DUE TODAYAssgn#5

Assignment # 5 Steady State Numerical Models: Create two steady state MODFLOW simulations of
groundwater flow in your system. One of the simulations should represent the flow system without the stress
and the other should simulate the steady state condition with the stress. Build on your work from assignments 1
through 3. Using the MODFLOW manuals and class examples, create a name file, then build each of the input files.
When you have them all, execute the model, look at the output or error messages and revise the file until you have
models that "run". Be sure to save your files because you will want to use them later in the semester. Compare your

results to the result of your spreadsheet and analytical modeling. Be sure to save your files because you will want
to use them later in the semester.

Suggested Steady State Modeling Report Outline
Title
Introduction
objective
problem description
Geohydrologic Setting
Results of analytical and spreadsheet modeling
Numerical Model setup
geometry
boundary conditions
initial conditions
parameter value ranges
stresses
special considerations
Uncalibrated model results
predictions
problems encountered, if any
Comparison with Analytical/Spreadsheet results
Assessment of future work needed, if appropriate
Summary/Conclusions
References
submit the paper as hard copy and include it in your zip file of model input and output
submit the model files (input and output for both simulations) in a zip file labeled:
ASSGN5_LASTNAME.ZIP

Calibration

(Parameter Estimation, Optimization, Inversion, Regression)
adjusting parameter values, boundary conditions,
model conceptualization, and/or model
construction until the model simulation
matches field observations

We calibrate because

1. the field measurements are not accurate
reflections of the model scale properties, and

2. calibration provides integrated interpretation

of the available data
(e.g. the dependent observations tell us about the independent properties)




Calibrated model ~ provides minimized residuals (Observed - Simulated)
without bias (N indicates the number of observations)

Global measures of error:

Mean Error: (Sum(Obs-Sim))/N

Mean Absolute Error: (Sum(ABS(Obs-Sim)))/N

Root Mean Squared Error: ((Sum((Obs-Sim)?))/N)°-5
Sum-of-Squared Weighted Residuals: Sum(weight(Obs-Sim)?)

Graphical measures of error
observed vs. simulated should form a 45° line passing through the origin
residual vs. simulated should form a uniform horizontal band around zero
ordered residuals on normal probability graph should form a straight line

Spatial and Temporal Distribution of Residuals
Map (obs-sim) in x, y, z space should exhibit a random pattern of
positive and negative, as well as large and small, residuals

Graph of (obs-sim) vs. time OR vs. observation # should form a
uniform horizontal band centered on zero

ALSO USE COMMON SENSE to spot errors

Optimal Parameter Values are the result of the calibration
They should correspond with field measured values

If they differ significantly carefully consider whether:
- such a difference is reasonable due to scale issues
- the conceptual model is in error, or
- there are errors in the field data

Have expectations, question all aspects of the situation
when calculations do not match expectations

We will use automated calibration (here nonlinear regression),

it is a valuable tool for:
- finding the best fit to your field observations
- identifying the type and location of additional data that will be most helpful
- differentiating conceptual models
- identifying models that are most representative of the field

Unfortunately, many practicing ground-water professionals
are still using trial-and-error but it is changing rapidly




Our objective is to minimize the sum of squared
weighted residuals:

ND 2
S(h)=) o, [yi —y. (Q)] Objective Function
i=1

b vectorof estimatedparametervalues1xNP
ND numberof observations

NP numberof parametersbeingestimated

y.  i" observatian (head,flux,concentration)
y:(b) modeledequivalentof thei™ observation

o weightof thei™ observation

Weighting Squared Residuals because Observations are:

1. not equally reliable (some heads may have been determined from
survey TOC (top of casing) while other TOCs were estimated from a
topographic map)

2. have different units (a difference of 1 foot in head may not have the
same importance as a difference of 1cfs flow rate)

3. have true errors that are correlated (e.g. many h obs @ one well but
elevation of well or position of well is in error)

We deal with these issues through weighting observations. Research
has indicated that ignoring the correlation of error between
observations does not significantly influence the regression, but we
can include them if we wish.

