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Figure 1. 65 monthly averages of atmospheric CO
2

measurements acquired at scattered locations on the earth’s surface (a),
and tensor-guided interpolation of those measurements in a 2D parametric space (b) to obtain interpolated CO

2

concentrations

everywhere on that surface (c).

ABSTRACT

In blended-neighbor interpolation of scattered data, a tensor field represents a

model of spatial correlation that is both anisotropic and spatially varying. In ef-

fect, this tensor field defines a non-Euclidean metric, a measure of distance that

varies with direction and location. The tensors may be derived from secondary

data, such as images.

Alternatively, when the primary data to be interpolated are measured on a non-

planar surface, the tensors may be derived from surface geometry, and the non-

Euclidean measure of distance is simply geodesic. Interpolation of geophysical

data acquired on a non-planar surface should be consistent with tensor fields

derived from both surface geometry and any secondary data.
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1 INTRODUCTION

Geophysical data are often acquired at locations scat-
tered on surfaces that are not planar. For example,
consider atmospheric CO

2

concentrations measured in
flasks at locations scattered on the surface of the earth.
The concentrations displayed in Figure 1a are monthly
averages for April, 2009.

When interpolating such scattered data, as in Fig-
ures 1b and 1c, we are in e↵ect estimating CO

2

con-
centrations that we have not measured. Today the most
accurate method for doing this is inverse modeling, that
is, to find carbon sources and sinks and use atmospheric
transport models to obtain CO

2

concentrations that
best match the values measured at scattered locations

(e.g., Gurney et al., 2002). Inverse modeling is imple-
mented by the CarbonTracker program (Peters et al.,
2007) of the National Oceanic and Atmospheric Admin-
istration (NOAA).

This paper does not claim that the interpolation
method used to compute CO

2

concentrations for Fig-
ure 1 is more accurate than inverse modeling. Rather,
these CO

2

measurements simply illustrate the general
problem of interpolating scattered data acquired on a
surface that is not planar. This problem is ubiquitous
in geophysics, and the interpolation method described
in this paper may be useful for quick estimates or vi-
sualizations, and in contexts in which physical models
or data are inadequate to enable an inverse modeling
solution.
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In the context of exploration geophysics, consider
the interpolation of subsurface properties measured in
boreholes at locations scattered within a geologic layer
bounded by surfaces that are not planar. To simplify
interpolation, we may attempt to flatten the layer and
the bounding surfaces so that they are planar. However,
such flattening may distort distances and, hence, spatial
correlations within the layer (Lee, 2001). Flattening is
unnecessary if we account directly for surface geometry
in the method used to interpolate scattered data.

The interpolation method described in this paper is
a simple extension of the image-guided blended neigh-
bor interpolation method described by Hale (2009). This
method interpolates scattered data using a tensor field
derived from secondary information, such as a seismic
image. In other words, image-guided interpolation is ac-
tually tensor-guided, and the tensors that guide inter-
polation can be derived from many sources, not only
images.

This paper shows that the tensor-guided blended
neighbor method is easily extended to interpolation on
non-planar surfaces defined by a parametric mapping,
because surface geometry simply alters the tensor field
already employed by the method. Using the earth’s sur-
face as a familiar example, I demonstrate this method
for honoring both surface geometry and secondary mod-
els for spatial correlation in the interpolation of data
acquired at locations scattered on that surface.

2 TENSOR-GUIDED INTERPOLATION

Using the notation of Hale (2009), let us assume that
spatially scattered data to be interpolated are a set

F = {f
1

, f
2

, . . . , f
K

} (1)

of K known sample values f
k

2 R that correspond to a
set

X = {x
1

,x
2

, . . . ,x
K

} (2)

of K known sample points x
k

2 Rn. Together these two
sets comprise a set

K = {(f
1

,x
1

), (f
2

,x
2

), . . . , (f
K

,x
K

)} (3)

of K known samples. These samples may be scattered
such that the n-dimensional sample points in the set
X may have no regular geometric structure. The classic
interpolation problem is to use the known samples in
K to construct a function q(x) : Rn ! R, such that
q(x

k

) = f
k

.
As stated, this problem has no unique solution;

there exist an infinite number of functions q(x) that
satisfy the interpolation conditions q(x

k

) = f
k

. Addi-
tional criteria may include measures of smoothness, ro-
bustness, and computational e�ciency. Because trade-
o↵s exist among such criteria, a variety of methods for
interpolating scattered data are commonly used today.

