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Figure 1. A recorded seismic shot record before (a) and after (b) warping with large shifts that vary with time and o↵set.

Reflections are obscured by two di↵erent ambient bandlimited noise images that have been added to the original and warped

shot records. (The rms signal:noise ratio in this example is 1:1.) Shifts (c) computed from these two images by a dynamic

warping algorithm approximate well the known shifts (d) used to perform the actual warping.

ABSTRACT
The problem of estimating relative time (or depth) shifts between two seismic

images is ubiquitous in seismic data processing. This problem is especially dif-

ficult where shifts are large and vary rapidly with time and space, and where

images are contaminated with noise. I propose a solution to this problem that

is a simple extension of the classic dynamic time warping algorithm for speech

recognition. This new dynamic image warping method for estimating shifts

is more accurate than methods based on crosscorrelation of windowed images

where shifts vary significantly within the windows.
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1 INTRODUCTION

In seismic data processing we must often estimate rel-
ative shifts in time (or depth) between seismograms.
Often those shifts vary with both time and space coor-
dinates. Examples cited by Liner and Clapp (2004) in-
clude alignment of synthetic and recorded seismograms,
registration of P– and S–wave images, residual normal
moveout correction, and alignment of images computed
for di↵erent source-receiver o↵sets or propagation an-
gles. They proposed a dynamic programming solution
to this problem in the case where pairwise alignment
between seismic traces is su�cient.

A di↵erent dynamic programming solution was de-
veloped by Sakoe and Chiba (1978) in the context of
speech recognition, and is today widely known as dy-

namic time warping (DTW; e.g., Müller, 2007, Chapter
4). Significantly, DTW imposes constraints on the rate
at which shifts may vary in time, and these constraints
often enable DTW to accurately estimate shifts from
sequences that are contaminated with noise, or that in
some other ways are not simply warped versions of each
other.

The use of dynamic time warping to estimate shifts
in geophysical time series and other sequences is not
new. Several applications of dynamic time warping to
problems in geophysics were proposed by Anderson and
Gaby (1983), who called this algorithm “dynamic wave-
form matching”.

Unfortunately, the most straightforward extension
of DTW to the problem of estimating shifts in multi-
dimensional images has been shown to be NP-complete
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(Keysers and Unger, 2003), that is, computationally in-
tractable. Therefore, numerous authors — Pishchulin
(2010) provides a recent summary — have proposed
practical solutions to problems that approximate this
NP-complete problem.

In this paper I propose an extension of an approx-
imate solution developed by Mottl et al. (2002). Their
solution and my extension for dynamic image warping

(DIW) are especially simple, requiring very little soft-
ware beyond what would already be available to im-
plement dynamic time warping. I provide the essential
computer software components for both DTW and DIW
in Appendix A.

I first review the dynamic time warping algorithm,
giving special attention to the so-called accumulation
and backtracking parts of this algorithm. I then show
how the accumulation part of DTW can be used to
implement a non-linear smoothing of alignment errors
computed for two multi-dimensional images, and how
this leads to a new method for DIW.

In tests with pairs of images related by shifts that
are known, large, and rapidly varying, I demonstrate
the accuracy with which DIW can estimate the known
shifts. Figure 1 is an example of one such test for two
images contaminated with bandlimited random noise.

In further tests I show that DIW can be more ac-
curate than methods based on local crosscorrelations,
especially when shifts vary rapidly in time or space.
Crosscorrelation methods, such as those proposed by
Hall (2006) and Hale (2009) to estimate shifts in time-
lapse seismic images, are accurate only where shifts are
more slowly varying.

2 DYNAMIC TIME WARPING

Consider the two synthetic seismograms f [i] and g[i]
with length N = 500 samples displayed in Figure 2.
I computed the sequence f [i] by convolving a Ricker
wavelet with a random reflectivity sequence. I then ap-
plied time-varying shifts s[i] to that reflectivity sequence
and convolved again with the same wavelet to obtain the
sequence g[i]. The two sequences are therefore approxi-
mately (not exactly) related by f [i] ⇡ g[i+ s[i]].

In practice these two sequences might be a recorded
seismogram f [i] and a synthetic seismogram g[i] derived
from well logs. Or they might be two sequences of sam-
ple values extracted from a seismic image on opposite
sides of a fault. In any case, the practical problem con-
sidered here is estimation of the shifts s[i] given only
the two sequences f [i] and g[i].