Using 1/variance of the measurement as the weight renders the
weighted squared residuals unitless and assigns high weights to
more accurate observations. THEREFORE we can sum weighted
squared residuals and regardless of the units or magnitudes, they
are of equal importance, except for their measurement certainty.




A reasonable weight is the inverse of the measurement variance
because more uncertain observations receive less weight and the weighted
squared residuals are unitless and so can be summed

Observations have units (e.g. ft cfs mg/L etc)

Observations have uncertainty (e.g. measurement variance o? which is the
square of the standard deviation o)

Standard deviation has same units as the observation (eg ft cfs mg/L etc)
Variance has observation units squared ft2 (cfs)? (mg/L)? etc
Residuals have the same units as the observation ft cfs mg/L etc

Squared residuals have units that are squared observation units
f+2 (cfs)? (mg/L)? etc

Weight = 1 / Variance units are the inverse of squared residuals
f1-2 (cfs)?2 (mg/L)2 etc

Sum of Weighted Squared Residuals (Zwt*squared residual) unitless

for example:
say heads are accurate to within 1 ft of measurement

express this quantitatively as 95% confidence that head is
within 1 ft of measurement

using a cumulative distribution of a standard normal
distribution table we find a 95% confidence is 1.96 standard
deviations, so

1.96 stddev = 1.0 ft
stddev = 0.51 ft
variance is the stddev squared
variance = 0.26 (ft)?
and the weight is 1/variance
weight 3.85 (ft)2




NOTE
heads are derived from an elevation AND depth measurement
Variances can be summed (standard deviations cannot)
example
95% confidence elevation is 120ft +/- 10ft
1 stddev ~ 5.1 ft
variance ~ 26 f12
95% confidence depth to water 25ft +/- 0.1ft
1 stddev ~ 0.051 ft
variance ~ 0.0026 ft2
Variance on the head measurement ~ 26 + 0.0026 ft?
1 stddev ~ square root of 26.0026
Weight ~ 0.0385 ft-2

in the case of ground water flow measurements, 2 measurements are required and
their variance must be combined (actually this is usually the case with head also
because both top of casing and depth to water are needed):

Upstream Q = 10cfs Downstream Q = 15cfs
95% certain upstream measurement is within 1 cfs
90% certain downstream measurement is within 1.5 cfs

upstream

95% confidence is 1.96stddev = 1.0 cfs
stddev = 0.51 cfs

variance is the stddev squared = 0.26 (cfs)?

downstream

90% confidence is 1.65stddev
stddev = 0.90 cfs

variance is the stddev squared = 0.81 (cfs)?

1.5 cfs

o

Sometimes we express uncertainty as coefficient of variation:
stddev / mean

we use the measured value as the mean

coeff var = (1.07 (cfs)?)2/ 5 cfs = 0.21 cfs

the groundwater flux is 15¢cfs - 10cfs = 5 cfs
the variance is the sum of the individual variances
variance = 0.26 + 0.81 = 1.07 (cfs)?

weight = 1/variance = 0.93 (cfs)-2




The errors associated with observations that share
measurements are correlated.

Generally this does not have a big influence on the regression
or the associated statistics.

We can accommodate this with a full weight matrix.
In the case of stream flow observations with a shared gage,
the off-diagonal variance is:

-(variance of the measurement at the shared gage)

The regression is not extremely sensitive to the weights, thus the
casual approach to their definition is not a problem

The weighting can be evaluated at the end of the regression by
considering the cev (calculated error variance) more on that later

upstream = 10 cfs midstream = 12 downstream = 15 cfs

95% certain upstream measurement is within 1 cfs -0.26(cfs)?
95% certain midstream measurement is within 1 cfs expresses the
90% certain downstream measurement is within 1.5 cfs cofar'iance

rbetween

upstream
variance is the stddev squared = 0.26 (cfs)? groundwater
midstream flux 1 and 2

95% confidence is 1.96stddev = 1.0 cfs
stddev = 0.51 cfs

variance is the stddezquared = 0.26 (cIsF—>
downstream

variance is the stddev squared = 0.81 (cfs)?