In all of these methods the interpolation of spa-
tially scattered data depends, either explicitly or im-
plicitly, on a model for spatial correlation. In particu-
lar, correlation is often assumed to decrease with dis-
tance; measurements for any two nearby points tend to
be more similar than those for two distant points. This
dependence on a spatial correlation model is most ex-
plicit in statistical methods such as kriging that require
the specification of covariance or variogram functions.
These functions may be anisotropic, but are assumed to
be stationary or at least slowly varying within neighbor-
hoods of known samples. Geostatistical methods such as
kriging are di�cult to extend to contexts in which this
stationarity assumption is invalid.

The interpolation method described in this paper
depends explicitly on a model of spatial correlation that
in practice is often highly anisotropic and spatially vary-
ing. This model is represented by a tensor field, and the
interpolation is thereby tensor-guided.

The blended neighbor method (Hale, 2009) for
interpolation was developed specifically to facilitate
tensor-guided interpolation. This process consists of two
steps:

Step 1: solve the eikonal equation

rt(x) •D(x) •rt(x) = 1, x /2 X ;

t(x
k

) = 0, x
k

2 X (4)

for

t(x): the minimal time from x to the nearest
known sample point x

k

, and
p(x): the value f

k

corresponding to the sample
point x

k

nearest to the point x.

Step 2: solve the blending equation

q(x)� 1
2
r • t2(x)D(x) •rq(x) = p(x), (5)

for the blended neighbor interpolant q(x).

The tensor field in this method is denoted by D(x).
At each location x 2 Rn, the tensor D is a symmetric
positive-definite n ⇥ n matrix. The tensor field D(x)
provides a metric, a measure of distance that need not
be Euclidean. Indeed, times t(x) in equation 4 are ac-
tually non-Euclidean distances computed for the metric
D(x).

We can get an intuitive sense of the metric D(x)
by considering the special case where D is constant. In
this case, the time (non-Euclidean distance) t(x) from
any known sample point x

k

to an arbitrary point x can
be computed analytically:

t =
p

(x� x
k

) •D�1 • (x� x
k

), (6)

or in matrix-vector notation

t =
p

(x� x
k

)TD�1(x� x
k

). (7)

One can easily verify by substitution that this expres-
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Figure 2. For a metricD(x), contours of constant time (non-

Euclidean distance) within any infinitesimal neighborhood
of a point x are elliptical. At each location x, the ellipse

is elongated in the direction in which spatial correlation is
highest.

sion is a solution to the eikonal equation 4, here ex-
pressed in matrix-vector notation:

rtTDrt = 1, (8)

with boundary condition t(x
k

) = 0.
For the general case where D(x) is spatially vary-

ing, we must compute the solution t(x) of the eikonal
equation 4 numerically. However, even in this case we
may consider an infinitesimally small neighborhood of
any location x, in which D(x) is essentially constant,
and the infinitesimal time dt from x to x+ dx is

dt =
p
dxTD�1dx. (9)

Squaring both sides,

(dt)2 = dxTD�1dx. (10)

This last expression is quadratic in dx. Because metric
tensors D (and D�1) must be symmetric and positive-
definite, we are assured that (dt)2 � 0, and a contour of
constant dt is an n-dimensional ellipsoid, as illustrated
for n = 2 in Figure 2.

