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ABSTRACT

High-dimensional problems have received a considerable amount of attention in the last

decade by numerous scientific communities. This thesis considers three research thrusts that

fall under the umbrella of inference and learning in high-dimensional spaces. Each of these

trusts aim to tackle the so called “curse of dimensionality” in a particular way.

The first research thrust focuses on recovering a signal whose amplitudes have been

clipped. We present two new algorithms for recovering a clipped signal by leveraging the

model assumption that the underlying signal is sparse in the frequency domain. Both algo-

rithms employ ideas commonly used in the field of Compressive Sensing (CS); the first one

is a modified version of Reweighted `1 minimization, and the second one is a modification of

a simple greedy algorithm known as Trivial Pursuit. An empirical investigation shows that

both approaches can recover signals with significant levels of clipping.

The second research thrust focuses on denoising a signal ensemble by exploiting sparsity

both at the inter- and intra-signal level. The problem of signal denoising using thresholding

estimators has received a significant amount of attention in the literature, starting in the

1990s when Donoho and Johnstone introduced the concept of wavelet shrinkage. In this

approach, the signal is represented in a basis where it is sparse, and each noisy coefficient is

thresholded by a parameter that depends on the noise level. We are extending this concept

to the case where one has a set of signals, and the location of the nonzero coefficients for all

these signals is the same. Our approach is based on a vetoing mechanism, where in addition

to thresholding, the inter-signal information is used to “save” a coefficient that otherwise

would be “killed”. Our method achieves a better performance than independent denoising,

and we quantify the expected value of this improvement. The results show a consistent

improvement over the independent denoising, achieving results close to the ones produced

by an oracle. We validate the technique using both synthetic and real world signals.
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The third research thrust focuses on using sparse models in Reinforcement Learning

(RL). In RL one is interested in designing an agent able to interact with a given environment.

The agent observes its current state, and based on this observation takes an action. As a

consequence, it gets a reward and transitions to a new state. The design objective is to

conceive a policy, or control rule, that maximizes the aggregated rewards. When the number

of states is large, the design of such policies requires the use of function approximations;

it also requires the design of feature vectors, i.e., the design of a mapping between a state

and a vector that summarizes the state. In this work we propose new algorithms that,

by exploiting the structure of the functions to be approximated, simplify the design of the

feature vectors. These methods are also more efficient than the existing ones in terms of

computational complexity and the required number of samples. We evaluate the performance

of the proposed methods empirically in a variety of environments.
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CHAPTER 1

INTRODUCTION

“Remember kids, the only difference between screwing

around and science is writing it down.”

Adam Savage

On August 8, 2000, exactly 100 years after David Hilbert presented 10 of the 23 famous

Hilbert’s problems1 at the Paris conference of the International Congress of Mathematicians,

David Donoho offered his take on some mathematical challenges for the 21st century. In his

lecture, entitled “High-Dimensional Data Analysis: The Curses and Blessings of Dimension-

ality” [34], he stated:

“We are now in a setting where many very important data analysis problems are

high-dimensional. Many of these high-dimensional data analysis problems require

new or different mathematics. A central issue is the curse of dimensionality, which

has ubiquitous effects throughout the sciences. This is countervailed by three

blessings of dimensionality. Coping with the curse and exploiting the blessings

are centrally mathematical issues, and only can be attacked by mathemetical

means.”

The “Curse of dimensionality” is a term, apparently coined by Richard Bellman [6],

used to describe the kind of problems that arise when the number of dimensions involved

in a problem is high. For instance, if we wish to approximate an s-times continuously

differentiable function of D variables with a reconstruction error below ε, we need on the

order of ε−D/s function samples [25], i.e., the number of samples is exponential in D. These

1Hilbert’s problems are a list of 23 problems in mathematics. These problems where all unsolved when
Hilbert stated them in 1900, and they received a lot of attention by the mathematical community. Three
problems remain unsolved.
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type of phenomena are usually surprising because our intuition about the geometry of two

and three dimensional spaces does not carry on to higher dimensions.

To illustrate how our intuition fails [63, Sec. 1.2.2] in high-dimensional spaces, consider

the volume of a D-dimensional sphere of radius r

Vs(r) =
π
D
2 rD

Γ
(
1 + D

2

) ,

where Γ denotes the gamma function, and the volume of a D-dimensional circumscribed

cube with volume Vc(r) = (2r)D. The first surprise is that as the number of dimensions

increases, the volume of the sphere goes to zero (see Fig. 1.1-a). The second surprise is how

volumes distribute in high-dimensional spaces. In three dimensions and for a radius equal to

1, Vs(r)/Vc(r) = π/6, i.e., around half of the volume of the cube is contained in its corners.

However,

lim
D→∞

Vs(r)

Vc(r)
= 0.

This means that in high dimensions, most of the volume of a cube concentrates around its

corners (see Fig. 1.1-b). This is commonly called the empty space phenomenon.