the groundwater flux1 is 12cfs - 10cfs = 2 cfs \\
the variance is the sum of the individual variances
variance = 0.52 (cfs)?

weight = 1/variance = 1.92 (cfs)?

coefficient of variation = (1.92 (cfs)?)2/ 2 cfs = 0.69 cfs

the groundwater flux2 is 15cfs - 12cfs = 3 cfs \\
the variance is the sum of the individual variances
variance = 1.07 (cfs)?

weight = 1/variance = 0.93 (cfs)?

coefficient of variation = (1.07 (cfs)?)2/ 3 cfs = 0.34 cfs




Recall our objective is to minimize the sum of squared
weighted residuals:

S(b)= oy, ©)]
In matrix form

s(b) =y -y'®)] oly-y'(®)]

T indicates rows and columns of matrix are transposed

D

sy =[y-y®] ely-y®)]

Y, —Y,'(b) € Oy Gy e @ Np
Y2 - yz'(t_)) ez a)z,l a)z,z ------
= [ ] = ([ ] Q = cee eee eee
® ® | | ... a0 ..
Yo = Yo' ®) ] | Ewo | Onpp e e e W\p D |




Recall matrix multiplication (review from Wikipedia):

The product of an m=p matrix A with an pxmn matrix B is an m=n matrix denoted AB whose entries are
(AB):; = E Aix By

where 1T<i<mis the row index and 1 <= n is the column index.

Example from Wikipedia:

14 9 3
|2 111 B
S0 1217 s =1
5 2 3 011 [ua
12 25 | L b3 b“_
B=1|9 10 - = 4 1I=
8 5 El.llal.z .O
14x124+9x9+3x8 ABI=273 A a,la.;
14 x254+9 x10+3 x5  AR21=458 ay,|a,, Il-l-‘o
14 9 3 273 455 P ﬂ
pp_ |2 1115 192 fg 243 235 I =1 L= =
B LR AR 4l e 244 205
5 2 3 102 160

A useful rule to remember when evaluating
matrix multiplication is that the adjacent
dimensions must match and the final matrix
dimensions will be the # of rows of the first
matrix and the number of columns of the
second.

So for us there are N observations

1x1 results from 1xN NxN Nx1

s)=[y-yJely-ym]




Sometimes it is assumed the off diagonal terms of the
weight matrix are zero and it is presented as follows

st =[y-yo[ aly-y®)

y1 - yll(b) el ,

Y, — yZ'@) ez @,

e= ° =| e = °
yND - yND'(b) eND Onp

S(b) =[e] wle]

but the w is an Nx1 that is the diagonal of the NxN
which is how the math is conducted and a
1x1 results from 1xN NxN Nx1

But in this case it is easy to sum the weighted squared
residuals by hand to confirm the matrix algebra

Let's look at some £
simple examples of E
=]

g &

P =

the sum of squared
weighted residuals

Ti=10nffe T2=0.1nis

The heads are fixed at each end, on the left at 10m and on the right at Tm,
for a gradient of 0.009.

i

1 : T -
Profile of

True Heads
Ve

NhO®

This results in the following accurate head observations from the system:

Observation Value
Type and # (m)

9.75
9.50
5.75
425
1.50
125

EaZIav




With the sum of Log of Sum-of-Squares
squared weighted e
residuals being one 3t
value, for a simple 2 2|
parameter estimation
problem we can plot §
it on a graph and 2
look at the surface

T1>10xT2

Here is the same
example but now we
add a flow observation
and note the affect
on the sum of squared
weighted residuals

—
-

Heed (m)

o 3 Brroo

Distance (m)

Distance (m)
Ti=10nffls T2=0.1nfls

Observation Value
Typeand#  (m)

9.75
9.50
675
4.25
1.50

aZaR3




Here is the sum of
squared weighted
residuals surface
with the flow
observation included.
Note that now it is
possible to find a
unique solution

Logof T1

[ S S - S S

) Log of Sum-oi-Squam

e

Logof T1

Log of Sum-of-Squares

Logof T1

b B = 8B s B ®

) Log of 8um-of-8quam

Ll Q
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Sometimes we include prior knowledge of the parameter
values from independent tests as observations
(for diagonal weights):