In 2D each symmetric positive-definite tensor

D =


d
11

d
12

d
12

d
22

�
(11)

is comprised of three unique elements d
11

, d
12

and d
22

.
These three elements are related to the parameters for
the ellipse in Figure 2 by the eigen-decomposition

D = �
a

aaT + �
b

bbT

a = cos � e
1

+ sin � e
2

b = � sin � e
1

+ cos � e
2

(12)

where a and b are orthonormal eigenvectors and �
a

and
�
b

their corresponding real and positive eigenvalues, or-

Figure 3. Ellipses for a tensor field D(x) derived from a
horizontal slice of a 3D seismic image.

dered such that �
a

� �
b

. Equivalently,

D =


�
a

cos2 � + �
b

sin2 � (�
a

� �
b

) cos � sin �
(�

a

� �
b

) cos � sin � �
a

sin2 � + �
b

cos2 �

�
.

(13)
Equations 12 and 13 provide intuitive ways to spec-

ify a tensor field D(x) that represents an anisotropic
and spatially varying model of correlation. Where cor-
relation is high, we set both �

a

and �
b

to have large
values. Where correlation is anisotropic, we set �

a

to
be larger than �

b

and we choose the angle � to be the
direction in which correlation is highest. All three of the
parameters �

a

, �
b

and � may vary with location x.
As an example, Figure 3 shows an example of tensor

ellipses that represent the spatial correlation of features
apparent in a 2D horizontal slice of a 3D seismic im-
age. Correlation in this example is both anisotropic and
spatially varying.

3 ON NON-PLANAR SURFACES

Now let us assume that the data to be interpolated
are acquired at locations scattered on a surface defined
parametrically by a mapping x(u) : U 2 R2 ! X 2 R3.
For example, on the surface of the earth, scattered data
may be acquired at locations u = (u

1

, u
2

) specified by
longitude u

1

= � and latitude u
2

= ✓, and each such
location corresponds to a point x = (x

1

, x
2

, x
3

) in a
Cartesian earth-centered earth-fixed coordinate system.

Because the space X of points on the surface is a
small subset of R3, we should not think of our scattered
data as a function of x, but rather as a function of u. It
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is most convenient to interpolate measurements in the
2D parametric space U 2 R2 in which they are sampled.

In other words, in the blended-neighbor method of
tensor-guided interpolation, we would like to first solve
an eikonal equation:

r
u

tTD
u

r
u

t = 1, (14)

where D
u

= D
u

(u) denotes a tensor field and t = t(u)
denotes non-Euclidean distance, both functions of para-
metric coordinates u. This eikonal equation leads to the
following question.

How should we compute the tensor field D
u

(u) so
that our interpolation is consistent with both the geom-
etry of the surface and any model of spatial correlation
specified on that surface?

Equations 12 (or 13) provide an intuitive recipe
for computing metric tensors D in a planar coordinate
space spanned by the orthonormal vectors e

1

and e
2

.
To extend this recipe to a parametric surface, we must
define a similar locally planar space for every point on
the surface.

3.1 The tangent space

The Jacobian J of the mapping x(u) is defined by

J = [j
1

j
2

] =

2

4
j
11

j
12

j
21

j
22

j
31

j
32

3

5 =

2

64
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@u2

@x2
@u1

@x2
@u2

@x3
@u1

@x3
@u2

3

75 . (15)

The column vectors j
1

and j
2

of J are a basis for a
locally planar tangent space J . In any useful surface
parameterization, the vectors j

1

and j
2

are linearly in-
dependent; but their lengths may di↵er, and they need
not be orthogonal. In other words, the vectors j

1

and j
2

illustrated in Figure 4 may not be the easiest basis in
which to specify the metric tensors D.

We can obtain a tangent space E with orthonor-
mal basis vectors e

1

and e
2

by decomposition of the
Jacobian matrix J = EF:

2

4
j
11

j
12

j
21

j
22

j
31

j
32

3

5 =

2

4
e
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e
12

e
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e
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e
31

e
32

3

5

f
11

f
12

f
21

f
22

�
. (16)

For example, if we choose the QR decomposition, then
F is a right-triangular matrix with elements that can be
found by Gram-Schmidt orthogonalization.