But in his lecture Donoho also stated that there are three blessings bestowed upon high-

dimensional spaces. The first blessing is the “concentration of measure phenomenon,” which

encompasses the fact that a random variable that is a Lipschitz function of many independent

variables is almost constant. The second blessing is the existence of asymptotic results, i.e.,

the kind of results obtained by letting the number of dimensions go to infinity. The third

blessing is the approach to continuum, which is the fact that many times high-dimensional

data is the discretization of an underlying continuous variable.

This thesis considers three research thrusts. Common to these thrusts is the focus on

objects that exist in high-dimensional spaces. Two of the research thrusts are instances of

inference problems and the last one is an instance of a learning problem.
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Figure 1.1: Empty space phenomenon. (a) Volume Vs of a D-dimensional sphere of radius
one as a function of the number of dimensions D. As the number of dimensions increases the
volume goes to zero. (b) Ratio between the volume of a D-dimensional sphere of radius one
Vs and the volume of a circumscribed D-dimensional cube Vc as a function of the number of
dimensions D. In high-dimensional spaces the ratio is close to zero, i.e., most of the volume
of the cube is contained in its corners.

The first research thrust focuses on declipping a signal. We consider the problem of

recovering a discrete-time signal for which a fraction of the samples are clipped, i.e., for the

samples whose amplitudes are beyond the measurement range, we observe a saturation value

instead of the actual value. We think of a discrete-time signal as a point in RN , where N is

the number of samples. As customary in Compressive Sensing (CS), we cope with the curse

of dimensionality by assuming a sparse signal model —in this case we assume that the signal

is sparse in the frequency domain. As pointed out by Donoho [34, Sec. 9.2], it is now well

understood that there are many functional classes, and sparsity is one of them, that allow

to “crack” the curse of dimensionality.

The second research thrust focuses on denoising a signal ensemble. We consider the

problem of estimating a set of signals from noisy observations. More precisely, we observe

J discrete-time signals of length N . We think about these signals as J points in RN . In

addition to using a sparse signal model, we cope with the curse of dimensionality by assuming

an inter-signal model known as a Joint Sparsity Model (JSM) [5], where all the signals in
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the ensemble share the same support.2 This research thrust also exploits the “asymptotic

blessing of dimensionality,” since as the number of signals increases, we can approach the

optimal behavior attained by an oracle estimator.

The third research thrust focuses on using sparse models in Reinforcement Learning

(RL). In RL one is interested in designing an agent able to interact with a given environment.

The agent observes its current state, and based on this observation takes an action. As a

consequence, it gets a reward and transitions to a new state. The design objective is to

conceive a policy, or control rule, that maximizes the aggregated rewards. When the number

of states is large, the design of such policies requires the use of function approximations;

it also requires the design of feature vectors, i.e., the design of a mapping between a state

and a vector that summarizes the state. In this work we propose new algorithms that,

by exploiting the structure of the functions to be approximated, simplify the design of

the feature vectors. This methods are also more efficient than the existing ones in terms of

computational complexity and the required number of samples. We evaluate the performance

of the proposed methods empirically in a variety of environments.

1.1 Joint Denoising

A classic problem in signal processing is to remove the noise of an observed signal. This

task, often call signal denoising, can be approached using different techniques. The classic

approach is based on the theory of linear filters [85]. A more modern approach is based on

the theory developed by Johnstone and Donoho in the 1990s, known as thresholding estima-

tors [37, 67]. This theory considers transforming the signal of interest into a domain where

the signal is sparse, typically the wavelet domain, processing each coefficient individually by

applying a simple thresholding function to it, and transforming the signal back to its original

domain. For signals that are sparse in the wavelet domain, this approach can be considered

2The support of a signal in a given domain is defined as the location of its nonzero coefficients.
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as a form of adaptive smoothing, and has the advantage of preserving signal features, such

as discontinuities, that linear filters typically destroy.

Although thresholding estimators have been improved in many ways—for instance, by

adapting the threshold to the data, by developing translation-invariant thresholding estima-

tors, by developing nondiagonal estimators, etc. [67, Secs. 11.2.3 and 11.4]—one aspect of

this field that so far has been ignored is denoising a signal ensemble. This is a situation

commonly observed when working with sensor arrays or sensor networks. If one observes a

set of signals it is possible to naively denoise the signals independently; in this thesis, though,

we exploit the structure that exists among the signals to obtain better results. Several au-

thors [5, 27, 94, 100] have proposed signal models for a set of signals based in the sparsity

patterns of the ensemble. Baron et al. [5] called this model a Joint Sparsity Model (JSM).

From the three proposed JSM model variants, we assume that our signals satisfy the JSM-2

model, where all the signals share the same support.

Similarly to the independent denoising of a signal, our proposed method, called joint

denoising, starts by transforming all the signals into a domain where the signals are sparse.

Then it processes all the signal coefficients at a given location at once. If all the coefficients at

that location are smaller than a threshold, they are all set to zero. If at least one coefficient

at that location is larger than the threshold, all the coefficients at that location are kept.

