DUE TODAYCOMPUTER FILES AND QUESTIONS for Assgn#6
Assignment # 6 Steady State Model Calibration: Calibrate your model. If you want to conduct a transient
calibration, talk with me first. Perform calibration using UCODE. Be sure your report addresses global,
graphical, and spatial measures of error as well as common sense. Consider more than one conceptual model
and compare the results. Remember to make a prediction with your calibrated models and evaluate
confidence in your prediction. Be sure to save your files because you will want to use them later in the semester.
Suggested Calibration Report Outline
Title
Introduction
describe the system to be calibrated (use portions of your previous report as appropriate)
Observations to be matched in calibration
type of observations
locations of observations
observed values
uncertainty associated with observations
explain specifically what the observation will be matched to in the model
Calibration Procedure
Evaluation of calibration
residuals
parameter values
quality of calibrated model
Calibrated model results
Predictions
Uncertainty associated with predictions
Problems encountered, if any
Comparison with uncalibrated model results
Assessment of future work needed, if appropriate
Summary/Conclusions Summary/Conclusions
References
submit the paper as hard copy and include it in your zip file of model input and output
submit the model files (input and output for both simulations) in a zip file labeled:
ASSGN6_LASTNAME.ZIP

Calibration

(Parameter Estimation, Optimization, Inversion, Regression)
adjusting parameter values, boundary conditions,
model conceptualization, and/or model
construction until the model simulation
matches field observations

We calibrate because

1. the field measurements are not accurate
reflections of the model scale properties, and

2. calibration provides integrated interpretation

of the available data
(e.g. the dependent observations tell us about the independent properties)




Calibrated model ~ provides minimized residuals (Observed - Simulated)
without bias (N indicates the number of observations)

Global measures of error:

Mean Error: (Sum(Obs-Sim))/N

Mean Absolute Error: (Sum(ABS(Obs-Sim)))/N

Root Mean Squared Error: ((Sum((Obs-Sim)?))/N)°-5
-5quare eighted Residuals:  Sum(weig 3]

Graphical measures of error
observed vs. simulated should form a 45° line passing through the origin
residual vs. simulated should form a uniform horizontal band around zero
ordered residuals on normal probability graph should form a straight line

Spatial and Temporal Distribution of Residuals
Map (obs-sim) in x, y, z space should exhibit a random pattern of
positive and negative, as well as large and small, residuals

Graph of (obs-sim) vs. time OR vs. observation # should form a
uniform horizontal band centered on zero

ALSO USE COMMON SENSE to spot errors

Optimal Parameter Values are the result of the calibration
They should correspond with field measured values

If they differ significantly carefully consider whether:
- such a difference is reasonable due to scale issues
- the conceptual model is in error, or
- there are errors in the field data

Have expectations, question all aspects of the situation
when calculations do not match expectations

We will use automated calibration (here nonlinear regression),

it is a valuable tool for:
- finding the best fit to your field observations
- identifying the type and location of additional data that will be most helpful
- differentiating conceptual models
- identifying models that are most representative of the field

Unfortunately, many practicing ground-water professionals
are still using trial-and-error but it is changing rapidly




Our objective is to minimize the sum of squared
weighted residuals:

ND 2
S(h)=) o, [yi —y. (Q)] Objective Function
i=1

b vectorof estimatedparametervalues1xNP
ND numberof observations

NP numberof parametersbeingestimated

y.  i" observatian (head,flux,concentration)
y:(b) modeledequivalentof thei™ observation

o weightof thei™ observation

Weighting Squared Residuals because Observations are:

1. not equally reliable (some heads may have been determined from
survey TOC (top of casing) while other TOCs were estimated from a
topographic map)

2. have different units (a difference of 1 foot in head may not have the
same importance as a difference of 1cfs flow rate)

3. have true errors that are correlated (e.g. many h obs @ one well but
elevation of well or position of well is in error)

We deal with these issues through weighting observations. Research
has indicated that ignoring the correlation of error between
observations does not significantly influence the regression, but we
can include them if we wish.

Using 1/variance of the measurement as the weight renders the
weighted squared residuals unitless and assigns high weights to
more accurate observations. THEREFORE we can sum weighted
squared residuals and regardless of the units or magnitudes, they
are of equal importance, except for their measurement certainty.