In the example of Figure 2, the shifts s[i] are a
simple sinusoidal function that is apparent in Figure 3a,
which is an image of alignment errors defined by

e[i, l] ⌘ (f [i]� g[i+ l])2. (1)

Note that these alignment errors are nearly zero where
the integer lag l approximately equals the shift s[i]. Also
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Figure 2. Two synthetic seismograms f [i] (a) and g[i] (b)
corresponding to misaligned reflection coe�cients, used as

inputs to the dynamic time warping algorithm. Reflections

in f [i] also appear in g[i], but are squeezed toward the middle

of the sequence.

la
g

l

a)

b)

la
g

l

sample index i

d[
l,

i]
e[

l,
i]

Figure 3. Alignment errors e[i, l] (a) are small along the

sinusoidal path corresponding to known shifts between re-

flections in the two sequences shown in Figure 2. Dynamic

time warping (b) yields (solid white) estimated integer shifts

u[i] that approximate well the (dotted white) known shifts

s[i] in reflection coe�cients.

note the constant extrapolation of errors in the corners
of e[i, l], where i+ l < 0 or i+ l � N .

The definition of alignment errors in equation 1
can be modified by changing the power 2 or by us-
ing some other non-negative function of the di↵erences
f [i]�g[i+ l], without changing the dynamic time warp-
ing algorithm. For example, we might use the absolute
values of those di↵erences. In all of the examples shown
in this paper I have simply squared the di↵erences, as
in equation 1.
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2.1 Constrained optimization

The simplest dynamic time warping (DTW) computes a
sequence u[0 : N � 1] ⌘ (u[0], u[1], . . . , u[N � 1]) of inte-
ger shifts by solving the following optimization problem:

u[0 : N � 1] = argmin
l[0:N�1]

D(l[0 : N � 1]), (2)

where

D(l[0 : N � 1]) ⌘
N�1X

i=0

e[i, l[i]], (3)

subject to the constraint

|u[i]� u[i� 1]|  1. (4)

As illustrated in Figure 3b, DTW yields a minimizing
sequence of integer shifts u[0 : N � 1] that well approxi-
mates the (here, known) sequence of shifts s[0 : N � 1].

The function D defined by equation 3 is often re-
ferred to as distance, which makes sense if we think of
the image e[i, l] in Figure 3a as representing some to-
pography. Large values in e[i, l] then correspond to tall
hills (misalignments) that we wish to avoid as we choose
a path from left to right, that is, from i = 0 to N � 1.
In this sense, DTW chooses a path u[0 : N � 1] to min-
imize the total distance traveled, subject to the con-
straint (equation 4) that the shifts cannot change too
rapidly from one sample to the next.

The constraint equation 4 is analogous to the sim-
plest slope constraint of Sakoe and Chiba (1978). This
constraint is slightly di↵erent here only because I define
alignment errors by e[i, l] ⌘ (f [i]�g[i+l])2 (equation 1),
instead of by e[i, j] ⌘ (f [i]� g[j])2. Here this constraint
ensures that the argument i+ u[i] in (f [i]� g[i+ u[i]])2

neither decreases nor increases too rapidly with increas-
ing sample index i.

This constraint is important. Where u[i]�u[i�1] =
1, we stretch by 100%, such that two adjacent samples in
the sequence f [i] correspond to two non-adjacent sam-
ples in the sequence g[i]. Where u[i] � u[i � 1] = �1,
we squeeze by 100%, such that two adjacent samples
in the sequence f [i] correspond to only one sample in
the sequence g[i]. In many practical applications 100%
is an unreasonably large amount of strain, and we will
see below how to reduce this upper bound.

It is significant that the sequence u[0 : N � 1]
computed by DTW minimizes exactly the distance D
defined by equation 3, while satisfying the constraint
equation 4. Di↵erences in Figure 3b between the inte-
ger shifts u[0 : N � 1] and the known shifts s[0 : N � 1]
are due entirely to the restriction of u[0 : N � 1] to be
integers and the approximation f [i] ⇡ g[i+ s[i]], not to
any approximation in the optimization algorithm.

2.2 Dynamic programming

As its name implies, dynamic time warping is a
dynamic-programming algorithm (e.g., Cormen et al.,

2001). The essential trait of this algorithm is decompo-
sition of a problem into a sequence of nested and smaller
subproblems.

Let u[0 : N � 1] denote the sequence of shifts l
that minimizes the distance D defined by equation 3.
To identify the sequence of smaller subproblems nested
within this larger minimization problem, we consider a
subpath u[0 : m] of the minimizing path u[0 : N � 1]
and observe that

u[0 : m] = argmin
l[0:m]

mX

i=0

e[i, l[i]]. (5)

For if u[0 : m] were not a minimizing subpath, then we
could replace that part of u[0 : N�1] and thereby reduce
the total distanceD, which implies that u[0 : N�1] does
not minimize D, a contradiction.