As illustrated in Figure 4, the tangent spaces J and
E are really the same space, spanned by di↵erent basis
vectors. In choosing the orthonormal vectors e

1

and e
2

(shown in Figure 2), we choose a basis for specifying a
tensor field D

e

via equation 12, rewritten here as

D
e

= �
a

aaT + �
b

bbT

a = cos � e
1

+ sin � e
2

b = � sin � e
1

+ cos � e
2

. (17)

In using equation 17 we must remember that the

x(u)

u

u1

u2

j2

j1

e1
e2

x

Figure 4. Unit vectors u

1

and u

2

are mapped to Jacobian

vectors j

1

and j

2

. These Jacobian vectors and the orthonor-
mal basis vectors e

1

and e

2

lie in the plane tangent to the

surface at point x = x(u).

orthonormal basis vectors e
1

and e
2

and eigenvectors a
and b now have three components, as they all lie within
a tangent plane in R3, not R2. In particular, the 3 ⇥ 2
matrix E = [e

1

e
2

] is not the identity matrix. Using
the 2⇥ 2 matrix D defined by equation 13, equation 17
becomes

D
e

= EDET (18)

In this way we can easily specify a tensor field D
e

for an eikonal equation

r
e

tTD
e

r
e

t = 1. (19)

To make sense of this eikonal equation in the tangent
space E we must understand how to interpret the in-
trinsic gradient r

e

t, the gradient within the tangent
space.

3.2 The gradients

My interpretation of gradients follows that of Bronstein
et al. (2008). In the parametric space U 2 R2 the gra-
dient r

u

t has two components

r
u

t =

"
@t

@u1
@t

@u2

#
, (20)

and in the Cartesian spaceX 2 R3 the extrinsic gradient
r

x

t has three components

r
x

t =

2

64

@t

@x1
@t

@x2
@t

@x3

3

75 . (21)

The parametric and extrinsic gradients are simply
related by the chain rule for di↵erentiation,

@t

@u
j

=
@x

1

@u
j

@t

@x
1

+
@x

2

@u
j

@t

@x
2

+
@x

3

@u
j

@t

@x
3

, (22)

for j = 1, 2, so that

r
u

t = JTr
x

t = FTETr
x

t. (23)

In any coordinate space, the gradient of a scalar
field t is defined to be the vector rt for which the dot
product rtTv equals the directional derivative

D
v

t(x) ⌘ lim
✏!0

t(x+ ✏v)� t(x)
✏

, (24)
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for every vector v in the space. If that vector v is con-
fined to the tangent space E, then using

t(x+ ✏v) = t(x) + ✏[r
x

t(x)]Tv +O(✏2), (25)

we have

r
e

tTv = r
x

tTv. (26)

For this equation to be satisfied for every vector v in
the tangent space E, the intrinsic gradient r

e

t must
be the projection of the extrinsic gradient r

x

t onto the
tangent plane at location x on the surface.

This observation is the key to finding a relationship
between the intrinsic gradient r

e

t and the parametric
gradient r

u

t. We have equation 23 relating r
u

t and
r

x

t. If we can find a relationship between r
e

t and r
x

t,
then we can express r

e

t in terms of r
u

t, and we will
know how to compute D

u

(in equation 14) in terms of
D

e

.
The intrinsic gradient r

e

t in the tangent space E
can be written as r

e

t = Ec for some coe�cients in a
vector c that define the projection of r

x

t onto E. The
coe�cients c are the least-squares solution of Ec ⇡ r

x

t:

ETE c = ETr
x

t

c = ETr
x

t (27)

so that

r
e

t = EETr
x

t. (28)

Here I have used the fact that the columns e
1

and e
2

of
E are orthonormal vectors, so that ETE = I.

3.3 The parametric tensor field

Combining equations 23 and 28, we can express the in-
trinsic gradient in terms of the parametric gradient:

r
e

t = EF�Tr
u

t. (29)

so that the eikonal equation 14 becomes

r
u

tTF�1ETD
e

EF�Tr
u

t = 1. (30)

Comparing this equation with equation 14 in parametric
coordinates, we find

D
u

= F�1ETD
e

EF�T (31)

or, using equation 18,

D
u

= F�1DF�T . (32)

D
u

is the tensor field needed to specify the eikonal equa-
tion 14 in parametric coordinates. It is the answer to
the question asked above. The matrices F�1 and F�T

account for surface geometry, and the 2 ⇥ 2 matrix D
sandwiched between them represents a model of spa-
tial correlation that may be anisotropic and may vary
with location on the surface. Note that this matrix D
is exactly the same as that in equation 13, used to rep-
resent correlation for 2D interpolation within a plane.