Let's look at some
simple examples of
the sum of squared
weighted residuals

Distance (m)

Ti=10nffe T2=01nfs

The heads are fixed at each end, on the left at 10m and on the right at 1m,
for a gradient of 0.009.

Profile of
True Heads

'

Heed (m)

NhEO®

This results in the following accurate head observations from the system:

QObservation Value
Typeand#  (m)

9.75
9.50
575
425
150
125

EFEEIRZ

With the sum of
squared weighted
residuals being one
value, for a simple 2
parameter estimation
problem we can plot
it on a graph and
look at the surface

Log of Sum-of-Squares

Log of T1




Here is the same
example but now we
add a flow observation
and note the affect
on the sum of squared
weighted residuals
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Distance {m)
Ti=10nffe T2=0.1nds

Observation Value
Type and # {m)

h 9.75
h2 9.50
h3 875
h4 425
h5 1.50
h6 1.25

Here is the sum of
squared weighted
residuals surface
with the flow
observation included.
Note that now it is
possible to find a
unique solution

Log of T4

 Log of 8um-of-Squarea

W.




Log of Sum-of-Squares

Log of 8unj-of-Squarea
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Sometimes we include prior knowledge of the parameter
values from independent tests as observations
(for diagonal weights):

NPR

s0)=3 -] +3.0,[p, -P®)

NPR numberof prior information values

P, pth prior estimate

PF', (b) pth modeledequivalentof prior estimate

W, weight on pth modeledequivalentof

prior estimate




Consider how we could go about estimating parameter values for
the following nonlinear model. We guess a recharge R, calculate h,
determine residual, use that and the slope (sensitivity) to make a
linear estimate of the best R, and because it is nonlinear, we
repeat until R changes by less than a specified tolerance

residual3
hobser;eﬁ%ﬁ; ensitivity3
Magriwh. ehbitivity? |
residuall
& o
slensitivity ] Fourth
Guess
d R
thangeR1| [changeR2 Change<Tol
< > 5] converged
FirstRecharge ndyq Third
Guess 5uess Guess
R R Rperturb
perturb perturb

An image of "the route” to the minimum:

Log of Sum-of-Squared Residuals
Observations with Error (1 Flow and 6 Hesds}
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CONSIDER the SENSITIVITY MATRIX
y'(b) has ND + NPR elements

ND = # observations

NPR = # prior observations of parameters
b has NP elements

NP = # parameters B NP _
So the
sensitivity matrix X has ND ayl 8yl ayl

ND+NPR rows

[ } b, ab, oy,
NP columns NPR % %LLL; ayz
w _| by b, by

Each sensitivity is determined as: 2>
[simulated(current b values)-
simulated(perturbed b values)] /

[(current b)-(perturbed b)] : C e,
. o OYnp 2220y g

simulated(b.)- simulated(b’) e
_bo.. b' abl abz ab NP

Estimating Parameter Values that
Minimize the Sum of Weighted Squared Residuals
via Nonlinear Regression using the
Modified Gauss-Newton Gradient Method
(also called Marquardt-Levenberg)

An iterative form of linear regression (i.e. solves normal equations like you do
to fit a straight line to data, but repeatedly with updated parameter values)

To do this we minimize the objective function (i.e. we obtain the normal
equations by assuming linearity and taking the derivative with respect to the
parameters, then set the derivative equal to zero to find the parameter values
that would minimize the function)

The ground water flow equations are not linear with respect to the
parameters, so we repeat the process using the new parameter values and
continue until there is little change in the parameter values

This only works well for non-linear problems IF MODIFIED to include:
* scaling
* adjusting to gradient correction
* damping




Gauss-Newton approach:
We solve iteratively for d:

d, = (XToXx, ) X aly-y'®,))

Modified Gauss-Newton approach
scale(C) adjust direction(m) damp(p)

d,=(C'X wX C+Im )Eggg(z—[(b_r))

And update b:
=b, + p,d

—r

b

~r+l

REPEAT UNTIL THE DISPLACEMENT VECTOR d
is LESS THAN TOLERANCE
Typically 1% change in parameters

Once optimal parameters are found, evaluate:
PARAMETER STATISTICS
RESIDUAL STATISTICS
To assess quality of the model




Table 1: Guidelines for effective model calibration (from Hill and Tiedeman, 2pg7 :
modified from Hill, 1998).

