Walk-Away VSP data acquired in a

subsalt receiver array are used to image sediments below salt that are invisible with

surface seismic data. Another example is given by Grech et al. (2003), who use

Walk-Away VSP data to image geologic features in a complex compressional tectonic

setting where surface seismic is compromised.

Current techniques in the field of seismic interferometry (Curtis et al., 2006;

Schuster and Zhou, 2006) open possibilities for innovative uses of borehole seismic

data, because seismic interferometry reconstructs waves that propagate between re-

ceivers as if one of them acted as a source. Hence, with interferometry, it is possible
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to “create” pseudo-acquisition geometries that differ from the original physical ex-

periments. Schuster et al. (2004) used the concept of interferometry to migrate free-

surface reflections from Reverse VSP data. The Virtual Source method of Bakulin

and Calvert (2004, 2006) is used to image beneath a complex overburden from bore-

hole sensors placed in a horizontal well with no knowledge of the overburden model

parameters. In Chapters 4 and 5 we use drill-bit noise recordings along with a decon-

volution interferometry method to perform the broad-side imaging of the San Andreas

fault at Parkfield, CA. In the context of salt flank imaging, Willis et al. (2006) pre-

sented a numerical example demonstrating that diving waves can be used for the

interferometric imaging of near-vertical salt reflectors. Xiao et al. (2006) present a

model-based interferometric method to image transmitted P-to-S waves that can be

used for salt flank imaging.

Here, we use internal multiples in interferometry to reconstruct primary reflec-

tions. This type of interferometry is applicable, for example, to the imaging of struc-

tures located above a borehole receiver array using data from standard Walk-Away

VSP geometries. Such an interferometric imaging technique can be used to image salt

and subsalt structures from borehole receivers placed beneath the target reflectors.

Although no knowledge of model parameters is necessary for the interferometry of

internal multiples, this method relies on wavefield separation to select waves propa-

gating in specific directions between receivers (Chapter 2). For this reason, we refer

to this method as target-oriented interferometry. Apart from being suitable to image

features above the receiver array, target-oriented interferometry can also be tailored

to image below the array. In that case, our method is analogous to the Virtual Source

applications of Bakulin and Calvert (2006) and Mehta et al. (2007a). Bakulin and

Calvert (2006) rely on the isolation of a window around the direct arrival to separate
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the down- from the up-going waves. A similar wavefield separation is done by Mehta

et al. (2007a) using dual-wavefield summation. Our wavefield separation procedure

is based on selecting the directions of waves incoming at the receivers according to

their shot-domain wavenumbers. The interferometric imaging of features below the

receiver array using up- and down-going wavefield separation (Bakulin and Calvert,

2006; Mehta et al., 2007a) can be justified by the one-way reciprocity theorems de-

rived by Wapenaar et al. (2004). Such one-way theorems, however, cannot be used

for the interferometry of up-going internal multiples (excited by sources at the sur-

face) to reconstruct down-going single scattered waves. We use these waves to image

salt features from subsalt borehole arrays. To perform the interferometry of inter-

nal multiples we rely on the two-way representation theorems for perturbed media

derived in Chapter 2.

Imaging from multiples has been proposed by other authors in different con-

texts than we present here. Weglein and co-workers (2003, 2006) propose model-

independent imaging based on an inverse scattering series approach. Berkhout and

Verschuur (2006) compare the convolution-based multiple elimination methods (SRME)

to cross-correlation interferometry, and propose a weighted cross-correlation method

to construct primary reflections from surface-related multiples. With an approach

similar to that of Berkhout and Verschuur (2006), Hargreaves (2006) provides a field

data example of imaging from multiples in a shallow water environment. Although

these methods are not restricted to the processing surface seismic data, they are not

designed for targeting specific arrivals or portions of the image space. This is one of

the objectives of the interferometry method we describe here. Furthermore, the meth-

ods of Berkhout and Verschuur (2006) and Hargreaves (2006) focus on surface-related

multiples, whereas we focus on the imaging of internal multiples.
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We first describe how to manipulate recorded wavefields to generate interferomet-

ric data that targets specific arrivals, using the representation theorems of Chapter

2. Throughout this description, we give conceptual examples of the application of

target-oriented interferometry to image above and below the receiver array. Next, we

use the Sigsbee salt model to create a numerical subsalt Walk-Away VSP experiment.

With these synthetic data, we compare images from target-oriented interferometry

with those obtained from interferometry of the full recorded wavefields. Finally we

validate the use of internal multiples in the imaging of subsalt features from a field

Walk-Away VSP data acquired in the Gulf of Mexico. We use the field data to

give a detailed account of the effect of target-oriented interferometry in the pseudo-

shot gathers, as well as in the context of correlation-based and deconvolution-based

(Chapter 3) interferometry.

6.3 Target-oriented interferometry

In this section, we describe how to use interferometry to target the illumination

of specific regions in the subsurface. We decompose the recorded data in the frequency

domain as (Chapters 2 and 3)

u(rA, s, ω) = W (s, ω) [G0(rA, s, ω) +GS(rA, s, ω)] ; (6.1)

where s and rA are source and receiver locations, respectively, and ω is the angular

frequency. The recorded data u is given by the superposition of the unperturbed

impulse response G0 and its perturbation GS (Chapters 2 through 4). The function

W (s, ω) describes the excitation at s. Here, we assume that the medium perturbations

that give rise to GS are localized within the support of a volume P (Figure 6.1).

To generate interferometric data (Lobkis and Weaver, 2001; Wapenaar et al., 2004;
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Draganov et al., 2006), we cross-correlate the data measured at rA (equation 6.1) with

the data recorded at rB and integrate over the sources s, which gives (e.g., Curtis et

al., 2006; Larose et al., 2006)

∮

Σ

u(rA, s, ω)u∗(rB, s, ω) ds = 〈|W (s, ω)|2〉 [G(rA, rB, ω) + G∗(rA, rB, ω)] , (6.2)

when the integration is done over a closed surface Σ as illustrated by Figure 6.1.

According to this equation, interferometry reconstructs G(rA, rB, ω) (and its acausal

version), which is the response measured at rA as if the source is placed at rB (Wape-

naar et al., 2004; Bakulin and Calvert, 2004). Note that G in equation 6.2 is the

perturbed impulse response given by G = G0 + GS (equation 6.1). Equation 6.2 is

valid for arbitrarily heterogeneous media. For our purposes, it is convenient to assume

that both the unperturbed and perturbed portions of the medium (see Figure 6.1)

are heterogeneous. Also, multiple scattering may occur both in the unperturbed and

perturbed regimes (e.g., Figure 6.1a). The objective in our experiments, however, is

to image only GS: the waves scattered within the perturbation volume P (Figure 6.1).

These waves are included in the recovered response G(rA, rB, ω) in equation 6.2. Since

the pseudo-source at rA in equation 6.2 radiates energy in all directions, directly sep-

arating GS from G in right-hand side of equation 6.2 may not be straightforward

because waves in G0 and GS can have similar apparent wavenumbers (i.e., it is dif-

ficult to determine if an arrival comes from above or below the array). This is a

common problem, for example, for free-surface multiple suppression in OBC data

(Mehta et al., 2007a). To overcome this problem with borehole seismic data, we pro-

pose a method to manipulate the recorded wavefields before interferometry, producing

pseudo-sources that radiate most of the energy in a single preferential direction. This
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(a) (b)

Figure 6.1. Geometry of the perturbation approach to target-oriented interferometric
imaging. A large volume is bounded by the surface Σ, that contains medium per-
turbations that are restricted to the volume P (indicated by the grey-shaded areas).
Closed surfaces are denoted by the dashed lines. In both panels, u0 are unperturbed
wavefields, while uS are wavefield perturbations due to scattering within the volume
P. The solid lines illustrate stationary wave-paths. Two receivers, located at rA and
rB, are represented by triangles. The grey triangle denotes the receiver that acts
as a pseudo-source in the interferometric experiments. When the target is imaging
medium perturbations above the receivers, as in panel (a), I rely on waves excited
by sources over the surface σ1 (solid black line). In panel (b), interferometry targets
the reconstruction of up-going scattered waves from below the receivers. In this case,
I consider only waves generated by sources on the surface σ2. These Figures are
extended after Chapter 2.

direction is chosen such that the resulting interferometric data reconstructs only the

desired waves GS.