Here the matrix D describes correlation within a local
tangent plane.

As a special case, if our model for spatial correla-
tion on the surface is isotropic and constant (perhaps
because we have no secondary information to the con-
trary), then D = I and

D
u

=
⇣
FTF

⌘�1

. (33)

Distances t(u) are then simply geodesic distances com-
puted by solution of

r
u

tT
⇣
FTF

⌘�1

r
u

t = 1. (34)

In this special case, the tensor field D
u

(u) accounts for
only the geometry of the surface. Again, because the ma-
trix FTF is symmetric and positive-definite, each tensor
can be represented by an ellipse, as in Figure 2.

4 THE EARTH’S SURFACE

As a simple example, let us consider the parametric
mapping x(u) illustrated in Figure 5. A simple approx-
imation of the earth’s surface is a sphere with constant
radius r, for which an equirectangular parametric map-
ping is

x
1

= r cos� cos ✓

x
2

= r sin� cos ✓

x
3

= r sin ✓. (35)

The parameters are longitude u
1

⌘ � and latitude u
2

⌘
✓. For this example, the orthonormal basis vectors e

1

and e
2

represent easting and northing, respectively, and
the matrix F is

F =


r cos ✓ 0

0 r

�
. (36)

Then, assuming that spatial correlation is isotropic and
constant on the earth’s surface (so that D = I),

D
u

=


1

r

2
cos

2
✓

0
0 1

r

2

�
. (37)

Because the matrix D
u

is diagonal, its e↵ect is to simply
scale the coordinate axes in the parametric space U so
that equation 34 becomes

1
r2 cos2 ✓

✓
@t

@�

◆
2

+
1
r2

✓
@t

@✓

◆
2

= 1, (38)

which is simply the eikonal equation in spherical coor-
dinates, omitting any gradient with respect to radius r,
because r is constant on the surface. Times t(�, ✓) com-
puted by solving this equation are geodesic great-circle
distances.

The advantage of the more general eikonal equa-
tion 14, with tensor field D

u

defined by equation 32, is
that we can specify an additional tensor field D repre-
senting a model for correlation that varies with location
on the surface of the Earth.
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Figure 5. Parametric (equirectangular) mapping of the

earth’s surface.

4.1 Atmospheric CO
2

concentrations

As an example of data recorded on the earth’s surface,
Figure 6 shows monthly averages for April, 2009, of at-
mospheric CO

2

concentrations, measured in flasks at
65 locations scattered around the globe. These data
are made publicly available (ftp://ftp.cmdl.noaa.gov)
by the National Oceanic and Atmospheric Administra-
tion (NOAA). CO

2

concentrations are expressed as mole
fractions, in parts per million.

To use blended neighbor interpolation as defined by
equations 4 and 5 in the parametric longitude-latitude
space U , we must provide a tensor field D

u

(u). If we
simply assume that spatial correlation is isotropic and
constant on the earth’s surface, then the tensors are
given by equation 37. Of course, this simple assumption
is unnecessary, because equation 32 can include any ten-
sor field D(u) defined within local tangent planes on the
earth’s surface. What secondary information can help us
define this tensor field D(u)?

Variation with latitude of solar radiation suggests
that CO

2

concentrations are likely to vary more in the

Figure 6. Averages of atmospheric CO
2

concentrations mea-
sured at 65 scattered locations on the earth’s surface in April,
2009.

north-south direction than in the east-west direction.
Such anistropy in spatial correlation can be seen in satel-
lite images of CO

2

concentrations in the middle tropo-
sphere, provided by the Atmospheric Infrared Sounder
(AIRS) mission of the National Aeronautics and Space
Administration (NASA). We might use these images
to compute anisotropic and spatially-varying tensors D
like those computed from the seismic image shown in
Figure 3. Alternatively, we might use atmospheric trans-
port models to derive these tensors. Unlike methods that
assume stationarity, the blended neighbor interpolation
method can be used for arbitrary tensor fields.