Model Development

. Apply the principle of parsimony (start simple; build complexity slowly)
. Use a broad range of information to constrain the problem
. Maintain a well-posed, comprehensive regression problem

by a

Include many types of observations in the regression

. Use prior information carefully

. Assign weights that reflect errors

. Encourage convergence by improving the model and evaluating the observations
8. Consider alternative models

=1 S h e

Test the Model

9. Evaluate model fit
10. Evaluate optimized parameters

Potential New Data

11. Identify new data to improve model parameter estimates and distribution
12. Identify new data to improve predictions

Prediction Accuracy and Uncertainty

13. Evaluate prediction uncertainty and accuracy using deterministic methods
14, Quantify prediction uncertamnty using statistical methods

METHODS AND GUIDELINES FOR
EFFECTIVE MODEL CALIBRATION

NOTE by Mary C. Hill

U.5. GEOLOGICAL SURVEY

LIN K | O WATER-RESOURCES INVESTIGATIONS REPORT 98-4005
With application to:
I HIS USGS UCODE, a computer code for universal inverse modeling, and
MODFLOWP, a computer code for inverse modeling with MODFLOW
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Learn much more about calibrating models via
Hill and Tiedeman

BHWILEY

EPPective
Groundwatenr
.Moolel CO“br‘OUiOﬂ

REMEMBER

When you run a code, you should expect that there will
be errors and be pleasantly surprised if there are
not. When you see an error:

1)look closely at the error message, try to understand
it, use any clue that may be provided (paths,
directories, file names, numbers) to explore it

2)check the directory to see what files were created
and view their contents, look at the dates and times
on files to determine what was created recently

3)delete outputs and try it again and look at the new
outputs

4)as Winston Churchill once said, "never, never, give
up". If you do not find the error, keep thinking and
experimenting to decipher the situation. Utilize “show
me" skills.

11



EVALUATING OUTPUT

Notice any errors in the command window and read the file
to confirm everything is what you expected

The most common error is related to paths and file names
Next common error is improper substitution or extraction

Check that the UCODE input items are echoed correctly.
View the output (see Chapters 14 and 16)
fn.#uout & DataExchange files: fn._*

Note GWChart works for ucode _ files

Follow tutorial and use GWChart

Follow tutorial and use GWChart

EVALUATING OUTPUT
fn.#uout includes statistics, top portion of Fit Statistics Table 28
These reflect model fit

given the initial model configuration and starting values
USE GWChart for convenient viewing of files

Exceptionally large discrepancies between simulated and observed
values may indicate that there is a conceptual error either in the
model configuration or in the calculation of the simulated values

Fixing these now can eliminate many hours of frustration.
Data exchange files include residual informations at starting values
Table 31

It is essential for UCODE to perform correctly in the forward mode.
Proceeding with errors will result in an invalid regression and wasted
time.

Resolve any problems and continue




Follow tutorial for sensitivity run / see Ucode_main.in & Ucode_main_out.#uout

EXECUTE UCODE in the SENSITIVITY MODE

Look for the differences in the #uout file
What are the sensitivities?

Are there some parameters that will be difficult to estimate?
Dimensionless scaled sensitivity - 1 for each obs and parameter
dss = unscaledsens * ( PARAMETER_VALUE * ( wt**.5) )

Composite Scaled Sensitivities - 1 for each parameter
css = (( SUM OF THE SQUARED DSS ) / ND y**.5
Generally should be >1 AND

within ~ 2 orders of magnitude of the most sensitive parameter

Notice statistics are calculated for the starting parameter
values as if they were optimal
This can be useful if you want to regenerate the statistics for
an optimal parameter set

Follow tutorial for sensitivity run / see Ucode_main.in & Ucode_main_out.#uout

See “"Perturbation Sensitivities” starting on p15

Accuracy of Sensitivities Depends on:

number of accurate significant figures in extracted simulated values
(print many significant figures and extract them all)

magnitude of the simulated values
magnitude of the substituted parameter values

size of the parameter perturbations, for nonlinear parameters

13



What if Sensitivities are zero?