An alternative form of interferometry that targets the extraction of the wavefield

perturbation GS(rA, rB, ω), measured at rA and excited by a pseudo-source at rB is

(Chapter 2)

∫

σi

uS(rA, s, ω)u∗0(rB, s, ω) ds ≈ 〈|W (s, ω)|2〉GS(rA, rB, ω) ; (6.3)
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where the integration over sources is no longer conducted over the closed surface

Σ, but rather over a part of it, denoted by σi (e.g., σ1 or σ2 in Figure 6.1) which

is the i − th chosen segment of Σ. There are two important differences between

equations 6.2 and 6.3 (Chapter 2). First, the integrand in the left-hand side of equa-

tion 6.2 contains the correlation of perturbed wavefields u whereas in the integrand

in equation 6.3 we correlate the unperturbed wavefield u0(rB, s, ω) with the wavefield

perturbation uS(rA, s, ω) (which alone does not satisfy the wave equation). Second,

on the right-hand side of equation 6.2 we recover the causal and acausal wavefields

G(rA, rB, ω), while equation 6.3 recovers only the causal part of the wavefield pertur-

bation GS(rA, rB, ω).

In order for equation 6.3 to hold, the sources over σ1 must sample the stationary

points that yield the desired events in GS(rA, rB, ω) (Snieder et al, 2006; Chapter

3). Equation 6.3 is approximate because we neglect a volume integral that accounts

for the effect of medium perturbations that lie in the stationary path of unperturbed

waves (Chapter 2). The volume integral that is not present in equation 6.3 can

indeed be neglected by selecting waves from u0 whose path does not go through the

perturbation volume P (Chapter 2). Below we describe a method that selects waves

in u0 by wavefield separation.

The truncation of the surface integral (Wapenaar, 2006; Chapter 3) can lead to a

nonzero error in the wavefield reconstructed interferometry (Wapenaar, 2006; Chap-

ter 3). This may cause amplitude and phase distortions (Wapenaar, 2006; Chapter 3),

and can introduce spurious arrivals (Snieder et al., 2006; Chapter 3). Here, we con-

sider only sources over σi since they are the ones that sample the stationary source

points of the arrivals of interest (see below). Because stationary source points of

other arrivals that are not of interest are not sampled along σi, these arrivals are not
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reconstructed by equation 6.3.

The objective of the methodology we present is to use interferometry to target

the reconstruction of scattered waves GS for a particular geometry of the receiver

array and the region we desire to image (represented by the perturbation volume P).

Figure 6.1 presents two scenarios in which we perform target-oriented interferometry.

In the first scenario, in Figure 6.1a, the portion of the medium we wish to image (the

volume P) is above the receivers. To image the perturbations within P in Figure 6.1a

we rely on up-going scattered waves u0 that generate down-going wavefield pertur-

bations uS. An example of these arrivals is shown by the arrows in Figure 6.1a. The

stationary source points for the desired waves in Figure 6.1a are located along σ1.

Our second scenario, in Figure 6.1b, consists of a target perturbation volume P that

is below the receivers. In this case, we use for interferometry down-going unperturbed

waves u0 and up-going wavefield perturbations uS. This scenario is the same as in

earlier applications of the Virtual Source method (Bakulin and Calvert, 2006; Mehta

et al., 2007a). Typically, in active seismology experiments, sources are only available

over the surface of the Earth (or of the Ocean, in marine experiments). For this

reason, we assume in the experiments in Figure 6.1 that sources are only available on

the top portion of the surface Σ.

To perform target-oriented interferometry according to equation 6.3, we select

specific arrivals in u0 and uS (Figure 6.1) with a two-step procedure. The first step, as

explained above, is to select the portion of the surface Σ that contains the stationary

source points that correspond to the arrivals of interest. In the example in Figure 6.1a,

interferometry recovers the desired perturbations uS(rA, rB, ω) from the sources over

σ1; while sources over σ2 help recover the perturbations in Figure 6.1b. Note that it

is not necessary to know the shot coordinates, as long the waves radiated by the shots
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come from the surface segment σi. We choose the segment σi based on the relative

position of the receivers and the portion of the surface we wish to image (volume

P). For example, the sources over σ1 excite direct waves that propagate downward

and rightward in Figure 6.1a, that once reflected in the unperturbed medium are

recorded as the up-going waves u0 that are illustrated in the figure. In the case

of Figure 6.1b, the sources over σ2 are the ones that radiate energy directly down

towards the receivers, being thus suitable for reconstructing the desired scattered

perturbations from interferometry (see also Bakulin and Calvert, 2006; and Mehta et

al., 2007a). The second step in selecting the portions of the recorded wavefields that

are used for interferometry consists of wavenumber filtering and is discussed next.

The raw data recorded at the receivers for the sources over the chosen source

segment σi are the total wavefields u (equation 6.1). To do target-oriented interfer-

ometry using equation 6.3, it is necessary to separate the wavefields u0 and uS from

the recorded perturbed wavefields u (equation 6.1). Here, we separate u0 and uS from

u according to the direction of the incoming waves at a given receiver. The direction

of incoming waves, in the time-domain, can be inferred from the slopes of the arrivals

in the recorded shot gathers (i.e., for a fixed source and multiple receivers). In the

frequency-wavenumber domain, these slopes translate to the apparent shot-domain

wavenumbers, which we refer to as ks. The choice of which wavenumbers to use at

rA and rB varies from one experiment to another (see Figures 6.1 and 6.2).

Figure 6.2a describes the wavefield separation necessary to target the imaging of

scatterers above the receiver array, as in Figure 6.1a. In this case, keeping the negative

shot-domain wavenumbers at rB (left-hand side of Figure 6.2a) defines u0(rB, s, ω)

(equation 6.3), which contains mostly up-going incoming waves. This ensures that

the pseudo-source at rB (see equation 6.3) radiates mostly up-going energy. For
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the receivers that record the interferometric data, represented by rA, the choice of

incoming wave direction depends on the relative positioning between a given receiver

and the pseudo-source at rB. If the receiver is above the pseudo-source (top cartoon on

right-hand side of Figure 6.2a), waves with ks < 0 give uS(rA, s, ω) (see equation 6.3).

For rA below rB, we use waves with ks > 0 to extract uS(rA, s, ω). The interferometry

of the wavefields separated according to Figure 6.2a is suitable for targeting the

imaging of structures above the receivers as in Figure 6.1a because it generates a

pseudo-shot gather that radiates energy towards the upper-right corner of the model.

To image below the receiver array, as in Figure 6.1b, wavefield separation can be

done according to Figure 6.2b. For the pseudo-source at rB, we select the down-going

incoming waves u0(rB, s, ω) excited by the sources over σ2 (Figure 6.1b) by preserving

arrivals with ks > 0 (left-hand cartoon in Figure 6.2b). Keeping waves with ks < 0

at the recording receivers in the interferometry experiment yields uS(rA, s, ω) (right-

hand cartoon in Figure 6.2b). This criterium for the extraction of uS(rA, s, ω) from

u(rA, s, ω) is the same for receivers that are either above or below the pseudo-source.

For that reason we represent by rA receivers that are both above and below rB in

Figure 6.2b. After wavefield separation as in Figure 6.2b, using uS(rA, s, ω) and

u0(rB, s, ω) for different rA positions results in a pseudo-shot gather that radiates

energy down toward the perturbation volume P (Figure 6.1b). As mentioned above,

the case of Figure 6.1b is also the objective of the Virtual Source method (Bakulin

and Calvert, 2006; Mehta et al., 2007a). These studies rely on wavefield separation

techniques that are different from ours. Bakulin and Calvert (2006) window the

data in the time-domain receiver gathers, using a small window containing the direct

arrival as u0, and the remainder of the data as uS. Along with windowing, Mehta

et al. (2007a) use a method based on the summation of vertical and hydrophone
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(b)(a)

Figure 6.2. Examples of wavefield separation for target-oriented interferometry. The
wavefield u0 and the perturbation uS are extracted from the recorded perturbed wave-
field u by wavefield separation. Wavefield separation is implemented by wavenumber
filtering (e.g., by f − k filtering) in the shot domain. Receivers are represented by
triangles. The receiver that acts as a pseudo-source (located at rB) is indicated
by the grey triangles. The arrows indicate the direction of waves arriving at the
receivers. The directions parallel and perpendicular to the receiver line define a co-
ordinate frame indicated by the dashed lines. In this coordinate frame, ks is the
shot-domain wavenumber of a given recorded wave. Panel (a) illustrates the separa-
tion of wavefields necessary for target-oriented interferometric imaging in the context
of Figure 6.1a. This is one particular choice of pseudo-sources that radiate energy
towards the upper right-hand portion of the medium above the array. The wavefield
separation in panel (b) is designed for the imaging experiment in Figure 6.1b. This
procedure can be thought in terms of selecting a portion of the Ewald sphere (Ewald,
1962).
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components in 4-component ocean bottom cable (OBC) data to separate down- from

up-going wavefields, and treat them as u0 and uS, respectively.