For this example, however, I chose a simpler sta-
tionary model of spatial correlation; everywhere on the
earth’s surface, I use the tensor

D =


1 0
0 1

16

�
. (39)

The aspect ratio for the corresponding tensor ellipse is
4:1, which implies a correlation distance that is four
times higher in the east-west direction than in the north-
south direction.

In developing this simple model, I computed vari-
ograms for the 65 CO

2

measurements displayed in Fig-
ure 6. Figure 7 shows two such variograms. Each was
computed for geodesic (great-circle) distances in bins
with widths of 10 degrees. The value for each bin is the
rms di↵erence of values for pairs of CO

2

measurements
that are separated by the distances for that bin in the
east-west and north-south directions.

Figure 7a shows that di↵erences in CO
2

values tend
to be smaller for measurements at stations that are
nearby, and that these di↵erences increase more rapidly
in the north-south direction than in the east-west direc-
tion. The ellipse superimposed on this variogram has an
aspect ratio of 4:1, and is roughly a contour of constant
deviation or correlation.

Figure 7b displays a variogram computed in the
same way, after a random permutation of only the CO

2

values, not the station locations. No increase (or de-
crease) in deviation with distance is apparent in this
variogram. Deviations for small distances tend toward
the middle of the range of deviations shown, and tend to
vary less than those for larger distances, simply because
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a)

b)

Figure 7. A variogram (a) computed for atmospheric CO
2

concentrations measured at 65 scattered locations on the
earth’s surface and (b) for a random permutation of those
same measurements. The ellipse has an aspect ratio of 4:1.

the bins for smaller distances contain more values from
which rms di↵erences are computed. Deviations for bins
at larger distances are both lower and higher and are
less consistent because fewer values contribute to each
bin. This variogram of permuted values implies that the
spatial correlation apparent in Figure 7a is significant.

Figure 8 displays two tensor fields, which corre-
spond to spatial correlation models that are isotropic
(Figure 8a) and anisotropic (Figure 8b) on the surface
of the earth. Note that both tensor fields are anisotropic
and spatially varying in the parametric space of longi-
tude and latitude. However, on the curved surface of the
earth, the tensors displayed in Figure 8a would appear
circular and identical, while those in Figure 8b would
appear elliptical and identical.

Figure 9 displays the corresponding tensor-guided

a)

b)

Figure 8. Two tensor fields defined for the surface of the
earth. One tensor field (a) is isotropic on the earth spheroid

The other (b) is anisotropic on the earth spheroid, and im-
plies less correlation with distance in the north-south direc-
tion than in the east-west direction.

a)

b)

Figure 9. Tensor-guided interpolations of CO
2

concentra-
tions for the (a) isotropic and (b) anisotropic tensor fields

displayed in Figure 8.

blended neighbor interpolations. The interpolation in
Figure 9b is the same as that displayed in Figures 1b
and 1c. As expected, contours of constant CO

2

concen-
tration in Figure 9a are more circular, more isotropic,
than those in Figure 9b. The increase in east-west cor-
relation of CO

2

concentrations apparent in Figure 9b is
consistent with the anisotropic tensor field in Figure 8b
and the variogram in Figure 7a.
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5 CONCLUSION

The example in the previous section demonstrates that
the blended neighbor interpolation method can easily
account for an anisotropic model of spatial correlation
on the earth’s surface. However, geostatistical methods
for interpolation, such as kriging, can do this as well for
special surface geometries, such as a sphere.

A distinguishing feature of the blended neighbor
method is its ability to honor non-stationary models
of spatial correlation. These may reflect more general
(non-spherical) surface geometries, such as seismic hori-
zons, as well as spatial correlation apparent in secondary
data, such as seismic or satellite images. More general
and non-stationary models violate fundamental assump-
tions made by most geostatistical interpolation meth-
ods. Such models are therefore seldom used today, but
are easily handled by blended neighbor interpolation.
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