If more than a few sensitivities equal zero, it may indicate extracted
perturbed & unperturbed values are identical (given the significant
figures) or perhaps the model did not execute

See "What to Do When Sensitivities Equal Zero” (p37) of the UCODE
manual.

If sensitivities are zero for a Parameter:

If many other sensitivities are nonzero, observation is not very
important, NO corrective action needed

If all sensitivities are zero, corrective action is needed (if there
is a hydraulic reason for lack of sensitivity, do not estimate the
parameter)

If many sensitivities are zero, corrective action MAY OR MAY
NOT be needed

What if Sensitivities are zero?

Five possible corrective actions:

1) smaller solver convergence criteria can be specified in the application codes;
2) the extracted values can be printed with more significant figures in the
application model output file if the values are calculated with sufficient accuracy:
3) the datum of the problem can be changed or a normalization can be applied;
4) the perturbation for the parameter can be changed: too small perturbations
may result in negligible differences in extracted values, or differences that are
obscured by round-off error: too large may yield inaccurate sensitivities for
nonlinear parameters

5) the methods for coping with insensitive parameters discussed later can be
employed.

- Reconsider the model construction

- Modify the defined parameters

- Eliminate observations or prior information, if biased

- Adjust weights either for groups of, or individual, observations

Sensitivities calculated for the values of the parameters just prior to failure can
be investigated by substituting these parameter values as starting values in the
prepare file and executing UCODE with sensitivities=yes, optimize=no. (add
SenMethod=2 to also evaluate correlation)

Sensitivities for all intermediate sets of parameter values can be investigated by
setting IntermedPrint=sensitivities in the input file and executing UCODE again
with optimize=yes.

14



Follow tutorial for parameter estimation run/see Ucode_main.in & Ucode_main_out.#uout

Read through the resulting files

VERY IMPORTANT: USE YOUR COMMON SENSE

Most common trouble is lack of convergence, or progress
toward it. Consider how to tackle that.

Have expectations for the results, question all aspects of
the situation when calculations do not match expectations

Fix Problems
Evaluate Results

What do you make of the estimated parameter values?
What of the confidence intervals?

EVALUATING PARAMETER ESTIMATION OUTPUT
OVERALL FIT, SUM OF SQUARED ERRORS

S0 =Y aly -y

CALCULATED ERROR VARIANCE (cev)
S(h)
ND — NP

STANDARD ERROR sqrt(cev)

/.2
S=4S

Model Selection Criteria
MLOF / AIC / AICc / BIC / KIC

cev =s’=

15



SUM OF WEIGHTED SQUARED RESIDUALS

S(b) = Z w(SRESIDUAL)Z

CALCULATED ERROR VARTIANCE

S(b)

cev=g>=—"7
ND — NP

STANDARD ERROR

s=+s*

VARIANCE/COVARIANCE MATRIX
cov =cev(X X )’

j=1 e« e j=NP
i=1[11 12 e LNP
e |21 22 . .
P .

i=NP|NP1 NP,2 NP,33 NP,NP

If 2 parameters were estimated:

bl b2
bl| Var, Cov,,
b2|Cov,, Var,

16



VARIANCE (b1)
VAR (b1) = (X" @ X5 EVAR )

std Dev =VAR (b1) 95% Confid =bl+/-2*StdDev

Std Dev =,/VAR (b2) % Confid =b2+/-2*StdDev

Confidence interval on parameters

Later we use this for confidence interval on
predictions

The regression is not extremely sensitive to the weights, thus the casual
approach to their definition is not a problem

The weighting can be evaluated at the end of the regression by considering
the cev (calculated error variance)

smaller values of s 2 and s indicate a better fit

values close to 1.0 indicate the fit is consistent with the data accuracy as
described by the weighting

cev > 1 (eg 95% confidence intervals on cev completely above 1) indicates
the modeler globally underestimated the variances (i.e. the model does not
fit the observations as well as the variances assigned by the modeler would
reflect)

cev < 1 (eg 95% confidence intervals on cev completely below 1) indicates
the modeler globally overestimated the variances (i.e. the model fits
better than expected)

The 95% confidence intervals on cev are calculated using the ChiSq
distribution. Deviations from 1.0 are significant if 1.0 falls outside of the
confidence limits.