Target-oriented interferometry using wavefield separation by shot-domain wavenum-

ber as shown in the examples in Figure 6.2 can be adapted to remote sensing geome-

tries other than those illustrated by Figure 6.1. The choice of which sources to use and

how to separate waves at rA and rB (equation 6.3) varies with each particular case.

Although no specific knowledge about the model is required by equation 6.3, a priori

information about relative location of the image target and the receiver array helps

determining an appropriate set of source locations σi and as well which wavenumbers

to use. The result of target-oriented interferometry can also be explained through the

concept of the Ewald Construction (Ewald, 1962). Used in particle physics, with ap-

plications in crystallography and electronic microscopy, the Ewald Construction shows

explicitly the relationship between incident and diffracted wavenumbers through the

Ewald sphere (Ewald, 1962). The wavenumber selection at rB corresponds to the rota-

tion of the Ewald sphere around the origin of its reciprocal space (Ewald, 1962), which

translates into exploring different excitation directions. Selecting the wavenumbers

at rA results on selecting a subset of possible diffractions from the Ewald sphere.

While our method can be applied to a variety of geometries, we discuss the

examples in Figures 6.1 and 6.2 because they are applicable to the data examples

we provide. Although the data from interferometry carries the average source power

spectra (see equations 6.2 and 6.3), it is possible, in principle, to remove the effect

of the excitation function from the reconstructed data. When estimates of the power

spectra of the source function are available, these can be used to extract the impulse

response from interferometry (Wapenaar and Fokkema, 2006; Mehta et al., 2007a).

Interferometry by deconvolution (Chapter 3) is an option for reconstructing an
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interferometric impulse response when estimates of the source power spectra are not

available. In particular, deconvolution interferometry can be more effective than its

correlation-based counterpart in reconstructing impulsive pseudo-sources when the

input excitation consists of a complicated, unknown waveform (Chapters 3 and 4).

This is the case when the excitation is comprised of waves coming from the Earth’s

subsurface (Snieder and Şafak, 2006; Mehta et al., 2007b). This may also be the

case when using internal multiples to do interferometry. Note, for example, that the

excitation recorded by rB in Figure 6.1a consists of a superposition of primaries and,

to a lesser extent, of higher-order multiples. Consequently, the signal correspond-

ing to this excitation can be a complicated incoherent function. Here, apart from

using correlation interferometry, we rely on a deconvolution interferometry method

(Chapter 3) to create impulsive images from our data examples. Although in this

Section we describe target-oriented interferometry with cross-correlations, the wave-

field separation procedure is the same when using deconvolutions (Chapter 3). In the

next two Sections we describe numerical and field data examples of target-oriented

interferometric imaging in subsalt environments.

6.4 Numerical example

We present an example that consists of a subsalt Walk-Away (WAW) VSP nu-

merical experiment using the Sigsbee velocity model. The purpose of this numerical

example is to use the subsalt WAW VSP data to image the Sigsbee salt canopy from

below by using the interference of internal multiples, analogous to the example in Fig-

ure 6.1. Figure 6.3 illustrates the model as well as the experiment. The experiment

simulates the recording of shots placed 500 ft deep, at 100 evenly-spaced receivers in

a deviated borehole (Figure 6.3). The first receiver is placed at x = 48000 ft and at a
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Figure 6.3. Geometry of the numerical experiment with the Sigsbee model. The figure
displays the model structure, colorcoded by acoustic wavespeed. A receiver array
with 100 sensors is set beneath the salt body, in a 45o inclined borehole (solid line
with triangles). Shots are placed in a horizontal line 500 ft below the water surface,
and extend laterally towards the left-hand side of the receiver array, as indicated
by the red arrow. Interferometry is used to image the salt with the receiver array
by reconstructing down-going primary reflections propagating between the receivers
from internal multiples. The wavepath of one such multiple is indicated by the dashed
black arrow.

depth of 16000 ft; while the lateral and depth coordinates of the last receiver are 52950

ft and 20950 ft, respectively. The shots start at x = 10000 ft with a shot interval of

125 ft. The source waveform consists of a Ricker wavelet with 12 Hz peak frequency.

In our experiments, we consider shots placed from x = 10000 ft to x = 53500 ft (this

corresponds to the surface σ1 in Figure 6.1a).

Interferometric images using the full recorded data (with no wavefield separation)

are shown in Figure 6.4. The imaging in these examples is done by wavefield extrap-

olation in a slant coordinate system that conforms with the receiver array. Wavefield



170

extrapolation is done by the Split-step Fourier Phase-shift-plus-interpolation method

(Biondi, 2006). Figure 6.4a is generated using cross-correlation interferometry while

Figure 6.4b is obtained from deconvolution interferometry after source summation

(Chapter 3). Although the source function is suppressed by deconvolution interferom-

etry (Figure 6.4b), the difference between the images in Figure 6.4 is not substantial

because the original source function is a band-limited pulse. Significant differences

between correlation- or deconvolution-based interferometric images exist when the

source excitation is complicated and poorly known (see next Section; and also Chap-

ter 3). The images in Figure 6.4 show an accurate reconstruction of the salt canopy,

especially towards the right-hand side of the model where the salt flanks are dipping.

Above the receiver array, the imaged salt is characterized by reflectors that are weak

compared to the dipping salt flanks. The images of the sediments between the salt

the receiver array are distorted and do not reproduce the horizontal bedding of the

model (Figure 6.3).

After applying the target-oriented interferometry method based on wavefield

separation illustrated by Figure 6.2a, we obtain the images in Figure 6.5. We adapted

the wavefield separation in Figure 6.2a to include also positive numbers recorded at

rA above rB. This ensures the array in the interferometric experiment also records

wave that come from directly above the receivers. Note that although the original

source and receiver geometry is the same for the images in Figures 6.4 and 6.5 is the

same, the portion of the model illuminated by these two sets of images is substantially

different. As discussed in the previous Section, the pseudo-sources reconstructed by

target-oriented interferometry are designed to radiate energy upward (Figures 6.1a

and 6.2a). Hence, the images in Figure 6.5 illuminate the model predominantly

in the area above the receiver array. These images show bright reflectors at the
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(b)(a)

Figure 6.4. Images obtained from interferometry of the data acquired in the numerical
experiment (Figure 6.3). The images, in grey scale, are superposed on the velocity
model from Figure 6.3. The images are based on cross-correlation interferometry
(panel a), and on deconvolution interferometry (panel b). I used the full wavefield
recorded at the receivers to reconstruct the interferometric shot gathers from which
these images are obtained.

bottom and top salt above the array, which appear as dim reflectors in the images in

Figure 6.5. Figure 6.5 shows that the target-oriented interferometric images recover

the structure of the subsalt sediments which are not seen in Figure 6.4. The reflector

that corresponds to the dipping top salt (right-hand side of images in Figure 6.4)

is not present in the images in Figure 6.5. This reflector is absent in the target

oriented interferometric images because it is imaged in Figure 6.4 from reflections

reconstructed from diving waves that arrive at the receiver array with positive shot-

domain wavenumbers. Since the wavefield separation builds the filter u0 from ks < 0,

reflectors from such diving waves are not present in Figure 6.5.

As in Figure 6.4, there is little difference between the image obtained from cor-

relation interferometry and the one from deconvolution interferometry (Chapter 3).

This is because the excitation function used in the modeling is a band-limited pulse

(see above). There are artifact reflectors within the salt that appear more strongly
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(b)(a)

Figure 6.5. Images obtained from target-oriented interferometry of the Sigsbee Walk-
Away VSP data (Figure 6.3). Target-oriented interferometry is implemented with the
wavefield separation approach described in Figure 6.2a, adapted to include waves ar-
riving from directly above the receivers. As in Figure 6.4, the image in (a) is obtained
from cross-correlation interferometry and the image in (b) from deconvolution inter-
ferometry. The reflectors in these images come from single-reflections reconstructed
by interferometry mostly from internal multiples. This numerical experiment is anal-
ogous to that shown in Figure 6.1a.

in Figure 6.5 than in Figure 6.4. These artifacts come from the spurious arrivals in-

troduced by truncation of the surface integral in interferometry (Snieder et al., 2006;

Wapenaar, 2006; Chapter 3). Along with the reflections of interest, these spurious

arrivals are enhanced by the wavefield separation procedure (Figure 6.2a). With this

numerical example, we illustrate the effect of designing interferometric sources that

illuminate a particular portion of the model. We discuss the result of target-oriented

interferometry in the pseudo-shot gathers using the field data examples in the next

Section.