In the final step the signals are transformed back to the original domain. Since a “large”

coefficient is able to “save” all the coefficient at a given location, we call this a vetoing

scheme.

1.2 Declipping a Signal in Sparseland

In many practical situations, either because a sensor has the wrong dynamic range or

because signals arrive that are larger than anticipated, it is common to record signals whose

amplitudes have been clipped. Any method for restoring the values of the clipped samples
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must—implicitly or explicitly—assume some model for the structure of the underlying signal.

For example, one of the first attempts to “de-clip” a signal was the work of Abel and Smith [1],

who assumed that the underlying signal had limited bandwidth relative to the sampling rate

(i.e., that it was oversampled) and recovered the original signal by solving a convex feasibility

problem. Godsill et al. [51] later tackled the de-clipping problem using a parametric model

and a Bayesian inference approach.Along the same lines, Olofsson [76] proposed a maximum

a posteriori estimation technique for restoring clipped ultrasonic signals based on a signal

generation model and a bandlimited assumption.

Meanwhile, recent research in fields such as CS [19] has shown the incredible power

of sparse models for recovering certain signal information. Many signals can be naturally

assumed to be sparse in that they have few nonzero coefficients when expanded in a suit-

able basis; the name “Sparseland” has been used to describe the broad universe of such

signals [43]. Although a typical CS problem involves an incomplete set of random mea-

surements (as opposed to a complete—but clipped—set of deterministic samples), sparse

models have made a limited appearance in the de-clipping literature. In particular, Gem-

meke [49] et al. imputed noisy speech features by considering the spectrogram of the signal

as an image with missing samples, represented the spectrogram in terms of an overcomplete

dictionary, and used sparse recovery techniques to recover the missing samples. Using the

model assumption that the underlying signal is sparse in an overcomplete harmonic dictio-

nary, Adler et al. [2] later adapted the Orthogonal Matching Pursuit (OMP) [43] recovery

algorithm from CS into a de-clipping algorithm that they call constraint-OMP. Studer and

Baraniuk [91] considered a general model to restore an approximately sparse signal with

sparse corruptions; one can formulate the declipping problem under their setting, though

the theory applies only to small levels of clipping. Finally, Stoica et al. [90, and references

therein], also used a sparse model for spectral estimation using irregularly sampled data.

Their work, however, considered random samples, which are again fundamentally different

from deterministic clipped samples.
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In this thesis, we present two methods for de-clipping a signal under the assumption

that the original signal is sparse in the frequency domain, i.e., that it can be represented

as a concise sum of harmonic sinusoids. This model is general enough to embrace a wide

set of signals that could be recorded from certain communication systems, resonant physical

systems, etc. This model is also commonplace in the CS literature, particularly in settings

involving random time-domain measurements. Although the measurements we consider are

not random,3 we do find that certain ideas from CS can be leveraged. In particular, we have

modified several CS algorithms in an attempt to account for the clipping constraints. Among

the methods that we have tried, the two with the best performance are a modified version of

Reweighted `1 minimization [21] and a modified version of the Thresholding algorithm [43],

also known as Trivial Pursuit (TP) [5]. This is surprising since TP, a very simple greedy

algorithm, is one of the poorest performing algorithms in conventional CS problems [43].

We also show that, when tested on frequency sparse signals, these two methods outperform

constraint-OMP.

1.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning [8, 92, 93]. It considers

an agent that interacts with a given environment. The agent is able to take actions and to

observe its current state. After taking an action, the agent observes its new state together

with an immediate reward (this reward does not need to be positive). The goal is to design

a policy, or control law, such that the sum of all the observed rewards is maximized. This

problem is challenging because typically to maximize the total reward the agent needs to

take actions that do not always look promising. This is why it is common to say that in RL

“things need to get worse before they get better”.

RL has been applied successfully in different domains. An early success case was TD-

Gammon [96], a program that learned to play Backgammon. It is also common to use RL

3In fact they are “adversarial,” in that clipping eliminates the samples with the highest energy content.
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to solve classic control problems (e.g., controlling an inverted pendulum [92]), in robotics

(autonomous helicopter [74], obstacle avoidance [70]), and in Operations Research (e.g.,

maintenance with limited resources and channel allocation in cellular systems [8]).

Finding or estimating the so-called value function is at the core of solving an RL problem.

In its simplest form this is done by computing the value function for each state. In other

words, the value function is stored as a look-up table. However, when the number of states is

too large, or the state space is continuous, this approach is infeasible. As discussed in Sec. 5.2,

this is overcome by using a function approximation scheme. Among the several function

approximation architectures typically used in RL, the linear approximation approach is one of

the most common ones. An important step in any linear approximation solution is the design

of the feature vectors (or alternatively, the design of an approximation basis). Typically, this

step involves designing these features or basis functions by hand, and it can become quite

involved as the problem at hand becomes more complex. For this reason, researchers have

focused on simplifying this step.