ND ' 2 NPR ' 2
sb)=Y aly, V0] +> o,[P, - P )]
i=l p=1
NPR numberof priorinformation values

P pth prior estimate

PF', (b) pth modeledequivalentof prior estimate
w, weight on pth modeled equivalentof

prior estimate

D

Considering a full weight matrix

[y, —y,'(b) ] e W, W, o 0 0 0 0
Y, —Y,' () e, W, , C e e 0 0 0 0
o . e e 0 0 0 0
o o || 0 0 0 0
=| Yo~ Yo' ®) |=| exp w= o e e Wyp.nD 0 0 0 0
p-p' Bipri 00 0 00 0 [Worpm Womo —
p,—p,' Eopri 0 0 00 0 W
* * 0 0 0 0 0
| P = Preei’ | [ e | 0 0 0 0 0 < Wagpri.npri |
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MODFLOW

Observation / Sensitivity / Parameter Estimation
User's manual is a separate physical document but is
integrated into the on-line guide for MODFLOW

All 3 processes in MODFLOW?2000
But this is being discontinued

MODFLOW2005 some OBSERVATION Packages
These will be enhanced
Sensitivity will be added

Parameter estimation will be replaced by UCODE

Consider how we could go about estimating parameter values for
the following nonlinear model. We guess a recharge R, calculate h,

determine residual, use that and the slope (sensitivity) to make a
linear estimate of the best R, and because it is nonlinear, we
repeat until R changes by less than a specified tolerance
residual3
Nobserve it f ensitivity3
il *Esidual? ’sewsitivityZ‘
residuall
& gl
= .
slensitivity ] Fourth
Guess
d R
thangeR1| [changeR2 Change<Tol
< >< »t+] converged
FirstRecharge ndyq Third
Guess Guess Guess
R R erturb
perturb perturb i
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To examine how we find the parameters that produce
the minimum sum-of-squared residuals, reconsider the
simplest form of the objective function:

sy =[y—y®[ ely-yw)]

take the derivative of the objective function with
respect to the parameters and set it to zero:

a%[l ‘X’@)]TQ[X— 1’(9)]= 0

0 has NP elements, all zero

linearize the objective function with

the first 2 terms of the Taylor Series Expansion

si)=[y-y®][ aly- y®)]
1,(1_)) is_ylinearized(b)

14



The residuals are determined as
observed-simulated (at the current parameter values)

They form a 1D array (ND, # observations long)
! —
y-y(b)=

Y, y', (b,) ] [ residual, -
Y, y', (b,) residual,

Yno _y'ND(bo)_ _rESiduaIND_

The valueof y at b, where we anticipate the
residuals will be minimal,is approximatd
linearly by the valueat

b, + the"slope" times the residual.

We havean array of b and b, and the slope

is the sensitivity linearized y(b) =

. ov'(b
y™(b)= y(b,) +%—) (b-by,)




we can write the linearized
form in terms of the sensitivity

matrix X evaluated at b,
y" ()= yb)+X|  (b-b)

X = sensitivity matrix (Jacobian)

dy,

i

elements are

CONSIDER the SENSITIVITY MATRIX
y'(b) has ND + NPR elements

ND = # observations

NPR = # prior observations of parameters
b has NP elements

NP = # parameters NP
So the ' ‘
sensitivity matrix X has ND 6}’1 63’1 aYl
ND+NPR rows ob ob Il ob
[ e 1 D

columns
° NPR Y2 0¥, .... 0y,

o . X = db, b, . 0by
Each sensitivity is determined as: 2>
[simulated(current b values)-
simulated(perturbed b values)] /
[(current b)-(perturbed b)]

i.e. OYxp OYnp ~=220Y\p
simulated(b,)- simulated(b’)

S | b, b, " Oby, |




Estimating Parameter Values that
Minimize the Sum of Weighted Squared Residuals
via Nonlinear Regression using the
Modified Gauss-Newton Gradient Method
(also called Marquardt-Levenberg)

An iterative form of linear regression (i.e. solves normal equations like you do
to fit a straight line to data, but repeatedly with updated parameter values)