6.5 Gulf of Mexico subsalt VSP data

The field Walk-Away VSP data we present here was acquired by BP in the Gulf

of Mexico, and has been previously used to image subsalt sediments by Hornby et
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al. (2005). The experiment geometry, shown in Figure 6.6, is similar to that of the

numerical example we discuss in the previous Section. In the Gulf of Mexico data,

the data was recorded by an array of 20 three-component receivers located below the

salt canopy, in a well deviated from the vertical by approximately 40o (Figure 6.6a).

The top-most receiver has coordinates x = 0 ft and depth = 21516 ft; and the bottom

receiver is at x = 910 ft and depth = 23180 ft. Figure 6.6b shows the shot-receiver

geometry in plane-view (the N-axis in the Figure points toward the geographic North).

Here, we refer to the receivers in the array, from top to bottom, as Receivers 1 through

20.

Our objective with these field data is to demonstrate the target-oriented inter-

ferometry technique as in the examples in Figures 6.1 and 6.2. Using the Sources A

(Figure 6.6b) and wavefield separation according to Figure 6.2a, we image the sub-

surface above the array, as illustrated by Figure 6.1a. The Sources B, along with

the wavefield separation described in Figure 6.2b, yields an interferometric image

targeted at the medium below the array that is shorter than that of the Sigsbee nu-

merical example, analogously to Figure 6.1b. With a 20-receiver array that is shorter

than that in the numerical example (see previous Section), interferometry generates

20 pseudo-shot gathers, each recorded by 19 receivers. Because the receiver array is

short (Figure 6.6a), the interferometric images have a small aperture compared to the

active-shot images from surface seismic or from the WAW VSP data (Hornby et al.,

2005).

We show the data recorded by the vertical component of motion of Receiver 1

for all the shots (Figure 6.6b) in Figure 6.7a. After separating waves with negative

wavenumbers in the shot domain (ks < 0; see Figure 6.2), and sorting the data

recorded by Receiver 1, we obtain the gather in Figure 6.7b. Keeping the positive
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(a) (b)

Figure 6.6. Geometry and acquisition of the Walk-Away VSP field data. The velocity
model derived from surface seismic is shown in (a). Receivers are placed in a deviated
Ill below the salt canopy, as indicated by the black triangles in (a). A plane view
of the shot-receiver acquisition geometry is given by (b). Shot positions are denoted
by blue circles, while receiver locations are represented by red triangles. In panel
(b), the coordinate frame is centered on the location of the shallowest receiver. N

is distance oriented toward the North; E is Eastward oriented. The orientation of
the velocity profile in (a) coincides with that of the WAW line in (b). The lateral
distance in (a) is also measured with respect to the location of the shallowest receiver,
along the direction of the acquisition plane. The arrows in (b) indicate which sources
are used for controlling the illumination of the interferometric data. Sources A (in
red) correspond to the sources over σ1 in the experiment in Figure 6.1a. Sources B
(in green) are the ones that contribute to imaging below the array (source over σ2;
Figure 6.1b).
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Figure 6.7. The effect of wavefield separation on receiver gathers from field data.
The original data recorded at receiver 1 (shallowest receiver in Figure 6.6a) is shown
in panel (a). The receiver gather in panel (b) only contains waves with ks < 0
(see Figure 6.2). The data in (c) come from the positive wavenumbers in the shot
domain (ks > 0). The black arrows highlight portions of the data for which wavefield
separation has a visible effect. The red box outlines the portion of the data that
corresponds to Sources A (Figure 6.6b), while the data inside the green box is excited
by Sources B.

wavenumbers in the shot-gathers (ks > 0) yields the receiver gather in Figure 6.7c.

By comparing Figures 6.7a and 6.7b (see arrows in the Figures), we observe that the

wavefield recorded at Receiver 1 for ks < 0 (Figure 6.7b) differs from the original

record (Figure 6.7a). On the other hand, the receiver gather with only ks > 0 in

Figure 6.7c is similar to the gather in Figure 6.7a. The fact that the gather with

ks > 0 is more similar to the original recorded data than the gather with ks < 0

suggests that the recorded data is dominated by waves with ks > 0. This is because

the receiver array is below the sources and the salt, so the direct wavefield and some

of its interactions with salt are recorded by the receivers as down-going waves, for

which ks > 0.
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After wavefield separation, whose effect is illustrated by Figure 6.7, we generate

pseudo-shot gathers at all receiver locations. Interferometric shot gathers with the

pseudo-shot at Receiver 10 are shown in Figures 6.8 and 6.9. The pseudo-shot gathers

in Figure 6.8 are produced from correlation interferometry, as in equations 6.2 and 6.3.

In Figure 6.9, we use deconvolution interferometry where deconvolution is done after

stacking over sources (Chapter 3). This method consists on deconvolving each pseudo-

shot from correlation interferometry with its zero-offset trace. Hence, each panel in

Figure 6.9 is the result of taking the data in the corresponding panel from Figure 6.8

and deconvolving it with its trace at Receiver 10 (Chapter 3). We show the data from

Receiver 10 because, since it is the receiver in the middle of the array, it illustrates

best the effect of target-oriented interferometry in the pseudo-shot gathers.

The data in Figures 6.8a and 6.9a are reconstructed using all sources (Fig-

ure 6.6b), along with both positive and negative shot-domain wavenumbers. The

pseudo-shot gathers in Figures 6.8a and 6.9a contain both positive and negative

wavenumbers in the pseudo-shot domain. Note that the pseudo-shot in Figure 6.8a

is dominated by positive wavenumbers. This is because the energy in receiver data

(Figure 6.7) is dominated by the down-going waves with ks > 0 (see discussion above).

The moveout character (i.e., the pseudo-shot wavenumbers) varies between the three

panels in Figures 6.8 and 6.9. Figures 6.8b and 6.9b, the pseudo-shot data has posi-

tive wavenumbers for receivers that lie below Receiver 10 (Receivers 11 through 20),

and negative wavenumbers for the receivers lying above Receiver 10 (Receivers 1

through 9). This is a consequence of the choice of ks used to separate the wavefield

perturbations uS (see Figure 6.2a). Using ks < 0 for rA above rB, results in negative

pseudo-shot wavenumbers for the receivers above Receiver 10 (Figures 6.8b and 6.9b).

Likewise, taking ks > 0 for rA below rB results in positive pseudo-shot wavenumbers
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Figure 6.8. Interferometric shot gathers with pseudo-shot at receiver 10, reconstructed
with correlation interferometry. The pseudo-shot gather in (a) results from correlat-
ing the full wavefields from all sources (Figure 6.6b). After performing wavefield
separation according to Figure 6.2a and using the data from Sources A for interfer-
ometry, gives the pseudo-shot gather in (b). Panel (c) comes from the interferometry
of the data from Sources B, after wavefield separation as in Figure 6.2b. All data are
muted for the removal of the direct wave.
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Figure 6.9. Pseudo-shot gathers from deconvolution interferometry. The input data in
panels (a), (b) and (c) is the same as that in Figures 6.8a, b and c, respectively. The
data in (a) is reconstructed from the full wavefield from all sources (Figure 6.6b).
Sources A (Figure 6.6b) along with wavefield separation according to Figure 6.2a
are used to obtain the gather in (b). When applying the wavefield separation in
Figure 6.2b to Sources B, I get the data in (c) after deconvolution interferometry.
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at the receivers that are lower than Receiver 10. The slopes in the pseudo-shot gath-

ers are thus controlled by the recorded shot-domain wavenumbers at the receivers in

the interferometric experiment (see Figure 6.2). Because of this, the choice of ks < 0

for the separation of uS (Figure 6.2b) in Figures 6.8c and 6.9c results in only negative

pseudo-shot wavenumbers. Comparing panels b and c with panel a in Figures 6.8

and 6.9 shows how wavefield separation by shot-domain wavenumbers (Figure 6.2)

can be used to target specific arrivals in the data reconstructed by interferometry.