This observation is important because it implies
that we need not test all possible (roughly, 3N ) paths
l[0 : N � 1] that satisfy the constraint equation 4 in our
search for the minimizing path u[0 : N � 1]. Instead, we
can find this minimizing path in two steps: accumula-
tion and backtracking.

2.3 Accumulation

In the first accumulation step of DTW, we recursively
compute from the array of alignment errors e[i, l] an
array of distances d[i, l] as follows:

d[0, l] = e[0, l],

d[i, l] = e[i, l] + min

8
><

>:

d[i� 1, l � 1]

d[i� 1, l]

d[i� 1, l + 1]

,

for i = 1, 2, . . . , N � 1. (6)

For each index i, we cannot yet know in this first step
whether or not the lag l lies on the minimizing path
u[0 : N � 1], so that l = u[i]. Therefore, we must com-
pute and store distances d[i, l] for all lags, assuming for
the moment that lag l may lie on the minimizing path.
Figure 3b shows distances d[i, l] computed in this way
for the alignment errors shown in Figure 3a.

The constraint equation 4 implies that, when com-
puting d[i, l] as in equation 6, we must consider only
three previously computed distances d[i � 1, l � 1],
d[i � 1, l], and d[i � 1, l + 1]. In other words, if lag l
lies on the minimizing path at sample index i, then ei-
ther lag l� 1, l or l+1 must lie on the minimizing path
at sample index i� 1.

The computational complexity of this first step is
O(N ⇥ L), where L is the number of lags l for which
alignment errors e[i, l] and distances d[i, l] are com-
puted.

I call this first step accumulation because the dis-
tances d[i, l] are sums of alignment errors e[i, l]. At the
end of this first step, we can simply loop over all lags l
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to find the minimum distance

D = min
l

d[N � 1, l]. (7)

2.4 Backtracking

The second step in DTW is to find the minimizing path,
the sequence of shifts u[0 : N � 1], beginning with the
last shift u[N � 1] and ending with the first shift u[0]:

u[N � 1] = argmin
l

d[N � 1, l],

u[i� 1] = argmin
l2{u[i]�1,u[i],u[i]+1}

d[i� 1, l],

for i = N � 1, N � 2, . . . , 1. (8)

This backtracking step begins with a simple loop over
lags l to find the last shift u[N � 1] in the sequence of
shifts u[0 : N � 1]. Because this last shift must be on
the minimizing path, it must equal the lag at which we
found the minimum distance D.

We then recursively find previous shifts u[i � 1] in
this sequence, comparing the three distances d[i� 1, l�
1], d[i � 1, l] and d[i � 1, l + 1] to determine which of
these was used in equation 6 to compute the minimum
distance d[i, l].

The computational complexity of backtracking is
only O(N), because for each sample index i we compute
a shift u[i] by comparing only three distances. There-
fore, the complexity of DTW is O(N ⇥ L), that of the
accumulation step, which is proportional to the number
of samples in the image of alignment errors e[i, l].

3 REFINEMENTS

Figure 4 displays the same two synthetic seismograms
f [i] and g[i] shown in Figure 2, after adding di↵erent
sequences of bandlimited random noise to each of them.
The rms signal:noise ratio is 2:1. While this level of noise
obscures somewhat the sinusoidal warping path in the
plot of alignment errors e[i, l] in Figure 5a, the shifts
u[i] estimated using DTW are a rough approximation
to the known shifts s[i].

Again it is important to remember that DTW
solves exactly the constrained optimization problem of
equations 2–4. Di↵erences in Figure 5b between esti-
mated and known shifts are primarily due to errors in
the approximation f [i] ⇡ g[i + s[i]] caused by the ad-
dition of random noise. The sequence g[i] in Figure 4b
is not simply a warped version of the sequence f [i] in
Figure 4a.

3.1 Limiting strain

The robustness of DTW in the presence of random noise
is due largely to the constraint equation 4. The number
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Figure 4. Same as Figure 2, except that bandlimited ran-

dom noise sequences have been added to the synthetic seis-

mograms f [i] (a) and g[i] (b). In this example the rms sig-

nal:noise ratio is 2:1.
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Figure 5. Known sinusoidal warping is obscured in align-

ment errors e[i, l] (a) computed for the noisy synthetic seis-

mograms of Figure 4. Dynamic time warping (b) yields (solid

white) estimated integer shifts u[i] that roughly approximate

the (dotted white) known shifts s[i] in reflection coe�cients.

of shift sequences u[0 : N � 1] that satisfy this con-
straint (⇡ 3N ) is far less than the number that would
be possible without it (⇡ LN ).