In this work we show how the use of sparse approximations [43] helps to alleviate

the difficulties practitioners encounter when designing an approximation architecture. In

particular, we propose to exploit the additional structure present in the action-value function

to improve the generalization capabilities of the function approximation architecture. Our

results shows that the proposed methods are able to approximate an optimal policy more

efficiently, both in terms of the required number of samples an the required execution time.

1.4 Online Search Orthogonal Matching Pursuit

In the last chapter of this thesis we visit a classic algorithm, known as OMP, used to

recover sparse signals. We show how this algorithm can be enhanced by incorporating ideas

inspired by RL and some related concepts in the field of Artificial Intelligence.

Many areas of signal processing, including Compressive Sensing, image inpainting and
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others, involve solving a sparse approximation problem. This corresponds to solving a system

of equations y = Φx where the matrix Φ has more columns than rows and x is a sparse vector.

An important class of methods for solving this problem are the so called greedy algorithms,

for which OMP is one of the classic representatives [98].

It is possible to think of greedy algorithms as instances of search problems. Karahanoğlu

and Erdoğan [57] used the A* search method, a well known heuristic search algorithm for

finding the shortest path between two nodes in a graph, to design a new greedy solver called

A*OMP. This method stores the solution as a tree, where each node represents an index of

the estimated support. At each iteration it selects, using a heuristic based on the evolution

of the norm of the residue, which leaf node to expand. To avoid an exponential growing of

the candidate solutions, this tree is pruned by keeping a relatively small number of leaves.

In this work we present a new greedy algorithm for solving sparse approximation prob-

lems. Like A*OMP, it frames the recovery of a sparse signal as a search instance. However,

instead of using A* search which involves a monolithic planning stage, we formulate the

problem as an online search, where the planning and execution stages are interleaved. This

allows us to achieve a performance significantly better than OMP and similar to A*OMP

while maintaining a reasonable computational load. Our simulations confirm this recovery

performance with a computational speed 20× faster than A*OMP and less than 2× slower

than OMP.
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CHAPTER 2

SPARSE MODELS

“Who strive—you don’t know how the others strive

To paint a little thing like that you smeared

Carelessly passing with your robes afloat,—

Yet do much less, so much less, Someone says,

(I know his name, no matter)—so much less!

Well, less is more, Lucrezia.”

Robert Browning

In this chapter we introduce the concept of sparse models and show how these models

have been used in signal processing and machine learning. We start with a few definitions

that will be used through this thesis.

Definition 2.1 (`0 norm)

Given a vector1 x ∈ RN , the `0 norm of x, denoted by ||x||0, is equal to the number of

nonzero entries of x.

Definition 2.2 (Sparse signal)

The vector x ∈ RN is K-sparse (K ≤ N) if at most K entries of x are nonzero, i.e., if

||x||0 ≤ K.

Note that calling the operator that returns the number of nonzero elements a “norm”

is a misnomer, since this operator does not satisfy the positive scalability property.2 Also,

although the `0 norm is commonly stated as a definition, it can be derived by taking the

1Although we consider vectors with real entries, most definitions and results carry on to vectors with
complex entries.

2The positive scalability property requires that ||αx|| = |α| ||x||, however, ||αx||0 = ||x||0.
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limit of the `p norm when p goes to 0 from the right:

lim
p→0+

||x||pp = lim
p→0+

N∑

i=1

|xi|p

=
N∑

i=1

lim
p→0+

|xi|p

=
N∑

i=1





1 |xi| 6= 0,

0 |xi| = 0.

In practice, signals are rarely exactly sparse, but more commonly they can be well

approximated by a sparse signal. For this reason, we introduce the concept of approximately

sparse signals.

Definition 2.3 (Approximately sparse signal)

A signal is approximately K-sparse with precision ε if, given ε > 0, ||x− xK ||2 ≤ ε, where

xK is equal to x at the K largest (in magnitude) entries and zero at the remaining locations.

We call xK the best K-approximation of x.

2.1 The Case for Sparse Models

We motivate the use of sparse models with the following example. Consider the 640×960

pixel image shown in Fig. 2.1-(a). This image can be represented by 640 × 960 = 614400

wavelet coefficients. These coefficients, sorted by magnitude, are shown in Fig. 2.2. We

observe that only a small fraction of the wavelet coefficients have a relatively large magnitude

(note that the ordinate-axis is in a logarithmic scale). If we approximate the original image

using only the 10% largest wavelet coefficients—i.e., if we take the inverse wavelet transform

of a set of coefficients equal to the 10% largest coefficients of the original image and equal to

zero in the remaining locations—we get an image almost identical to the original (see Fig.