Unlike the numerical example in the previous Section, the data obtained from

deconvolution interferometry is wider-band compared to that resulting from correla-

tion interferometry (compare panels in Figure 6.8 with those of Figure 6.9). The data

reconstructed by deconvolution interferometry is impulsive while correlation interfer-

ometry produces pseudo-shots that have the imprint of the autocorrelation (Chapter

3; Wapenaar and Fokkema, 2006). In our case, the wavefield in the field data was

generated by marine air gun sources. Hence, the data in Figure 6.8 contains the

autocorrelation of the air gun source function while the data in Figure 6.9 does not.

Mehta et al. (2007a) also observed the presence of this autocorrelation in the in-

terferometry of marine OBC data. In their case the autocorrelation excitation was

removed with an independent estimate of the air gun source function. Here, we rely

on deconvolution interferometry (Chapter 3) to reconstruct impulsive pseudo-shot

data (Figure 6.9) because an estimate of the air gun autocorrelation is not available.

We migrate all pseudo-shot gathers using shot-profile reverse-time migration

(Baysal et al., 1983). Each of the panels in Figure 6.10 is the result of stacking the

migrated images from pseudo-shots placed at every receiver in the array. The middle

panels in Figure 6.10 are from pseudo-shots designed to radiate energy upward (see

Figure 6.2a). Because of this, the images in Figure 6.10b and e have brighter ampli-
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tudes above the array, compared to Figures 6.10a and d. Although the pseudo-sources

that result in Figures 6.10b and e radiate energy upward (Figure 6.2), the salt above

the array reflects much of the radiated energy downward. This explains the image

artifacts below the receiver array in Figure 6.10b and e. Furthermore, since wavefield

separation is done by f-k filtering, the small aperture of the array introduces a bias in

the wavefield separation. This bias can yield cross-talk (e.g., Wapenaar and Fokkema,

2006) between waves propagating in different directions and that contributes to en-

ergy below the array in Figure 6.10b and e. The right-hand panels in Figure 6.10 are

from interferometric sources that radiate energy downward (Figure 6.2b). This results

in images (Figures 6.10c and f) that have most of the energy concentrated below the

array. Panels a and d in Figure 6.10 result from migrations with the velocity model

in Figure 6.6a.

We removed the top of salt (i.e., replaced sediment above the salt with salt

velocity) in the upper right-hand corner of Figure 6.6a to generate the images in

the middle and right-hand panels in Figure 6.10. The absence of the salt top in

the velocity model ensures that top salt reflectors are not artifacts introduced by

the salt/sediment contrast in the model. The influence of the bottom salt velocity

contrast can be seen in all images in Figure 6.10 where the reflectors in the lower right-

hand quadrant of the images terminate abruptly. The image aperture in Figure 6.10

is controlled by the geometry of the receiver array, since receivers act both as sources

and receivers in interferometry. Thus, since the array is relatively small (Figure 6.6a),

the circular patterns in the images are artifacts of the migration operator where the

subsurface is not sampled by specular reflections.

To facilitate the interpretation of the interferometric images in Figure 6.10 we

isolate the portions of the subsurface that are physically sampled by the images in Fig-
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(d) Deconvolution: Full−wavefield

(a) Correlation: Full−wavefield

(e) Deconvolution: Targeted upward

(b) Correlation: Targeted upward (c) Correlation: Targeted downward

(f) Deconvolution: Targeted downward

Figure 6.10. Comparison between images after reverse-time migration, with and
without target-oriented interferometry. The images are the result of stacking the
shot-profile migrations of the pseudo-shots at every receiver. The images in the
left-hand panels (a and c) correspond to using all sources and the full wavefield for
interferometry; the images in the center panels (b and e) are from pseudo-sources
that radiate energy upward (as in Figure 6.1a; wavefield separation is done according
to Figure 6.2a). The images in (c) and (f) are the result of reverse-time migration of
pseudo-sources designed to radiate energy downward (see also Figures 6.1b and 6.2b).
Images on the top panels result from correlation interferometry, and the bottom
images are obtained with deconvolution interferometry. The images correspond to the
same portion of the subsurface shown by the model in Figure 6.6a. Image aperture
is controlled by the geometry of the receiver array (Figure 6.6a).



182

(a) (b) (c)

Figure 6.11. Interferometric images of the upper-right portion of the subsurface above
the receiver array (see Figure 6.6a). The images are superposed on the velocity model
estimated from surface seismic data. The blue line represents the receiver array. The
image in (a) is extracted from Figure 6.10d and corresponds to using the full wavefield
from all sources in seismic interferometry. The images in (b) and (c) are targeted at
reflectors above the array (see Figures 6.1a and 6.2a). The images in panels (a)
and (b) are from deconvolution interferometry (extracted from Figures 6.10d and e,
respectively); and the image in (c) is from correlation interferometry (Figure 6.10b).
The red arrows indicate the top of salt interpreted from surface seismic (Figure 6.6a).

ures 6.11 and 6.12. For spatial reference, we superpose the interferometric images over

the velocity model estimated from surface seismic data (background in Figures 6.11

and 6.12) and indicate the position of the receiver array (blue line). The image from

deconvolution-based target-oriented interferometry (Figure 6.11b) recovers the reflec-

tor corresponding to the top of salt inferred from surface seismic. This reflector is

not visible in Figures 6.11a and 6.11c. Wavefield separation (see Figure 6.2a) is nec-

essary to separate the events that illuminate the top salt reflector in Figure 6.11b.

Although Figure 6.11c is also a product of target-oriented interferometry, the top salt

reflector is obscured by the autocorrelation of the air gun source function, mapped

onto the image. The image in Figure 6.11b comes from deconvolution interferometry,

where the pseudo-shots are approximately impulsive and result in an impulsive image

(Chapter 3).
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The images in Figure 6.12 show how wavefield separation in interferometry can

be used to image beneath the receiver array. This application is analogous to the

Virtual Source method by Bakulin and Calvert (2006) and by Metha et al. (2007).

Our images of the subsalt sediments illuminate predominantly the subsurface portion

near the salt bottom. The sediments immediately below the array could not be

imaged by interferometry, unlike the cases of Bakulin and Calvert (2006) or Mehta et

al. (2007a). This happens because the salt canopy, immediately above the receiver

array, acts as a major wave guide. As such, the salt directs most of the down-

going energy from the sources at the surface, along the salt-sediment interface. This

phenomenon accounts for the fact that subsalt reflectors in Figure 6.12b and d are only

illuminated close to the bottom of the salt. As with Figure 6.11, the target-oriented

image from deconvolution interferometry, Figure 6.12b, provides the best image of

the subsalt sediments. Note that the subsalt reflectors in Figures 6.12a and c have

a circular pattern characteristic of the migration operator. Instead, the reflectors in

Figure 6.12b are better focussed, with a flatter character, and it differs in dip from

the images in panels a and c. The reasoning for which the image in Figure 6.11b

is superior to a and c is the same as given in our discussion about Figure 6.11 (see

above).

When comparing the interferometric image of the subsalt sediments (Figure 6.13a)

with the 2D WAW VSP image (Figure 6.13b; Hornby et al., 2005) we find that the

sediment dips are different between these two images. Since the subsalt illumina-

tion is poor, as seen in the interferometric images and in the surface seismic data

(Hornby et al., 2005), the differences in the experiment geometry account for some

of the differences in the images in Figure 6.13. In the interferometry experiment, the

source/receiver array is relatively small and the reflectors are close to the array, so the
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(a) (b) (c)

Figure 6.12. Interferometric images of the lower-right portion of the subsurface below
the receiver array (blue line). As in Figure 6.11, the images are superposed on the
velocity model from surface seismic (Figure 6.6a). The image in (a) is obtained from
interferometry of the data with no wavefield separation, using all available sources.
Interferometry is designed to target the reflectors below the array (see Figures 6.1b
and 6.2b) in the images in (b) and in (c). The images in (a) and (b) are the result
of deconvolution interferometry while the image in (c) comes from correlation inter-
ferometry. The images in (a), (b) and (c) are extracts from Figures 6.10d, f, and c,
respectively.

migration operator artifacts in Figure 6.13a have a more circular shape compared to

those in Figure 6.13b. The operator artifacts in Figure 6.13b look flatter than those in

Figure 6.13a because the sources are placed far from the receivers at the sea surface.

Also, the images in Figure 6.13 illuminate different portions of the subsurface because

the shot/receiver geometry is different. Nonetheless, for the correct velocity model

both images should display similar structures were their illumination zones coincide.