The modeler could adjust weights to obtain 1, but it is not necessary as
long as the cev is discussed along with the input variances

17



CONSIDER HOW THE PARAMETER UNCERTAINTY IS CALCULATED
Variance Optimal Parameters:

V(b) = Sum of Squared Weighted Residuals [ XTw X 1-!
(_) #Observations - #Parameters [_ __]

V() = cev [XTwX]!

b vector of optimal parameters (e.g. K,S,R,H,Q)
X sensitivity matrix
w weight matrix for observations

Results in NPxNP matrix, with variances on the diagonal

V(b) = (K KS KR KH KQ
SK S SR SH SQ
RK RS R RH RQ
HK HS HR H HQ

QK QS QR QH Q

VARIANCE (K)

VAR (K) = (X Q%EVAR )

Std Dev = VAR (K) 95 % Confid =K +/-2*StdDev

VARIANCE (H)

VAR(H) =(X" QEVAR)

Std Dev =.VAR (H) 95% Confid =H +/-2*StdDev

18



CORRELATION (normalized variance)

. CoVv(i, )
CORR(i, j)= - _
JVAR(D) *(VAR(])
j=1 ¢ e j=NP
i=1[ 11 12 e 1NP ]
) 21 22 ) )

i=NP NP1 NP2 NP3 NPNP

If 2 parameters were estimated:

bl b2
b1 1 Cor,,,
b2| Cot, 1

Logof T1

Log of Sum-of-Squares | og of Sum-of-Squares

_ TR TTTTT T
THIS
S

S—e

T1 > 10xT2

Log of T1
£ & B L o
ey
N
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Follow tutorial for parameter estimation run/see

Ucode_main.in Ucode_main_out.#uout and _files

statistics / sensitivities
Using GWChart also

See previous items and more from
Tables 28 (p 176) and 31 (p 180)

As before parameter estimation view residual

EVALUATING PARAMETER ESTIMATION OUTPUT
RESIDUALS
ws (weighted residuals vs simulated equivalents)
want narrow band around O
25 200
1.: i v, L+ * e M 200 n —y
% 0o o .: Py .c + E 0 ‘...#""' o.. *
s 0 ; : 2 — T 5044 * won o, f50g w00+ 2500
£ s 500 1000 NP1 2500 £ 100 + + " *S
.E“ " + . . + _ -i Pat - .
15 =0 . * 300 +
-2 + + 4
25 -400
ww (weighted observed versus simulated)
want 1:1 line
2500 2500
,—% 2000 = o % 2000 -ﬁ srvt
E .‘.M’ 3 ot s
._‘E 1500 ’.‘ E 1500 "‘ -
;‘ 1000 — — E 1000 Yo
z o % H -
2 so0 O E',‘ 500
0 L]
] 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
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EVALUATING PARAMETER ESTIMATION OUTPUT

RESIDUALS (if you include a root.xyzt file)

wxyzt (weighted residuals vs space [1D distance in this illustration])
want narrow band around O

o
o

+

300
I; ¥ . + 200 3
. I O
Posr——->o3 a i : 4
S " g g ! . 50 $ 0o & 200
2 s % ) o ] ] o - d =
2 * . + .‘E‘ + .
3 _"5‘ + ¥ ; 5 200 = :
2 . i 300 -
25 400
Radial Distance [m) Radial Distance (m)
wxyzt (weighted observed versus time)
want narrow band around O
26 300
2 -
1 £ 100 =
05 Le ¥ v,

o5 La + cogoo
* +

40000 soood” 0000

k3

1001

Weughted Residual
=

-5

25

Time (sec)

Weughted Residual

n

Rl

200

-300

-400

e+ o«

40000 BOO0H &0000 100000
FY

+ +
4 + +

Time (sec)

Extensive model analysis and development work
can be accomplished by analyzing residuals

Explore the rest of the data exchange files

Various sensitivity representations (sc sd sl so su)