Of course, the constraint that strain (stretch or
squeeze) be less than 100% is useful only when satisfied
by the actual shifts s[i] that we wish to estimate. How-
ever, in many practical applications this constraint is
more than reasonable. Indeed, a strain as high as 100%
may be unreasonably high, and we may be able to im-
prove the accuracy of shifts estimated in DTW by re-
ducing this upper bound on strain to a more reasonable
value.

The simplest way to more tightly bound strain in
DTW is to sample lags l more finely at some fraction
of the time sampling interval. For example, if that frac-
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tion were 1
2 , then we would compute alignment errors

e[i, l] for lags l = . . . ,�1,� 1
2 , 0,

1
2 , 1, . . .. The maximum

strain permitted would then be 50%, as the constraint
equation 4 would become

|u[i]� u[i� 1]|  1
2

(9)

While straightforward, this method for reducing the
upper bound on strain requires a significant increase in
computational cost. For a limit of 50%, both compu-
tation time and memory will double if we compute er-
rors e[i, l] and distances d[i, l] for twice as many lags.
The increase in memory will be especially significant as
we extend the dynamic time warping algorithm to the
problem of multi-dimensional image warping.

A more e�cient way to limit strain is to implement
constraints much like the slope constraints proposed by
Sakoe and Chiba (1978). As an example, for a limit of
50% strain, I change the accumulation step (equation 6)
to compute distances as

d[0, l] = e[0, l],

d[1, l] = e[1, l] + min

8
><

>:

d[0, l � 1]

d[0, l]

d[0, l + 1]

,

d[i, l] = e[i, l] + min

8
><

>:

d[i� 2, l � 1] + e[i� 1, l � 1]

d[i� 1, l]

d[i� 2, l + 1] + e[i� 1, l + 1]

,

for i = 2, 3, . . . , N � 1. (10)

A corresponding change is required in the backtracking
step, in which we must now compute and compare the
three expressions inside the min function of equation 10,
to determine which of these was used to compute the
distance d[i, l].

The e↵ect of these modifications is to impose the
following constraint on changes in shifts:

|u[i]� u[i� 1]|+ |u[i� 1]� u[i� 2]|  1. (11)

Like equation 9, this equation is similar to (but not
quite equivalent to) a finite-di↵erence approximation to
|du/dt|  1

2 .
In words, dynamic time warping based on equa-

tion 10 is constrained to shift sequences in blocks of two
or more samples. If any sample is shifted by the warp-
ing, then at least one of the adjacent samples must be
shifted by the same amount.

Modifications similar to equation 10 can be easily
and e�ciently implemented for any strain limit of the
form 1/b, where b is an integer. (See Appendix A.) Fig-
ure 6 shows how strain limits implemented in this way
can improve the accuracy of shifts estimated by DTW.

Note, however, that the strain limit of 1
5 used to

estimate shifts u[i] shown in Figure 6c is almost equal
to the maximum strain in the known shifts s[i]. Any fur-
ther reduction in the strain limit would yield poor shift
estimates, because strain for the correct shifts would
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Figure 6. Shifts u[i] estimated by dynamic time warping

for di↵erent limits on strain, the rate at which shifts can

change with sample index i. As we reduce the upper bound

on this strain from 1 (a) to

1
2 (b) to

1
5 (c), the (solid white)

estimated shifts u[i] better approximate the (dotted white)

known shifts s[i].

exceed that limit. In practice, lacking any a priori limit
on strain, we must take care to not reduce this limit so
much that we prohibit the correct shifts.

3.2 Smoothing alignment errors

To further improve the accuracy of estimated shifts u[i],
we might attempt to attenuate noise in the two se-
quences f [i] and g[i], or we might instead try to at-
tenuate noise in the alignment errors e[i, l]. Considering
the second option, suppose that we apply some sort of
smoothing filter to the alignment errors e[i, l]. Can we
improve the accuracy of the estimated shifts u[i] by ap-
plying such a filter before DTW?

This question is suggested by the accumulation step
in DTW defined by equation 6. Each distance d[i, l] com-
puted in this step is a sum of alignment errors, which
implies that the distances d[i, l] vary less rapidly with in-
dex i than do the alignment errors e[i, l]. In other words,
the accumulation step is a smoothing filter.

This recursive smoothing filter is one-sided, because
each d[i, l] in equation 6 depends on only previous and
present alignment errors, those with sample indices less
than or equal to i. This filter is also non-linear, be-
cause of the min function in equation 6. In e↵ect, this
one-sided non-linear smoothing filter already attenuates
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noise in alignment errors caused by noise in the two se-
quences to be aligned by warping.