The difference in the dips of subsalt reflectors close to the salt bottom may be related

to uncertainties in the velocity model estimated from surface seismic. This is difficult

to settle given the size of the receiver array and the poor illumination below the salt.
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Figure 6.13. Comparison between subsalt images from interferometry, in panel (a),
and (b) from active-shot migration of the full Walk-Away VSP data (see Figure 6.6b
for the geometry). Panel (a) is the same as the Figure 6.12b. The image in panel (b)
is the result of migration by wavefield extrapolation (Hornby et al., 2005), and only
images below the receiver array.
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6.6 Discussion and conclusions

We present an interferometry technique based on wavefield separation in the

shot-domain that targets the reconstruction of specific arrivals in the interferometric

shot gathers. We promote that this target-oriented interferometry technique can be

used to reconstruct single-reflected waves from internal multiples. Such a reconstruc-

tion can be applied, for example, to the imaging of subsalt features above receiver

arrays in subsalt in Walk-Away VSP experiments. Our target oriented interferom-

etry technique is based upon two-way representation theorems derived for acoustic

perturbed media in Chapter 2. The application of the technique consists in manipu-

lating the recorded data to separate unperturbed waves at the receiver that acts as a

pseudo-source, and wavefield perturbations at the receivers that record the interfer-

ometric experiment. We separate these wavefields according to the directions of the

waves incoming at a given receiver; i.e., according to the shot-domain wavenumber.

We discuss the application of target-oriented interferometry to image the medium

above a receiver array as well as below the array.

Using the Sigsbee salt model, we illustrate how interferometric illumination can

be controlled using wavefield separation along with the appropriate choice of sources

to be included. The numerical experiment consists of a large-offset Walk-Away VSP

recorded at a deviated 100-receiver array placed below the salt. Seismic interferometry

with no wavefield separation yields an image of the salt body which is well defined

in the dipping salt flanks to the right-hand side of the array. These reflectors are

mainly sampled by diving waves, analogously to the numerical experiment by Willis

et al. (2006). The images obtained from target-oriented interferometry recover the

reflectors at the top and base of salt located immediately above the receiver array.

These images also recover a portion the subsalt sediment structure that cannot be
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retrieved by the interferometry of the full recorded wavefields. In the Sigsbee example,

the target-oriented interferometry procedure reconstructs down-going single-scattered

waves from up-going internal multiples recorded in the original experiment.

We also use a field Walk-Away VSP data acquired in the Gulf of Mexico (Hornby

et al., 2005) to test the target-oriented interferometry method. The data were

recorded in a 20-receiver subsalt array in a deviated well. The acquisition geome-

try is similar to that of the Sigsbee numerical experiment. With the field data, we

illustrate that the choice of shot-domain wavenumbers, at the receivers that record

the interferometric data, controls the wavenumbers in the pseudo-shot gathers. This

phenomenon can be explained using Ewald’s diffraction sphere (Ewald, 1962), where

the choice of diffracted wavenumbers dictates which portion of the scatterers will be

imaged. Because the air gun excitation in the field data is not impulsive, we rely

on deconvolution interferometry after source summation (Chapter 3) to reconstruct

impulsive pseudo-shot data. Interferometric shot gathers generated from correlation

interferometry show an imprint of the air gun autocorrelation that also maps onto the

image domain. When an independent estimate of the air gun autocorrelation is avail-

able, it can be deconvolved directly from the correlation-based pseudo-shot gathers

(Mehta et al., 2007a). Using wavefield separation to design pseudo-shots that radi-

ate energy upward, we image the top of salt from the receiver array using recorded

internal multiples. This top of salt reflector is not reproduced by the image from

interferometry of the full recorded wavefields. Furthermore, we use the subsalt VSP

data to demonstrate how interferometry can be manipulated to target the subsurface

below the array. The interferometric image of subsalt reflectors and the active-shot

image from the WAW VSP show events with differing dips. This difference can in

part be accounted by the differences in the recording geometry and subsalt illumi-
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nation between the two experiments. Additionally, we note that the velocity model

used to produce these images was estimated from surface seismic. The WAW VSP,

and especially the interferometric data are more sensitive to local perturbations in

the subsalt velocities near the array than the surface seismic data. Hence, an “ac-

ceptable” velocity model for the imaging of surface seismic data may not be adequate

for the imaging of the WAW VSP and the interferometric data. It is thus possible

that the differences between the WAW VSP and interferometric images are caused

by the uncertainty in the velocity model estimated from surface seismic.

The target-oriented interferometry technique we discuss here is approximate. Its

first approximation lies in the truncation of the source integration in the generation of

the pseudo-shot gathers. This truncation leads to the introduction of spurious events

that behave like multiples (Snieder et al. 2006; Wapenaar, 2006; Chapter 3). Some

of these spurious multiples may be mapped onto coherent reflectors in the interfer-

ometric images. We observe this in the Sigsbee numerical VSP experiment, where

the spurious multiples are imaged as artifact reflectors within the salt body. Our

interferometry procedure is also approximate because it neglects a volume integral of

the medium perturbations required by the interferometry method in perturbed me-

dia (Chapter 2). This approximation leads to the reconstruction of interferometric

shots that are kinematically correct but with distorted amplitudes. Therefore, target

oriented interferometry as we present here is suitable mostly for structural imaging.

Wavefield separation of shot-domain wavenumbers to construct pseudo-shot gath-

ers that radiate the energy downward is similar to the Virtual Source method by

Bakulin and Calvert (2006). Bakulin and Calvert (2006) perform wavefield separa-

tion by windowing the data to separate the direct arrival from the rest of the data.

Their method, based on separating the direct arrival, practically eliminates unwanted
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spurious events, but can only be applied to image below the array and requires picking

the data. Also using the Virtual Source method, Mehta et al. (2007a) separate up-

from down-going waves using dual-field (4-component) measurements in OBC data.

The wavefield separation method by Mehta et al. (2007a) could potentially be applied

to different imaging geometries, such as for the imaging with internal multiples as we

propose here. That would require that the VSP data were acquired with dual-field

sensors.

The interferometric experiments we present in this paper are not necessarily re-

stricted to active-shot VSP experiments and P-wave imaging. The same experiments

could be conceived in the context of passive seismic measurements (e.g., Draganov

et al., 2006) or in the interferometric imaging of drill-bit noise records (Poletto and

Miranda, 2004; Chapter 4). Wapenaar (2004) and Draganov et al. (2006) present

a methodology to recover elastic pseudo-shot records using seismic interferometry.

Likewise, target-oriented interferometry can be potentially designed to recover mul-

ticomponent subsalt pseudo-shot records. Such records, along with surface seismic

data, can help in better understanding the local physical structure in subsalt envi-

ronments. This understanding may come in the form of more realistic models of the

subsalt velocity field that incorporate anisotropy as well as lateral parameter vari-

ations. Finally, we advocate the importance of utilizing long receiver arrays in the

acquisition of data that is to be used for interferometry. As in the Sigsbee numeri-

cal example, long receiver arrays can help in obtaining interferometric images with a

wide image aperture: each receiver added to an array contributes with a source and

a receiver to the interferometry experiment.



190

6.7 Acknowledgements

This research was financed by the NSF (grant EAS-0609595) and by the sponsors

of the Consortium for Seismic Inverse Methods for Complex Structures at the Center

for Wave Phenomena. We thank BP for giving us the filed VSP data and for allowing

the publication of the results. We thank Francis Rollins, Jianhua Yu, Qiang Sun and

Scott Michell (all BP) for useful discussions and suggestions.



191

Chapter 7

CONCLUSION AND FUTURE RESEARCH

Since the main Chapters (Chapters 2 through 6) consist of stand-alone articles,

I present the main conclusions of each Chapter in the Chapters themselves (e.g., in

their corresponding Discussion Conclusions section). Therefore, the objective of this

last Chapter is not to repeat the content presented in the main Chapters, but to

provide a brief general conclusion to this dissertation and to suggest future research

paths of the research developed here.

The reciprocity theorems in Chapter 2 offer general formulations than can be used

for interferometry, scattering-based imaging, and inversion for acoustic waves. As

discussed within Chapter 2, such theorems can potentially be directly applied not just

to geophysics, but also in ocean acoustics, laboratory ultrasonics and medical imaging.