Parameter Information (

pc pasub)

) this obs
this obs % has
has leverage
£ leverage and
(] .
influence
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A typical _so

exl. so

0.9
08
07

Sorting

 Use original order
# Largest values first

Items To Plot

o & All

ah 0.6 " First N items

803 © Last N items

% o e

04 N (number of items)

03

02
0.1

W

55
55
.58
2.4

mmmmmmmmmmmmm

hdi
hdl
Jatelt)
hd
hd07 s
hd05
hd0g
hdlo
hd0l

hd03
flow01
flow(
hd0®
hd0g
hd04

O

o

servation or Prior Name

If the PARAMETER ESTIMATION is successful:
Further EVALUATE RESULTS
with UCODE's Residual Analysis (p159 and on)
It only needs the data exchange files, but there is
optional input described in the ucode manual

Create batch file for residual_analysis OR run in ModelMate
Additional Residual Analyses can be obtained running

residual_analysis.exe >>> fn.#resan

VIEW RESULTS WITH GW_CHART
_nm - want normally distributed residuals
If not a straight line compare to realizations of residuals:
Uncorrelated _rd - if these look like your nonlinear nm plot
the cause is too few residuals
Correlated _rg - if these look like your nonlinear nm plot
it is OK, due to correlation in the regression

ALSO see rdadv of residual_analysis_adv.exe on next slide
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Create a batch file to run residual_analysis_adv or run in ModelMate
View _rdadv in GW_Chart

to see the theoretical confidence limits on the weighted residuals

#resanadv

Mean Weighted Residual should be ~ O
Slope should be ~ O

INTRINSIC NONLINEARITY << Sum of Squared Residuals
If large Corfac_plus correction factors may not be accurate

CED correlation of weighted residuals and means of synthetic residuals
PROB - probability that a correlation would be <= CED if the
residuals were normally distributed

A typical _rdadv

ex]l. rdadv

r

gl3 Y SRR
=] ——a—
= (Mo
=
g ! =
s
05
S
B oo
=y
=03
2
2 -1 e
——e—o—
= e
Ais ]

]

PR 2 Hs 4 W8 0 05 1 15
Weighted Residual

(]
=
in
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Back to:
EVALUATING PARAMETER ESTIMATION OUTPUT from

Residual_analysis fn.#resan _rc _rb

Cook'sD large values indicate observations that most influence all
estimated parameter values

DFBeta$S large values indicate observations important to individual
parameters

Do you understand why the flow observation is so important? What
would you be able to say about the parameter values without that
observation?

A typical _rc
exl. re rItems To Plot-
e & Al
i " First N items

18  Last N items

1.6 1 <| N (number of items)
4
vi2
i 1
o
S

— o

hd08.283
hd07.283
hd01.283
hd03 1
hddd. 55
hd08.s5
hd02 g3
hd04 283

OBSERVATION NAME
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DFBETA STATISTICS

A typical _rb

Order of data
points and series

)
b in
5

in

; 5 o
R A -

h.\'-EA:\&UgN What to plot on X-axis
u # Obsarvations
© Parameters
Order of serlas In legend
 Original order
% Order from *._sc file
HK 2 Order of data points in plot
Critical Ve © Original order
Critical Vahae = Lulgesl. ﬁ[!il.

Items To Plot

Al

* First N items

 Last N items

31
Lis
41

hd07.28!
hdl
k1
nd(4. 283
hd0é 1
i

hd0% 1
hd

hd0B. 28

OBSERVATION NAME

flow(1.10

| N {number of items})

Order of data
exl._rb

points and series

‘What to plot on X-axis

% Observations

" Parameters

Order of series in legend
 Original order

& Order from *._sc file
Order of data polnts In plot
 Original order

* Largest first

Items To Plot

Al

* Flrst N ltems

 Last N items

117 2| N (number of ltems)

)
in
=

EXFLANATION
- Qld2

Cutical Value

DFBETA STATISTICS

by

hd0B.283
hdl9.2s
hdlg 1
b4 58
hedZ 10
hd5. 55
nd10.233
flowe (1,283

OBSERVATION NAME

ANAL

0BS#

¥5I5 OF COOHS D

INFLUENTIAL OBSERVATIONS WITH COOKS

CESERVATION PLOT-SYMBOL

1d01. 283 2
hd0o3.1 2
hd03.283 2
hdn7.283 2
hdog.1 2
hdng.283 2
hd0g.ss 1
hdng.283 2