To do this we minimize the objective function (i.e. we obtain the normal
equations by assuming linearity and taking the derivative with respect to the
parameters, then set the derivative equal to zero to find the parameter values
that would minimize the function)

The ground water flow equations are not linear with respect to the
parameters, so we repeat the process using the new parameter values and
continue until there is little change in the parameter values

This only works well for non-linear problems IF MODIFIED to include:
* scaling
* adjusting to gradient correction
* damping

Consider how we could go about estimating parameter values for
the following nonlinear model. We guess a recharge R, calculate h,

determine residual, use that and the slope (sensitivity) to make a
linear estimate of the best R, and because it is nonlinear, we
repeat until R changes by less than a specified tolerance
residual3
Nobserve !’1 - ensitivity3
LB ssidual2 | SEpbitivity2 |
r
X h
©  hue o
siensitivity 1l Fourth
Guess
d R
hangeR1| [changeR2 Change<Tol
< >< i+ converged
FirstRecharge ndyt Third
Guess Guess Guess
R R erturb
perturb perturb Rp
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Recall to find the parameters that produce the minimum
sum-of -squared residuals, we set the derivative of the
objective function to zero. This préduces the normal

y-y®[ oly-y®)

Substitute the Iin&expressiq[ for y'(b)
b

y" () =0, + X, , (b-

aib[z—(y'(b )+ X(by)* (b—by))J
o ly-(yb,)+X(b,)* (b b,))]=

abbrev1ate :
[y y + XAb ]T [y —

18



After some mathematical considerations that we will
not take time for here, we calculate the change in
the parameters that is required (assuming a linear
model) to minimize the residuals for 1 iteration:

Vector (d.) defines the amount

each parameter needs to change

x] olx], di =X! oy~ y(b.))

—iter —

updated parameters are b =b. +d

—iter +1 —iter ~iter

but not best fit for a nonlinear model,

so repeat at new (b)

Conceptually:
X7 ox M, =X]oly-y,)

f ——r /—
right hand side = steepest descent
left coefficient = modifies direction

for a better route to the minimum

Some modifications are needed to put
this to work in a practical sense:
SCALING

DAMPING

ADJUSTING to GRADIENT DIRECTION

19



First, just an image of “the route” to the minimum:

Log of Sum-of-Squared Residuals
Ohservations with Error (1 Fiow and 6 Heads)

LogofT1

Scale to account for large differences in
parameter values and sensitivities for

improved accuracy of d

O x7x 00" -0 X} aly-y®)

C =diagonal scaling matrix with element

c; equal to (éT oX ; "

producing a scaled matrix with the

smallest condition number

20



2
1

If the direction vector nearly

LogafTi

parallels the contours of the

objective function 2

&

Marquardt parameter changes direction

to be more down gradient

[C7X] X Crfme 'd,-C"X] oly-y (b))
I = NPxNP identity matrix

m_= Marquardt parameter this iteration

if the down gradient vector of this
iteration and the last is more than
some angle, commonly ~87° apart, then

the Marquardt parameter is

included in calculating the parameter

change vector |
m™ =1.5m" +0.001 i

with each iteration

.-r';; .?“"(- 4
S5
e
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to avoid repeated overshoot of the minimum

a damping parameter is used, p, from 0to 1.0

changes magnitude, but not direction of new
parameter estimates

b =

one Crlterlon is to keep change less than a

fractional maximum (specified by -

2

L fr|
user) for any parameter

br+1 _ b
eqg.—/——=r-<?2
J b’

Lagal T

& R L & o

W

(IS

Gauss-Newton approach:
We solve iteratively for d:

d, = (XX ) X oly-y®,))

Modified Gauss-Newton approach
scale(C) adjust direction(m) damp(p)

d,=(C"X X Ctim,J'cC X wly-y'b,)

And update b:
=b, +p,d

—r

b

=r+l
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REPEAT UNTIL THE DISPLACEMENT VECTOR d
is LESS THAN TOLERANCE
Typically 1% change in parameters