2.1-(b)). In other words, this image admits a very good sparse approximation.
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(a) 640× 960 original image (b) Approximation using 10% of the largest (in mag-
inuted) coefficients

Figure 2.1: Approximating an image sparse in the wavelet domain. The original image is
approximately sparse in the wavelet domain (see Fig. 2.2), and it can be well approxi-
mated using only 10 % of the largest wavelet coefficients. (Source for the original image:
http://bit.ly/10nOkHH)

The behavior exhibited by the image in the previous example is by no means an excep-

tion, but a common property of many natural signals [20]. This is in fact old news, and this

property of natural signals has been successfully exploited in the design of compression stan-

dards such JPEG and MPEG [52]. What is new, however, is the use of sparse models—i.e.,

the assumption that the signals of interest can be represented efficiently in some basis—to

design novel acquisition systems. In particular, this fact is the cornerstone of the new sens-

ing paradigm known as Compressive Sensing (CS). In the remaining of the chapter we will

summarize the main aspects of CS.

2.2 Compressive Sensing

The idea behind CS is that it is possible to design acquisition systems that measure

a number of samples way lower than the ambient dimension of the signal of interest. In

particular, it allows acquiring a signal using a sample rate significantly lower than the one

12
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Figure 2.2: Daubechies wavelet coefficients of the image shown in Fig. 2.1-(a) sorted by
magnitude. Note that the ordinate axis is in a logarithmic scale.

dictated by the Nyquist criterion.3 Since CS allows reducing the number of samples that need

to be acquired, it is particularly useful when measuring each sample is slow or expensive.

For instance, CS has been successfully used in Magnetic Resonance Imaging, where it allows

reducing the scanning time by a factor of five [65].

Let x ∈ RN be a signal that can be represented in some domain (Fourier, wavelet, etc)

as x = Ψα, where Ψ is an orthonormal N × N matrix, and α ∈ RN or α ∈ CN is a vector

representing the coefficients of x in this domain. In CS we are interested in cases where α is

a K-sparse or approximately K-sparse with K � N . The measurement process is modeled

by a linear operator Φ, i.e.,

y = Φx

= ΦΨα,

3This statement should not be read as if there is something wrong with the Nyquist criterion. The reason
why CS allows reducing the sampling rate is that CS works under a different signal model than a classic
acquisition system: CS assumes that signals are sparse in some domain, while the Nyquist criterion works
under the assumption that signals are band-limited.
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with Φ an M ×N matrix, M < N . Letting A = ΦΨ, we can write

y = Aα.

To get back the signal of interest x given the observations y we need to solve a linear

system of equations. Since the matrix A has more columns than rows (M < N), there are

an infinite number of solutions. The only way to recover x among all these solutions is to

exploit the fact that α is a sparse vector. We do this by selecting the sparsest vector α that

satisfy the equation y = Aα, or equivalently, by solving the optimization problem

minimize
α

‖α‖0

subject to Aα = y.

(P0)

Unfortunately, solving the optimization problem P0 is computationally unfeasible—it is

in fact an NP-hard problem [15]. However, under appropriate conditions, it is still possible

to recover α, and consequently x, by relaxing the `0 norm and replacing it by the `1 norm:

minimize
α

‖α‖1

subject to Aα = y.

(P1)

Since this is a convex optimization problem [14], it is possible to solve it using a variety of

numerical techniques.

Before reviewing the recovery conditions for x and some of the algorithms used to solve

the optimization problem P1, we will give some geometric intuition to justify the replacement

of the `0 norm by the `1 norm.
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Let us consider a general optimization problem

minimize
α

‖α‖p

subject to Aα = y,

(Pp)

where the p-norm of α is defined as ||α||p =
(∑N

i=1 |αi|p
) 1
p
, and let us define the p-ball of

radius r > 0 as Bp(r) = {α ∈ RN : ||α||p < r}.

The feasibility set Aα = y corresponds to an (N −M)-hyperplane (assuming A is full-

column rank). One can imagine the process of solving the optimization problem Pp as doing

the following. Start with a p-ball Bp(r) of very small radius and keep increasing its radius

slowly—very much like inflating a balloon shaped as the p-ball. The point, or points, where

the p-ball touches the hyperplane corresponding to the feasibility condition Aα = y for the

first time is the solution to the optimization problem.

Figure 2.3 shows p-balls for p set to 0, 1 and 2. The difference in shape of the balls implies

that using different norms in the optimization problem Pp produces different solutions. The

`0 norm, being the most “spiky” among all the norms, will find the sparsest solution; however,

since it induces a non-convex ball, minimizing it is a hard problem to solve. Being isotropic

the `2 norm will in general produce a dense solution. The `1 norm is the best convex

approximation of the `0 norm. Since its shape is still “spiky,” minimizing it produces, under

appropriate conditions, the sparsest solution. Figure 2.4 shows an example that illustrates

geometrically the difference between minimizing the `2 and the `1 norm. Minimizing the

`2 norm corresponds to finding the intersection between a ball of spherical shape and a

hyperplane. Minimizing the `1 norm corresponds to finding the intersection between a ball

with the shape of a diamond and a hyperplane. Since the sphere is isotropic, it is unlikely

that it will touch the hyperplane at a point where it is sparse. On the other hand, the

“spiky” shape of the `1 ball promotes finding sparser solutions.