One way we might improve this smoothing filter
would be to make it two-sided and symmetric. We can
implement a two-sided symmetric smoothing filter by
applying a one-sided filter in forward and reverse direc-
tions. Smoothing in the forward direction is the same as
computing distances d[i, l] via equation 6:

ẽf [0, l] = e[0, l],

ẽf [i, l] = e[i, l] + min

8
><

>:

ẽf [i� 1, l � 1]

ẽf [i� 1, l]

ẽf [i� 1, l + 1]

,

for i = 1, 2, . . . , N � 1. (12)

Smoothing in the reverse direction is similar:

ẽr[N � 1, l] = e[N � 1, l],

ẽr[i, l] = e[i, l] + min

8
><

>:

ẽr[i+ 1, l � 1]

ẽr[i+ 1, l]

ẽr[i+ 1, l + 1]

,

for i = N � 2, N � 3, . . . , 0. (13)

Two-sided smoothing is then defined by

ẽ[i, l] = ẽf [i, l] + ẽr[i, l]� e[i, l]. (14)

Subtraction of e[i, l] in equation 14 ensures that this
value is not counted twice, as for all i it appears in both
ẽf [i, l] and ẽr[i, l]. In this way, each smoothed error ẽ[i, l]
is a sum of past, present and future alignment errors.

Like the accumulator in DTW, this two-sided
smoothing filter is non-linear because it uses the min
function in both equations 12 and 13 to determine which
errors to sum. Figure 7 displays smoothed alignment er-
rors for the two noisy sequences shown in Figure 4.

Observe that the known sinusoidal warping path
is somewhat more apparent in these smoothed errors
than in the unsmoothed alignment errors displayed in
Figure 5a. We might therefore expect the shifts u[i] es-
timated by DTW from the smoothed errors ẽ[i, l] would
be more accurate than those estimated from the un-
smoothed errors e[i, l].

However, this sort of smoothing does not improve
DTW. Although not shown here, the shifts u[i] com-
puted by DTW for the smoothed alignment errors
shown in Figure 7c are identical to those computed for
the unsmoothed alignment errors in Figure 5a. The ben-
efit of this two-sided smoothing lies in the extension of
dynamic warping for one-dimensional sequences to that
for multi-dimensional images.

4 DYNAMIC IMAGE WARPING

The simplest way to extend dynamic time warping for
image processing is to think of an image as a collection
of vertical columns and to estimate vertical shifts by

la
g

l

a)

b)

la
g

l

sample index i

c)

la
g

l

ẽ[
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Figure 7. Alignment errors for the noisy sequences in Fig-

ure 4 after smoothing in the forward (a), reverse (b), and

both directions (c). Smoothing in the forward direction is

equivalent to the accumulation step in DTW, in which we

compute distances d[i, l] via equation 6.

applying DTW to each of those columns independently.
We could likewise apply DTW to image rows to obtain
estimates of horizontal shifts.

Figure 8 illustrates the application of this simple
method for dynamic image warping for two seismic shot
records, where the first record shown in Figure 8a has
been warped to obtain the second record shown in Fig-
ure 8b. DTW applied to each corresponding pair of
columns from these images yields the estimated shifts
shown in Figure 8a. Except for small source-receiver o↵-
sets where seismograms are missing, the estimated shifts
approximate well the known shifts used to warp the im-
ages.

These shifts are large, about eight times larger than
the dominant period of most reflection events, which
is about 40 ms. And many of the events in the shot
records (such as those for small o↵sets and late times)
are ringy, almost periodic, which can make estimation
of the shifts more di�cult. Nevertheless, DTW applied
independently to each pair of seismograms in these shot
records is able to recover the correct shifts.

The success of this simple method for dynamic im-
age warping (DIW) depends on the fact that each pair
of seismograms in these shot records satisfies exactly the
DTW assumption that one sequence is a warped version
of the other.

When this assumption is not satisfied, this simple



Dynamic warping of seismic images 239

a)
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Figure 8. A recorded seismic shot record before (a) and

after (b) warping with shifts that vary with time and are

up to eight times larger than the dominant period of seismic

reflections. Except for small o↵sets where data are missing,

shifts (c) computed from seismograms in these two images

by the dynamic time warping algorithm approximate well

the known shifts (d) used to perform the actual warping.

method for DIW can fail miserably. For example, if we
add di↵erent bandlimited random noise images to each
of the shot records before DIW, we obtain the results
shown in Figure 9. In this example, the rms signal:noise
ratio is 1:1. For this noise level, it is di�cult to estimate
well the correct shifts from each pair of noisy seismo-
grams in the two shot records. Therefore, the estimated
shifts vary significantly for di↵erent o↵sets, and imply
an unlimited amount of strain in the horizontal direc-
tion.