Once optimal parameters are found, evaluate:
PARAMETER STATISTICS
RESIDUAL STATISTICS
To assess quality of the model

RECALL: When the situation is nonlinear we assume linearity and
keep trying until parameter values do not change much. We guess R,
calculate h, determine residual, use that and the slope (sensitivity) to
linearly estimate the "best" R, and because it is nonlinear, repeat until
R changes by less than a specified tolerance

residual3
Mobsered f e Sensiivin3
SRR / Tesidual2  SEnpitivity2
< h residuall
© hiidst =5
= o
siensitivity 1l Fourth
Guess
d R
thangeR1| changeR2 Change<Tol
< > i+ converged
FirstRecharge next Third
Guess Guess Guess
R
Rperturb perturb Rperturb

23



groundwater flow equations are not a linear function
of the parameters,

even though confined groundwater flow equations are
a linear function of space and time

Q= —KA@ = _KAA_h = —KAM
OX AX ~_/ X
Q Expand gradient in Darcy’s Law
X 4+ h1 — hx Rearrange for h of x

Q

h, =h, %A X derivative h with respect to x is

a_h
OX A

linear because independent of x

Q

h, =h ———x derivative of h with respect toQ is
X 1 KA

oh
aQ
near, because independent of Q, but

is dependent on K which can havea

nonlinear impact on h
derivative with respect to K
oh Q
oK

X 1s nonlinear
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SUM OF WEIGHTED SQUARED RESIDUALS

S(b)= Z a)(SRESIDUAL)z

CALCULATED ERROR VARTIANCE

S(b)

cev=g>=—"1"
ND — NP

STANDARD ERROR

s=+s*

VARIANCE/COVARIANCE MATRIX
cov =cev(X X’

j=1 « e j=NP

i=1 [ 11 12 e LNP
e |21 22 e .
o« | o . . .

i=NP|[NP,1 NP,2 NP3 NP,NP

If 2 parameters were estimated:

bl b2
bl| Var, Cov,,
b2| Cov,, Var,
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VARIANCE (b1)
VAR (b1) = (X" @ XJof EVAR )

std Dev =VAR (bl) 95 % Confid =bl+/-2*StdDev

Std Dev =,VAR (b2) % Confid =b2+/-2*StdDev

Confidence interval on parameters

Later we use this for confidence interval on
predictions

CORRELATION (normalized variance)

COV(i, j)
JVAR() *VAR(])

j=1 ¢« e j=NP
i=1[ 11 12 e LNP]
e [ 21 22 e .
o | o . . .

i=NP[NP] NP2 NP3 NP,NP|

CORR(i, j) =

If 2 parameters were estimated:
bl b2

bl 1 Cor,,,
b2| Cor, 1
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Logof T1

Log of Sum-of-Squares | og of Sum-of-Squares
4 RO ‘M\\\
JHS

|25

]

T1>10xT2

Log of T

Table 1: Guidelines for effective model calibration (from Hill and Tiedeman, 2pg7 -

maodified from Hill, 1998).

Model Development

10

1. Apply the principle of parsimony (start simple: build complexity slowly)
2. Use a broad range of information to constrain the problem
3. Maintain a well-posed, comprehensive regression problem
4. Include many types of observations in the regression
3. Use prior information carefully
6. Assign weights that reflect errors
7. Encourage convergence by improving the model and evaluating the observations
8. Consider alternative models
Test the Model
9. Evaluate model fit

. Evaluate optimized parameters

Patential New Data

11.
12.

Identify new data to improve model parameter estimates and distribution
Identify new data to improve predictions

Prediction Accuracy and Uncertainty

13.
14.

Evaluate prediction uncertamty and accuracy using deterministic methods
Quantify prediction uncertainty using statistical methods
-
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Learn much more about calibrating models via
Hill and Tiedeman

FWILEY

EPPective
Groundwatenr
Moolel_ quibbobion

Predi

DUE NEXT WEEK
SUBMIT THE OBSERVATION FILES
ALONG WITH YOUR WORKING
MODFLOW FILES FROM THIS WEEK
Include comments on the quality of fit

This submission will be considered as part of your
assignment 6 grade
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