So far we have considered the case where the observations are noiseless. CS can also
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B0(r) B1(r) B2(r)

Figure 2.3: Three p-balls for p set to 0, 1 and 2. The difference in shape of the balls implies
that using different norms in the optimization problem Pp produces different solutions. The
`0 norm, being the most “spiky” among all the norms, will find the sparsest solution; however,
since it induces a non-convex ball, minimizing it is a hard problem to solve. Being isotropic
the `2 norm will in general produce a dense solution. The `1 norm is the best convex
approximation of the `0 norm. Since its shape is still “spiky,” minimizing it still produces,
under appropriate conditions, the sparsest solution.

handle the more realistic case where one observes noisy measurements

y = Φx+ η,

where η represents a bounded noise term4 with ||η||2 ≤ ε. To recover x from noisy observa-

tions we only need to modify the convex optimization problem P1 slightly5:

minimize
α

‖α‖1

subject to ||y − Aα|| ≤ ε.

(P1ε)

We can now review some conditions for which solving the optimization problem P1

for the noiseless case, or P1ε for the noisy case, allows the recovery of x. There are several

approaches for stating these recovery conditions. Among these, we show the one based on the

Restricted Isometry Property (RIP) [18]. Other commonly used recovery conditions include

the Null Space Property [24, 28,36] and the Spark [15, 35,43].

4Although we consider the bounded noise case here, it is also possible to analyze the case where η is i.i.d.
Gaussian. See [87] for an example of an analysis under such assumptions.

5Here and in the sequel, we use ||·|| to denote ||·||2 when there is no risk of confusion.
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(a) Solving Pp for p = 2 (b) Solving Pp for p = 1

Figure 2.4: Solving the optimization problem Pp for two different values of p. Minimizing
the `2 norm corresponds to finding the intersection between a ball of spherical shape and a
hyperplane. Minimizing the `1 norm corresponds to finding the intersection between a ball
with the shape of a diamond and a hyperplane. Since the sphere is isotropic, it is unlikely
that it will touch the hyperplane at point where the point is sparse. On the other hand, the
“spiky” shape of the `1 ball promotes finding sparser solutions.

Definition 2.4 (Isometry constant [20])

For each integer K = 1, 2, . . ., define the isometry costant δK of a matrix A as the smallest

number such that

(1− δK) ||α||22 ≤ ||Aα||
2
2 ≤ (1 + δK) ||α||22

holds for all K-sparse vectors α.

Loosely speaking, it is said that a matrix A satisfies the RIP of order K if δK is not too

close to one.

Theorem 2.5 (Noiseless recovery [17,20,24])

Let α? be the solution to P1, and let αK denote the K largest in magnitude entries of α.
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Assume that δ2K <
√

2− 1. Then α? satisfies

||α? − α||2 ≤ C0
||α− αK ||1√

K
and

||α? − α||1 ≤ C0 ||α− αK ||1

for some constant C0.

Theorem 2.6 (Noisy recovery [17,20])

Let α? be the solution to P1ε, and let αK denote the K largest in magnitude entries of α.

Assume that δ2K <
√

2− 1. Then α? satisfies

||α? − α||2 ≤ C0
||α− αK ||1√

K
+ C1ε

for some constants C0 and C1.

The two previous theorems tell us under which conditions it is possible to recover a signal

based on the isometry constant of the matrix A. Unfortunately, computing this constant for

a given A is computationally unfeasible [4]. However, if we are able to design a CS system

such that there is an element of randomness in the acquisition of the samples, it is then

possible to guarantee that the RIP holds. In particular, if the N × N Ψ matrix represents

an arbitrary orthobasis, if Φ is an M × N random matrix with i.i.d. entries drawn from a

zero-mean Gaussian distribution, and if M is selected such that

M ≥ CK log(N/K)

for some constant C, then with overwhelming probability the M ×N matrix A = ΦΨ satisfy

the RIP property of order 2K [20].
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2.3 Solving P1 and P1ε

Since both P1 and P1ε are convex optimization problems, it is possible to solve these

problems using standard techniques such the interior point method [14]. It is also possible

to design more ad-hoc algorithms that solve these problems by exploiting the particular

structure they have. In this section we will review some of these algorithms.

To avoid notation clutter, and without loss of generality, for the remaining of this chapter

we assume that signals are sparse in the ambient dimension, i.e., that Ψ is the identity matrix

and that x = α is a sparse vector.

2.3.1 Subgradient

A common step to find a solution to an optimization problem is to compute the gradient

of the cost function. To be able to deal with non-smooth cost functions, such the `1 norm,

the concept of gradient can be extended to the subgradient. The subgradient of a convex

function f(x) : x ∈ Rn 7→ R, also known as subdifferential, is defined as the set [7, 11,47]

∂f(x) = {z|f(x̄) ≥ f(x) + zT (x̄− x), ∀x̄ ∈ Rn}.