To improve these estimated shifts, we would like to
limit strain in both horizontal and vertical directions. In
other words, we would like to minimize alignment errors
as in equations 2 and 3 while satisfying constraints like
those in equations 4 or 11 in both horizontal and vertical
directions.

Unfortunately, this constrained optimization prob-
lem has been shown to be NP-complete (Keysers and
Unger, 2003), which means that the existence of a com-
putationally feasible solution is highly unlikely. We must
therefore make approximations to this NP-complete

a)

c) d)

b)

Figure 9. Same as Figure 8, except that bandlimited random

noise has been added to the two shot records (a) and (b).

Because these noisy seismograms are not simply related by

time shifts, the shifts (c) estimated by the dynamic time

warping algorithm vary wildly for di↵erent o↵sets, unlike the

known shifts (d).

problem, and methods for DIW di↵er in their approxi-
mations.

4.1 Tree-sequential dynamic programming

One such approximation is that proposed by Mottl et al.
(2002), and this approximation and its solution are to-
day often referred to as tree-sequential dynamic pro-

gramming (TSDP; e.g., Pishchulin, 2010).
Given software for DTW like that in Appendix A,

implementation of the TSDP algorithm for DIW is al-
most trivial in the case considered here, where we seek
to estimate only vertical shifts. The TSDP algorithm
begins by computing alignment errors as for DTW. It
then smooths those alignment errors in the vertical di-
rection, by applying the non-linear two-sided smoothing
equations 12–14 independently for each image column.
TSDP ends by applying the DTW algorithm to the
smoothed errors, but now in the horizontal direction, ac-
cumulating and backtracking for each image row, again
independently. In this way, TSDP processes a multi-
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a)
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Figure 10. Time shifts estimated by dynamic time warping

after vertical (a), vertical-horizontal (b), vertical-horizontal-

vertical (c), and vertical-horizontal-vertical-horizontal (d)

smoothings of alignment errors. Insignificant di↵erences be-

tween shifts (c) and (d) indicate that this process of smooth-

ing in alternating directions before DTW has converged.

dimensional image with a cascade of one-dimensional
smoothing, accumulation and backtracking.

Time shifts estimated by TSDP are shown in Fig-
ure 10a. For this example I used strain limits of 25% in
the vertical direction and 100% in the horizontal direc-
tion, and these values are close to the maximum strains
in the known shifts displayed in Figure 9d. Compared
to the estimated shifts shown in Figure 9c, the shifts
from TSDP shown in Figure 10a better approximate
the known shifts.

The most obvious improvement is in reduced hori-
zontal strain, greater continuity of shifts in the horizon-
tal direction. This improvement is not surprising, be-
cause TSDP as described above ends by applying DTW
independently for each image row, and we know that
DTW satisfies strain limits precisely.

However, because TSDP ends by applying DTW
independently for each row, we have no guarantee that
vertical strain limits (here 25%) will be satisfied. Verti-
cal discontinuities in shifts are in fact apparent in Fig-
ure 10a. Although vertical smoothing of alignment er-

rors in TSDP reduces the likelihood that such disconti-
nuities will occur, it does not entirely eliminate them.

Instead of smoothing vertically and then apply-
ing DTW horizontally, we might instead smooth hor-
izontally and apply DTW vertically. Shifts estimated
by this alternative implementation of TSDP are not
shown here, but are significantly less accurate than
those shown in Figure 10a.

The reason to first smooth vertically is that, for
each o↵set, a pair of image columns (seismograms) typ-
ically contains multiple events that will indicate a path
of minimum alignment error like that apparent in Fig-
ure 3a, but the same is not true for each pair of image
rows. By first smoothing alignment errors vertically, we
extend these paths of minimum error to times for which
little information about vertical alignment may be avail-
able, so that DTW applied horizontally can then accu-
rately estimate the shifts. Nevertheless, vertical discon-
tinuities apparent in the estimated shifts shown in Fig-
ure 10a suggest that further improvement is possible.

4.2 Improving TSDP

The key to improving TSDP lies in recognizing that it
first smooths alignment errors in one direction before
it applies DTW in another direction. Although I have
not seen TSDP described in this way, the description is
accurate. So why not first smooth in both vertical and
horizontal directions?

Figure 10b shows the result of smoothing both ver-
tically and horizontally before applying DTW vertically
to each column of smoothed alignment errors. As ex-
pected, vertical discontinuities in shifts are now elim-
inated, but a few horizontal discontinuities are appar-
ent. However, if we apply more vertical and horizon-
tal smoothings, this process quickly converges to the
smooth shifts shown in Figure 10c and 10d.