NUMBER OF INFLUENTIAL OBSERVATIONS I

Typical #resan results

N T T T e

FOR PLOTTING, COOKS L STRTISTICS ARE LISTEC IN THE _RC OUIPUI FILE

L > CRITICAL VALUE (4/(NOBSHMFR)) = 0.114

COOK'S D

.19920774E+00
-16229212E+00
.28741326E+00
-69218923E+00
77273656E+00
-19342235E+01
-41209141E+00
15028790E+00

oo

coocooo

KRR AR AR AR AR AR AR AR AR AR AR AR AR AR AR R d AR
R ANATYSIS USING DFEETAS
DENTIFIED: 2 FOR PLOTTING, DFBETA STATISTICS ARE LISTED IN THE RE OUTPUT FILE

PARAMETER NUMBERS ANC NAMES:

i 2 3 4 5
Qls2 CH 1 cH 2 KRB 551
L] T -1 9

BE 1 VK _CB 55:2 HE 2

INFLUENTIAL OBSERVATICNS WITH DFBETA >
CRITICAL VALUE {2/ (NOBS+MPR)**0.5) = 0.33i

PARRMETERS INFLUENCEL IDENTIFIEC BY #
EARRMETER NUMBER

0B5# IC PFLOT-SYMBOL 1
3 hd0l.283 =
hd02.ss
10 hd03.1
11 hd03.283
2-hd0d .33
23 hd07.2
25 hd0g.l
26 -hd0B.2
27 hd09.ss

-

W o

e

o)

|
|

-
[
'
'
i

' '
[ X}
'

[
'
[ I

o
FORM R R R R
i
|
[ T
[

NUMBER OF INFLUENTIAL OBSERVATIONS IDENTIFIED: 9
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EVALUATING PARAMETERIZATION
High parameter correlations calls for either
Additional data that will break the correlations
Or
Reparameterization

Barring the availability of additional data, consider
reparameterization e.g. USING DERIVED_PARAMETERS Block
As an example you could define
rch2=0.5*rchl and rch3=0.1*rchl
However, notice that the true values do not have those ratios

To evaluate if correlations are too high
try starting from different values
USE PARAMETER_VALUES Block
If results are the same (parameter values fall within one
standard deviation of those determined with different starting
values) correlation is not an issue
Thus parameters are being independently estimated

Overview of UCODE & Associated Codes

Modes that can be accomplished:

Forward Process Model run with Residuals

Conduct Sensitivity Analysis

Estimate Optimal Parameter values and associated linear uncertainty

Evaluate quality of the model

I Estimate values of Predictions and associated linear uncertainty I

Evaluate model linearity

Evaluate NonLinear uncertainty associated with
estimates of parameter values and predicted values

Auxiliary: Investigate Objective Function

See UCODE Manual Chapter 1 for overview and
description of manual contents
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When prediction=yes, UCODE calculates predictions and sensitivities (if
sensitivities=yes) of the model parameters to those predicted values
for the purpose of calculating 95-percent linear confidence and
prediction intervals on the predictions. IN PREDICTION MODE WE
CHANGE THE PROCESS MODEL TO THE PREDICTIVE CONDITIONS

We will get both
CONFIDENCE INTERVALS and PREDICTION INTERVALS
ON PREDICTED VALUES

CONFIDENCE INTERVALS are based on var-cov of parameters,
reflecting certainty associated with the parameters

the measurement error reflecting our ability to measure the predicted
value

3 ALTERNATIVE METHODS OF CALCULATION OF INTERVALS for both
CONFIDENCE INTERVALS AND PREDICTION INTERVALS
on PREDICTIONS

Appropriate method depends on # of predictions jointly considered

1) INDIVIDUAL INTERVALS

2) SIMULTANEOUS INTERVALS - more than one interval

3) SIMULTANEOUS INTERVALS - undefined number of intervals (e.g.
drawdown over an area must be limited o a given magnitude, but the
location of the maximum drawdown cannot be determined a priori).