The subgradient can be used to find a minimizer of a convex function, as indicated by the

following proposition.

Proposition 2.7 ( [11, Sec. 3.1])

For any convex function f(x) : x ∈ Rn → R, x∗ is a minimizer of f if and only if 0 ∈ ∂f(x∗).
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Example 2.8

Let f(x) = |x| for x ∈ R. The subgradient of f is

(∂f(x))i =





−1 if xi < 0,

1 if xi > 0,

[−1, 1] if xi = 0.

Example 2.9

Let f(x) = ||x||2 for x ∈ Rn. The subgradient of f is

∂f(x) =





x
||x|| if x 6= 0,

{z : ||z|| ≤ 1} if x = 0.

For x 6= 0, the expression follows from ||x|| =
√
xTx, ∂xTx = 2x, and the chain rule [29, Sec.

D.2.1]. For x = 0, we need to find the set {z : ||x̄|| ≥ zT x̄ ∀x̄}. By the Cauchy-Schwarz

inequality, we have

zT x̄ ≤ |zT x̄| ≤ ||x̄|| ||z|| .

It follows that ||z|| ≤ 1⇒ zT x̄ ≤ ||x̄||. On the other hand, if ||z|| > 1 we can pick x̄ = z, in

which case

zT x̄ = ||z||2 = ||x̄||2 > ||x̄|| .

2.3.2 Least Absolute Shrinkage and Selection Operator

In statistics and machine learning it is common to work with an optimization problem

closely related to the convex problem P1ε, known as Least Absolute Shrinkage and Selection

Operator (LASSO) [97].

Consider, once again, the vector y = Ax, with y ∈ RM , A ∈ RM×N , x ∈ RN , and
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M < N . Given y, A, and λ, the LASSO estimates x as

x̂l = argmin
x∈Rn

(
1

2
||Ax− y||22 + λ ||x||1

)
. (2.1)

Using proposition 2.7, example 2.8, and the fact that ∂ ||Ax− y||22 = AT (Ax−y) [29, Sec.

D.2.1], we can derive the necessary and sufficient conditions for the LASSO estimate:

(
AT (Ax− y)

)
i
− λ = 0 if xi < 0,

(
AT (Ax− y)

)
i
+ λ = 0 if xi > 0,

−λ ≤
(
AT (Ax− y)

)
i
≤ λ if xi = 0.

This expression can be simplified to

(
AT (Ax− y)

)
i

= −λ sign(xi) if xi 6= 0, (2.2)

∣∣(AT (Ax− y)
)
i

∣∣ ≤ λ if xi = 0. (2.3)

By denoting as ai the ith column of A, we can also write this expression as

aTi (Ax− y) = −λ sign(xi) if xi 6= 0, (2.4)

∣∣aTi (Ax− y)
∣∣ ≤ λ if xi = 0. (2.5)

These expressions will be used later to derive the homotopy algorithm (see Sec. 2.3.5).
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2.3.3 The LASSO and Soft-Thresholding Connection

There is a connection between the LASSO estimator and a soft-thresholding opera-

tion [43, Sec. 5.4]. This connection is often used to solve Eq. (2.1). To understand the origin

of this relationship, consider the particular case where A is a unitary matrix.6 Using the

norm-preserving property of unitary matrices, we can write Eq. (2.1) as

x̂l = argmin
x∈Rn

(
1

2
||x− b||22 + λ ||x||1

)
,

with b = ATy. By decoupling the entries of x, this transformation allows to find the entries

of x̂l independently by solving

x̂li = argmin
xi∈R

(
1

2
(xi − bi)2 + λ|xi|

)
. (2.6)

We can find a minimizer of Eq. (2.6) by setting its subgradient equal to 0:

0 ∈ xi − bi + λ





−1 xi < 0,

1 xi > 0,

[−1, 1] xi = 0.

This condition is satisfied by setting xi = bi − λ if xi < 0, xi = bi + λ if xi > 0, and

−λ ≤ bi ≤ λ if xi = 0. We can write

xi = sign(b)(|b| − λ)+,

where (·)+ denotes max(0, ·).

In general the matrix A is not unitary. However, it is possible to design iterative

6A unitary matrix is a square matrix U such that UTU = I. In particular, this implies that ||Ux|| = ||x||.
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algorithms that use the principle described in this section to find the LASSO estimator. See

Chap. 6 of [43] for more details.

2.3.4 LARS

Least Angle Regression (LARS) is a model selection algorithm proposed by Efron et

al. [42]. With a small modification, it can be used to efficiently find the whole regularization

path of the LASSO estimator, that is, the LASSO estimation for all the values of λ.

As before, LARS considers the linear model

y = Ax,

where y ∈ RN , x ∈ RM , and A ∈ RM×N .