Although I have no guarantee that this smooth-
ing process will converge, I have not found a practical
example in which more than four (vertical-horizontal-
vertical-horizontal) smoothings yielded any significant
changes in shifts. The convergence shown in Figure 10
is typical.

Even assuming that the smoothing process does
converge, we cannot guarantee that estimated shifts will
minimize alignment errors while satisfying both vertical
and horizontal strain limits, as we recall that this con-
strained optimization problem is NP-complete (Keysers
and Unger, 2003).

The new dynamic image warping method proposed
here is truly an extension of the TSDP method proposed
by Mottl et al. (2002). Indeed, one way to view this new
method is that it is TSDP with a larger tree, in which
each vertical or horizontal smoothing before dynamic
time warping represents a new set of branches.
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4.3 Dynamic warping and crosscorrelation

In tests of dynamic image warping discussed above,
shifts are large (much larger than the dominant pe-
riod of reflections) and vary rapidly with both time and
o↵set. Recalling that strain is the rate at which shift
changes, the maximum strain in time is about 25%, and
the maximum strain in o↵set is almost 100%. That is,
time shifts change by as much as a quarter of one time
sample from one sampled time to the next, and by al-
most one time sample from one sampled o↵set to the
next.

Where shifts are not so rapidly varying, methods
based on local crosscorrelation of images may be used
instead to obtain accurate shift estimates.

Figure 11 displays shifts estimated from noisy shot
records like those in Figure 9a and 9b, using both dy-
namic image warping and local crosscorrelations. The
local crosscorrelation method used here is that described
by Hale (2009), which finds shifts that maximize corre-
lation coe�cients computed for seamlessly overlapping
windows of images. In these tests those windows are
Gaussian with half-widths equal to 320 ms in time and
240 m in o↵set.

Figure 11 illustrates how the success of this cross-
correlation method depends on whether or not shifts
vary rapidly within the windows used to compute the
correlation coe�cients. The sinusoidal pattern of vari-
ation used for these tests is the same as that shown in
Figure 8d, but the rates at which shifts change with time
and o↵set (the strains) are smaller because the magni-
tudes of the shifts are smaller.

Where shifts vary slowly, as in Figures 11a and 11b
(where the maximum time shift is less than four sam-
ples), both dynamic image warping and local crosscor-
relation yield estimated shifts that approximate well the
known shifts. Shifts estimated using the crosscorrelation
method show significant errors only for small times and
large o↵sets where no reflections exist.

Where shifts vary rapidly, as in Figures 11c
and 11d, (ten times more rapidly than for Figures 11a
and 11b), shifts estimated using the local crosscorrela-
tion method are unstable and inaccurate, while those
obtained by dynamic image warping again approximate
well the known shifts.

One way to stabilize shifts estimated in crosscor-
relation methods is maximize a weighted sum of both
image correlation and shift smoothness. Hall (2006), for
example, used such a regularization to improve the sta-
bility and accuracy of small shifts estimated from time-
lapse seismic images.

Regularization is however not the same as con-
straints in DTW, and it does not solve the fundamental
problem in using crosscorrelation windows to estimate
shifts that vary rapidly within those windows. For such
shifts, correlation coe�cients will be low for all lags, be-
cause the two windowed images cannot be well aligned
for any one of them. If we try to solve this problem

a)

c) d)

b)

Figure 11. Time shifts estimated from noisy shot records

by dynamic image warping (a,c) and by local crosscorrela-

tion (b,d). Local crosscorrelation without constraints yields

reasonable estimates where shifts vary slowly (b), but fails

where shifts vary rapidly (d).

by using smaller windows, then noise will degrade our
shift estimates, and in any case we must use correlation
windows that are at least as large as the shifts we seek
to estimate. In summary, local correlation methods re-
quire that we choose a window size; for shifts that vary
rapidly, as for Figure 11d, a suitable choice may not
exist.

In contrast, dynamic time and image warping re-
quire no windows. We need not specify a window size
when using the dynamic image warping algorithm pro-
posed in this paper.

Another di↵erence between crosscorrelation and
dynamic warping methods is that correlation peaks are
easily found with sub-sample precision, but dynamic
warping yields only integer shifts. For this reason I
smooth the integer shifts estimated with dynamic warp-
ing using Gaussian filters with half-widths equal to im-
age sampling intervals divided by maximum strains used
to constrain the shifts.
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5 CONCLUSION

An appealing feature of dynamic time warping is that it
solves exactly the constrained optimization problem of
equations 2–4. Although a practical and exact solution
is unlikely to exist for the corresponding optimization
problem for images, examples shown above indicate that
the approximate dynamic warping solution proposed in
this paper can produce reasonable estimates of shifts
from noisy images, even where those shifts are large and
rapidly varying.