Only the critical values differ and are obtained from one of:
Student-t Distribution
Bonferroni-t Distribution
Scheffe (based on the F-distribution)

UCODE tests for the appropriate method, then prints intervals for
Individual and Both Simultaneous Intervals. Of these 3, the user
selects the interval appropriate for their question.
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INDIVIDUAL CONFIDENCE INTERVALS

, o Sensitivity of the
z,¥t|n,1.0—— . simulated equivalent
2 of the prediction to

' . the parameters
z, =™ simulatedvalue

t, (11 , 1.0— g]: criticalvalue, value with-~ probabili¥ that

a student-t distributel random value wouldbe larger

Element ijj of the
variance/covariance
matrix

SIMULTANEOUS CONFIDENCE INTERVALS

Two Methods: Bonferroni & Scheffe
Both conservative with respect to significance level
Both are calculated by UCODE and the smaller is used

Bonferroni: Z:tts (“ 10— %}zh
wherek is thenumber of simultaneous intervals and
ty is the Bonferroni - ¢ probabilit ¥ distributi on for a
givennumber of degreesof freedom and
simultaneous intervals

at the selectedsignificance level

Scheffe:  Zt@F.(nk,
where d =Kk (# simultaneous intervals)
OR
the # of parameters (which everis less)and
F_ is the critical value from the
F probabilit y distributi on for a given
number of degreesof freedom at the

selectedsignificancelevel
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PREDICTION INTERVALS are broader than confidence intervals
because they include the probability that the MEASURED value will
fall into the interval. Calculations are the same as for confidence
intervals, however the standard deviation is increased to reflect the
measurement error as follows:

£,xt, [n . 1.0—%](51.‘ +sa)

where s, is the product of the

standard error of the regression
and the

expectedmeasurement error of the prediction

EVALUATE PREDICTIVE UNCERTAINTY
using OPTIMAL PARAMETER VALUES with UCODE
Develop a predictive MODLFOW Model
Import to ModelMate as per instructions in PDF file
Run UCODE with prediction=yes, first to be sure all is
functioning correctly
Then with sensitivity=yes
UCODE calculates the sensitivity of the predictions to
the parameters at the optimal values
linear_uncertainty is executed in that folder with the

ucode root file name as input, e.g.
i Ill C:\WRDAPP\UCODE_2005\bin\lingar_uncertainty.exe ep_Ucode

NOTE IF you use different root names for calibration and
prediction ucode runs you must use ucode 1.020 or later
for the linear uncertainty run. ALWAYS USE THE LATEST

VERSION OF ALL MODELING CODES




This ucode prediction execution does not overwrite previously
created UCODE output files

It produces additional files

#upred
_Pp _pv _dmp _spu _sppp _sppr _spsp _spsr

The linear_uncertainty execution produces

#linunc and ._linp

You can view the results in GW_Chart

DUE TODAYCOMPUTER FILES AND QUESTIONS for Assgn#6
Assignment # 6 Steady State Model Calibration: Calibrate your model. If you want to conduct a transient
calibration, talk with me first. Perform calibration using UCODE. Be sure your report addresses global,
graphical, and spatial measures of error as well as common sense. Consider more than one conceptual model
and compare the results. Remember to make a prediction with your calibrated models and evaluate
confidence in your prediction. Be sure to save your files because you will want to use them later in the semester.
Suggested Calibration Report Outline
Title
Introduction
describe the system to be calibrated (use portions of your previous report as appropriate)
Observations to be matched in calibration
type of observations
locations of observations
observed values
uncertainty associated with observations
explain specifically what the observation will be matched to in the model
Calibration Procedure
Evaluation of calibration
residuals
parameter values
quality of calibrated model
Calibrated model results
Predictions
Uncertainty associated with predictions
Problems encountered, if any
Comparison with uncalibrated model results
Assessment of future work needed, if appropriate
Summary/Conclusions
References
submit the paper as hard copy and include it in your zip file of model input and output
submit the model files (input and output for both simulations) in a zip file labeled:
ASSGN6_LASTNAME.ZIP
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