Here I treat reciprocity theorems for perturbed acoustic waves, and an important

next step for this research which will be pursued in the near future is to extend

these theorems to a wider class of physical phenomena. This generalization would

be analogous to that proposed by Wapenaar et al.(2006) and Snieder et al. (2007),

who propose reciprocity theorems that describe elastodynamic and electromagnetic

wave propagation in lossy media, diffusion, and advection, as examples. Another

important aspect of Chapter 2 is its connection to the scattering problem, which

can lead to extensions of the equations I present through the use of scattering series

formulations (e.g., Lippmann, 1956; de Hoop, 1996). This connection suggests that

the equations in Chapter 2 can be tailored, through scattering series formulations,
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for other applications such as inverse-scattering imaging (Weglein et al., 2003) or

multiple suppression (Weglein et al. 2003; Malcolm et al., 2007). Furthermore, it is

possible that once reciprocity theorems for perturbed media are generalized for other

physical phenomena (similarly to Wapenaar et al., 2006; and Snieder et al., 2007),

there may also be scattering-like series formulations that describe phenomena such

as diffusion and advection.

The generalization of the reciprocity theorems in perturbed media (Chapter 2)

to other physical systems can potentially lead to the extension of deconvolution in-

terferometry (Chapter 3) to other systems; for example, to elastic and electromag-

netic waves, and of diffusion. Deconvolution interferometry for electromagnetic waves

could find applications in, for example, radio telescopy. Given that interferometry by

correlations is well understood for elastic wave propagation (e.g., Wapenaar, 2004;

Wapenaar and Fokkema, 2006; Draganov et al., 2006), one of the most natural ex-

tensions of Chapter 2, and therefore of deconvolution interferometry, is to account

for elastodynamic waves. Although I provide a heuristic elastic application of decon-

volution interferometry in Chapter 4, modifying the theory in Chapter 3 to account

for elastic waves is a necessary extension for processing seismic data. As I discuss

in Chapter 3, in light of work such as that of Loewenthal and Robinson (2000) and

Amundsen (2001), the use of deconvolutions may play an important in devising in-

terferometry techniques that preserve amplitude properties of the recorded data that

allow the estimation of subsurface reflectivity. Interferometry by deconvolution as

presented by Chapter 3 can be potentially be adapted into an inverse interferometry

procedure, where the deconvolution filters are designed to meet chosen criteria for

the output interferometric experiments.

Deconvolution interferometry (Chapter 3) is particularly useful for data where
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waves are excited by long, incoherent and poorly known source functions. This makes

interferometry by deconvolution equally suitable both for active and passive seismic

imaging. In Chapter 4, I show that deconvolution interferometry can be used for

the passive imaging of drilling noise, without the need for independent estimates of

the drill-bit source function. The imaging of seismic-while-drilling data by deconvo-

lution interferometry is a novel method that can be applied the passive monitoring

of oilfields (e.g., the Valhall field in the North Sea), or to the imaging of oilfields in

environmentally sensitive areas where the acquisition of standard surface seismic is

limited (e.g., Tempa Rossa field, Italy). Apart from passive imaging, deconvolution

interferometry can be useful for monitoring structures. Snieder and Şafak (2006) pro-

vide a 1D example of how deconvolution interferometry can be used to extract the

impulse response of a building from earthquake records. This type of interferometry

can also be applied to monitoring the integrity of working engines, bridges, off-shore

platforms or producing wells.

In the context of studying the San Andreas fault with SAFOD data, the geologi-

cal interpretation of the results I present in Chapter 5 can be revised after the coring

of the SAFOD Main Hole, which will be conducted during Summer 2007 in the Phase

III of the SAFOD drilling project. A key question that remains to be addressed con-

cerns the physical cause of the reflectors I observe in Chapter 5: the reflections could

be caused by the contrast of physical properties across the fault (e.g., due to geology),

by the physical properties within the faults (e.g., fluid infill, overpressure, etc.), or

by a combination of these factors. More work can also be done with an extensive

microseismicity dataset acquired with a 80-receiver array in the SAFOD Main Hole

(J.A. Chavarria, personal communication, 2006). The application of interferometry to

these data can add to the knowledge of the earthquake dynamics of the San Andreas
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fault zone at Parkfield. Chapters 4 and 5 demonstrate the potential of interferometry

for reconstructing images of subvertical faults; the particular use of deconvolution

may lead to the extraction of fault reflectivity properties from interferometric images.

In Chapters 4 and 6 I show perturbation-based interferometry can play an impor-

tant role in localized imaging in subsalt environments. Chapter 4 implicitly suggests

that the use of permanent subsalt borehole sensors can be useful in locally monitor-

ing subsalt reservoirs by the use of interferometry on passive data. Note that these

passive data may consist of drilling and rig noise as well as microseismic events. The

target-oriented interferometry method, discussed in Chapter 6, is an important step

toward imaging particular desired events. In the application I describe in Chapter

6, the imaging of internal is accomplished with the target-oriented interferometry,

which depends on the theory presented in Chapter 2. The interferometry approach

in Chapter 6 can in principle be adapted to image any chosen direction in multiply

scattering media, and can be applied to multicomponent seismic data and electro-

magnetic waves. Interferometry as presented in Chapter 6 can be extended to recover

single-scattered converted and pure-mode shear waves from internal multiples. This

application depends on the proper formal extension of deconvolution interferometry

for elastic waves. Together with surface seismic data, interferometry experiments such

as in Chapters 4 and 6 can, in principle, aid in locally constraining anisotropic subsalt

velocity models, since they add information in terms of depth constraint (provided

by the borehole receiver array), propagation paths that differ from those in surface

seismic data, and pure-mode shear-wave information in off-shore acquisitions.
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APPENDIX A

PHYSICAL ANALYSIS OF THE DECONVOLUTION

INTERFEROMETRY SERIES

According to the derivation in Section 3.3.2 of Chapter 3, the deconvolution in

equation 4.11 can be expressed in series form

DAB =
CAB

|G0(rB, s)|
2

∞∑

n=0

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)n

. (A.1)

The objective of this appendix is to reproduce the steps and physical approximations

that simplify the series in equation A.1. Let us first consider the n = 2 term in the

summation in equation A.1, which is

S2 =

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)2

(A.2)

Substituting this term in the expansion of |G(rB, s)|
−2 (equation 3.13) gives, to second

order in GS,

|G(rB, s)|
−2 ≈

1

|G0(rB, s)|
2

[

1 −
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

]

+
1

|G0(rB, s)|
2

[(
GS(rB, s)

G0(rB, s)

)2

+

(
G∗

S(rB, s)

G∗
0(rB, s)

)2

+ 2
|GS(rB, s)|

2

|G0(rB, s)|
2

]

,

(A.3)
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where the very last term is zero-phase. When |G0|
2 >> |GS|

2, the zero-phase term in

equation A.3 can be neglected because it does not contribute with any new arrival.

Equation A.3 thus simplifies to

|G(rB, s)|
−2 ≈

1

|G0(rB, s)|
2

[

1 −
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

]

+
1

|G0(rB, s)|
2

[(
GS(rB, s)

G0(rB, s)

)2

+

(
G∗

S(rB, s)

G∗
0(rB, s)

)2
]

;

(A.4)

for which the actual contribution from n = 2 to the sum in equation A.1 is

S2 ≈

(
uS(rB, s)

u0(rB, s)

)2

+

(
u∗S(rB, s)

u∗0(rB, s)

)2

, (A.5)

instead of the full S2 term in equation A.2. Applying the same rationale for the

simplification of S2 to the n = 3 term from the summation in equation A.1 gives

S3 =

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)3

. (A.6)

S3 can be expressed in terms of S2, such that

S3 = S2 ×

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)

. (A.7)

Using the simplified S2 (equation A.5) in evaluating S3 gives
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S3 ≈ −

(
GS(rB, s)

G0(rB, s)

)3

−

(
G∗

S(rB, s)

G∗
0(rB, s)

)3

(A.8)

−
|GS(rB, s)|

2

|G0(rB, s)|
2

GS(rB, s)G
∗
0(rB, s)

|G0(rB, s)|
2 −

|GS(rB, s)|
2

|G0(rB, s)|
2

G∗
S(rB, s)G0(rB, s)

|G0(rB, s)|
2

The last two terms of S3 in the above equation are not zero-phase. Note also that

despite being nonzero phase, the phase of these terms is the same of other terms of

lower order. For example, the term
(
|GS|

2 / |G0|
4)GS G

∗
0 has the same phase as the

integrand in the D2
AB term in equation 4.12, but with weaker amplitude and opposite

polarity. Because they do not result in new arrivals and have weak amplitudes, we

drop the last two terms in equation A.9 and reduce S3 to

S3 ≈ −

(
GS(rB, s)

G0(rB, s)

)3

−

(
G∗

S(rB, s)

G∗
0(rB, s)

)3

. (A.9)

Any Sn term of the summation in equation A.1 can be written in terms of Sn−1

in the same form of equation A.7. Analogously to equation A.9, any Sn will yield four

terms from which two terms can be dropped according to the same rationale we use

to neglect the last two terms in equation A.9. Thus, by induction, the summation in

equation A.1 simplifies to

∞∑

n=0

(

−
GS(rB, s)

G0(rB, s)
−
G∗

S(rB, s)

G∗
0(rB, s)

)n

≈ 1 +

∞∑

n=1

(−1)n

[(
GS(rB, s)

G0(rB, s)

)n

+

(
G∗

S(rB, s)

G∗
0(rB, s)

)n]

.