The examples shown above are for 2D images, but
dynamic image warping is easy to apply to 3D images as
well. For 3D images we simply smooth alignment errors
along all three image dimensions before eventually using
dynamic time warping to estimate the shifts. For each
dimension, this smoothing and dynamic time warping is
especially e�cient on computers with multiple proces-
sors, as each row or column of alignment errors can be
processed in parallel.

In this paper I have assumed that images can be
aligned with only vertical warping. However, the dy-
namic image warping algorithm proposed here can also
be used to estimate shift vectors with vertical and hor-
izontal components. Estimating shift vectors would re-
quire modification of the software in Appendix A to pro-
cess arrays of alignment errors computed for multiple
components of lag, but these modifications are straight-
forward.
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APPENDIX A: SOFTWARE

Listed below are Java methods for computing an ar-
ray of accumulated alignment errors d[i, l] and for back-
tracking within such an array to find shifts u[0 : N �
1] that minimize accumulated errors. The accumulate
method can be used in both positive and negative di-
rections to compute smoothed alignment errors ẽ[i, l] in
dynamic image warping.

Both methods can be translated easily to equiva-
lent functions written in the C or C++ programming
languages.
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/**

* Non-linear accumulation of alignment errors.

* @param dir accumulation direction, + or -.

* @param b strain is bounded by 1/b.

* @param e input array of alignment errors.

* @param d output array of accumulated errors.

*/

void accumulate(int dir, int b,

float[][] e, float[][] d)

{

int nl = e[0].length;

int ni = e.length;

int nlm1 = nl-1;

int nim1 = ni-1;

int ib = (dir>0)?0:nim1;

int ie = (dir>0)?ni:-1;

int is = (dir>0)?1:-1;

for (int i=ib; i!=ie; i+=is) {

int ji = max(0,min(nim1,i-is));

int jb = max(0,min(nim1,i-is*b));

for (int l=0; l<nl; ++l) {

int lm1 = l-1; if (lm1==-1) lm1 = 0;

int lp1 = l+1; if (lp1==nl) lp1 = nlm1;

float dm = d[jb][lm1];

float di = d[ji][l ];

float dp = d[jb][lp1];

for (int kb=ji; kb!=jb; kb-=is) {

dm += e[kb][lm1];

dp += e[kb][lp1];

}

d[i][l] = min3(dm,di,dp)+e[i][l];

}

}

}

/**

* Returns the minimum of three values.

* If equal values, choose the value b.

*/

float min3(float a, float b, float c) {

return b<=a?(b<=c?b:c):(a<=c?a:c);

}

/**

* Finds shifts by backtracking within an

* array of accumulated alignment errors.

* Backtracking must be performed in the

* direction opposite that in which the

* alignment errors where accumulated.

* @param dir backtrack direction, + or -.

* @param b strain is bounded by 1/b.

* @param lmin lag for lag index 0.

* @param d input array of accumulated errors.

* @param e input array of alignment errors.

* @param u output array of shifts.

*/

void backtrack(int dir, int b, int lmin,

float[][] d, float[][] e, float[] u)

{

int nl = d[0].length;

int ni = d.length;

int nlm1 = nl-1;

int nim1 = ni-1;

int ib = (dir>0)?0:nim1;

int ie = (dir>0)?nim1:0;

int is = (dir>0)?1:-1;

int ii = ib;

int il = 0;

float dl = d[ii][il];

for (int jl=1; jl<nl; ++jl) {

if (d[ii][jl]<dl) {

dl = d[ii][jl];

il = jl;

}

}

u[ii] = il+lmin;

while (ii!=ie) {

int ji = max(0,min(nim1,ii+is));

int jb = max(0,min(nim1,ii+is*b));

int ilm1 = il-1; if (ilm1==-1) ilm1 = 0;

int ilp1 = il+1; if (ilp1==nl) ilp1 = nlm1;

float dm = d[jb][ilm1];

float di = d[ji][il ];

float dp = d[jb][ilp1];

for (int kb=ji; kb!=jb; kb+=is) {

dm += e[kb][ilm1];

dp += e[kb][ilp1];

}

dl = min3(dm,di,dp);

if (dl!=di) {

if (dl==dm) {

il = ilm1;

} else {

il = ilp1;

}

}

ii += is;

u[ii] = il+lmin;

if (il==ilm1 || il==ilp1) {

for (int kb=ji; kb!=jb; kb+=is) {

ii += is;

u[ii] = il+lmin;

}

}

}

}
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