(A.10)

Using this simplified summation in the deconvolution series gives
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DAB ≈
CAB

|G0(rB, s)|
2

(

1 +

∞∑

n=1

(−1)n

[(
GS(rB, s)

G0(rB, s)

)n

+

(
G∗

S(rB, s)

G∗
0(rB, s)

)n]
)

.(A.11)

The term-by-term expansion of the equation above is such that for any given

value of n, the terms

DAB,terms = (−1)n

(
G∗

S(rB, s)

G∗
0(rB, s)

)n




G0(rA, s)G

∗
S(rB, s)

︸ ︷︷ ︸

C2

AB

+ GS(rA, s)G
∗
S(rB, s)

︸ ︷︷ ︸

C4

AB






(A.12)

cancel, for n+ 1, with the terms

DAB,terms = (−1)n+1

(
G∗

S(rB, s)

G∗
0(rB, s)

)n+1




G0(rA, s)G

∗
0(rB, s)

︸ ︷︷ ︸

C1

AB

+ GS(rA, s)G
∗
0(rB, s)

︸ ︷︷ ︸

C3

AB




 ;

(A.13)

which in the limit n → ∞ leaves only the contribution of the causal ratio GS/G0

to DAB in equation A.11. The cancelation of the terms proportional to the acausal

ratio G∗
S/G

∗
0 (highlighted by equations A.12 and A.13) is responsible for the absence of

acausal terms having the same phase as C3
AB and C4

AB (equation 3.4) in deconvolution

interferometry (equation 4.12). Because of these successive cancelations, we arrive to

DAB ≈
G0(rA, s)G

∗
0(rB, s)

|G0(rB, s)|
2 +

GS(rA, s)G
∗
0(rB, s)

|G0(rB, s)|
2

+
CAB

|G0(rB, s)|
2

∞∑

n=1

(−1)n

(
GS(rB, s)

G0(rB, s)

)n

, (A.14)
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which, in compact form, gives

DAB ≈
G(rA, s)

G0(rB, s)
+

CAB

|G0(rB, s)|
2

∞∑

n=1

(−1)n

(
GS(rB, s)

G0(rB, s)

)n

. (A.15)

We present this approximate deconvolution series as a tool to identify the most

prominent events within the integrand of the deconvolution interferometry integral

(equation 3.10). Equation A.14 is also useful in the description of the kinematics

of deconvolution interferometry terms, as we discuss in the main text. If one seeks

to describe the result of deconvolution interferometry with a more accurate dynamic

behavior, the original series in equation A.1 is more appropriate.
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APPENDIX B

STATIONARY-PHASE EVALUATION OF LEADING ORDER TERMS

OF THE DECONVOLUTION INTERFEROMETRY SERIES

The wavefields shown in Figure 3.3 can be described by the ray-geometric impulse

responses

u0(rA,B, s) = G0(rA,B, s) = −
eik|rA,B − s|

4π |rA,B − s|
, and

uS(rA,B, s) = GS(rA,B, s) = −r
eik(|rsr

A,B − rA,B|+ |s− r
sr
A,B|)

4π
(∣
∣rsr

A,B − rA,B

∣
∣ +

∣
∣s − rsr

A,B

∣
∣
) ; (B.1)

where rsr
A,B are the specular reflection points for the receiver-source pairs (rA,B, s).

G0 and GS are the far-field acoustic Green’s functions we use to describe u0 and

uS, respectively. In our model, s = (x, y, z = 0) and rA,B = (xA,B, yA,B = 0, zA,B).

The distances in the phases and denominators in equation B.1 can be expressed in

terms of the corresponding ray-lengths in Figure 3.3. Using the Green’s functions in

equation B.1 to express D1
AB (equation 4.12) we get

D1
AB =

1

(4πLB)2

∫
eik(LA−LB)

LALB

dxdy , (B.2)

where ϕ = ik (LA − LB) is the phase of the integrand. The source position that gives

a stationary contribution to the integral in equation B.2 satisfies
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0 =
∂ϕ

∂y
=

y

LA
−

y

LB
; (B.3)

and

0 =
∂ϕ

∂x
=
x− xA

LA
−
x− xB

LB
= sinψA − sinψB , (B.4)

where ψA and ψB is the angle defined between the direct wave and the vertical at

receivers A and B. It follows from equations B.3 and B.4 that the stationary point

for the source in the D1
AB term satisfies (Snieder et al., 2006)

ψA = ψB = ψ and y = 0 . (B.5)

It is expected that the stationary contribution for all terms comes from sources at

y = 0 because yA,B = 0 and the model is a flat reflector in a homogeneous and

isotropic medium. The condition ψA = ψB (equation B.5) states that the stationary

source is the one that sends a direct wave which is first recorded at rB and goes

straight to rA. This is the same stationary condition as for the C1
AB term of Snieder

et al. (2006).

To approximate the integral in equation B.2 with the stationary-phase method

we must evaluate, at the stationary point, the second derivatives

∂2ϕ

∂x2
=
z2

A

L3
A

−
z2

B

L3
B

=
z2

A

L2
A

1

LA
−
z2

B

L2
B

1

LB

= cos 2ψ

(
1

LA
−

1

LB

)

,

(B.6)
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and

∂2ϕ

∂y2
=
L2

A

L3
A

−
L2

B

L3
B

=
1

LA
−

1

LB
. (B.7)

Based on these second derivatives, the stationary-phase approximation (Bleistein and

Handelsman, 1975) to equation B.2 is

D1
AB =

n

(4πLB)2

1

(4π)2
exp (ik (LA − LB))

LALB
×e−iπ/4

√

2π

k

1
√

cos 2ψ

(
1

LB
−

1

LA

)

×e−iπ/4

√

2π

k

1
√

1

LB
−

1

LA

,

(B.8)

where k = ω
c
. At the stationary source point, where ψA = ψB , the distance LA − LB

is equivalent to the distance |rA − rB|. Thus, in the stationary-phase approximation,

D1
AB is given by

D1
AB =

nc

32π2 L2
B cosψ

G0(rA, rB)

(−iω)
. (B.9)

From the derivation above, the stationary-phase evaluation of D1
AB is completely

analogous to the evaluation of C1
AB (equation 3.4) in Snieder et al. (2006). Since

the same occurs with the term D2
AB, we refrain from reproducing the steps of its

stationary-phase approximation in this paper, and refer the readers to Snieder et al.

(2006) for these steps.
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APPENDIX C

SHORT NOTE ON DECONVOLUTION

Our numerical application of deconvolution is based on the so-called water level

deconvolution (Clayton and Wiggins, 1976), given by

DAB =
u(rA, s)

u(rB, s)
=

u(rA, s) u
∗(rB, s)

|u(rB, s)|
2 + ǫ〈|u(rB, s)|

2〉
, (C.1)

where 〈|u(rB, s)|
2〉 is an average of the power spectrum of the data measured at rB.

The factor ǫ is a free-parameter that we choose by visually inspecting the output of the

deconvolution in equation C.1. When ǫ is too large, the denominator becomes a con-

stant and the result of the deconvolution approximates the result of cross-correlation

(equation 4.2). When ǫ is too small the deconvolution becomes unstable. An optimal

value of ǫ results in the desired deconvolved trace with weak random noise associated

to the water level regularization (Clayton and Wiggins, 1976).

There are other deconvolution approaches that yield better results than the

water-level deconvolution method. For deconvolution references in the exploration

geophysics literature, we refer to the article collection edited by Webster (1981) and

to the work of Porsani and Ursin (Porsani and Ursin, 2000; Porsani and Ursin, 2007).

In the signal processing field, the work of Bennia and Nahman (1996) and Qu et al.

(2006) are examples of deconvolution methods that are relevant to SWD processing.