Let I ⊂ {1, 2, . . . , N} be the index set of active variables, and let

AI = [· · · sjaj · · · ] j ∈ I

be the M -by-|I| matrix, where aj is the jth column of A and sj = ±1 is a sign variable, to

be defined later.

Definition 2.10

Let u be a vector. We say u is equiangular with respect to the vectors vj if all the angles

between u and each vj are equal and smaller than 90◦.

Given I, we can compute the unitary equiangular vector uI with respect to the vectors

aj, j ∈ I, as

uI = AIBIG
−1
I 1,
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with

GI = ATIAI and BI =
(
1TG−1

I 1
)− 1

2 .

To derive these expressions let us denote by ũ = AIα the equiangular vector with respect

to xj. For ũ to be equiangular we need all the inner products between ũ and aj to be equal

to the same constant, i.e., we need that7 ATI ũ = 1. It follows that

ATI ũ = ATIAIα = 1

⇒ α =
(
ATIAI

)−1
1 = G−1

I 1

⇒ ũ = ATIG
−1
I 1.

To normalize ũ we compute its norm:8

||ũ||2 =
(
AIG

−1
I 1
)T (

AIG
−1
I 1
)

= 1T
(
G−1
I
)T
ATIAIG

−1
I 1

= 1T
(
GT
I
)−1

GIG
−1
I 1

= 1TG−1
I 1

⇒ ||ũ|| =
(
1TG−1

I 1
) 1

2 = B−1
I .

The expression for uI follows.

During each iteration, LARS proceeds as follows. Denote by µ̂I the current LARS

estimate. The correlation of the current residual is

ĉ = AT (y − µ̂I) .
7All we need is the inner products to be equal to a constant. For convenience we peak this constant to

be 1.
8Here we use the fact that GI is a symmetric matrix.
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Define the maximum absolute correlation as

Ĉ = max
j
{|ĉj|},

and the active set as

I = {j : |ĉj| = Ĉ}.

Note that, as explained below, by construction the condition |ĉj| = Ĉ is met by all the

previously selected vectors. The correlation between the current equiangular vector uI and

all the vectors aj is given by

b = ATuI ,

with the sign variable sj defined as sj = sign(ĉj).

The update to the current estimate µ̂I is given by

µ̂I+ = µ̂I + γ̂uI ,

with

γ̂ = min
j∈Ic

+

{
Ĉ − ĉj
AI − bj

,
Ĉ + ĉj
AI + bj

}
,

where min+{} denotes the minimum taken only over positive elements. The rationale for

the update rule is as follows. For any γ > 0 let

µ(γ) = µ̂I + γuI .

The correlation for this vector is given by

cj(γ) = xTj (y − µ(γ)) = xTj (y − µ̂I − γuI) = ĉj − γbj.
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Note that for all j ∈ I (recall that by construction aTj uI = AI)

|cj(γ)| = Ĉ − γAI .

In words, for all the vectors in the active set the correlation, as a function of γ, decreases by

the same amount.

Now, we want to add to the active set I an index j ∈ Ic such that the correlation for

the new index set I⋃{j} is the same, and at the same time, γ > 0 is the smallest possible

value. We obtain the values of γ that translate into an equal correlation by solving

|cjγ| = |ĉj − γbj| = Ĉ − γAI ,

If ĉj − γbj > 0⇒ γ =
Ĉ − cj
AI − bj

,

If ĉj − γbj < 0⇒ γ =
Ĉ + cj
AI + bj

.

Thus, among all these values of γ that produce an equal reduction in the correlation, we

choose the smallest positive one.

LARS is specified entirely in Algorithm 1.

2.3.5 The Homotopy Method

The homotopy method is a formulation similar to LARS that allows to efficiently com-

pute the complete LASSO regularization path [48, Ch. 6.4.1], [38, Sec. 2]. Let xλ be the

minimizer of LASSO for a given λ, and let I = {i : xλ(i) 6= 0} be the support or active set

of xλ. The vector of residual correlations is given by

c = AT (y − Axλ).
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Algorithm 1 Least Angle Regression (LARS)

input: A, y, stopping criterion
initialize: µ̂I = 0
while not converged do

ĉ = AT (y − µ̂I)
Ĉ = maxj{|ĉj|}
I = {j : |ĉj| = Ĉ}
AI = A[:, I] diag(sign(ĉ(I)))
GI = ATIAI

BI =
(
1TG−1

I 1
)− 1

2

uI = AIAIG
−1
I 1

b = ATuI
γ̂ = min+

j∈Ic

{
Ĉ−ĉj
AI−bj

,
Ĉ+ĉj
AI+bj

}

µ̂I = µ̂I + γ̂uI
end while

output: µ̂I

Using these definitions we can write the optimality conditions for LASSO (see Eqs. (2.2) and

(2.3)) as

c(I) = λ sign(xλ(I)), (2.7)

|c(Ic)| ≤ λ. (2.8)

The homotopy method is an iterative algorithm that starts with an initial solution

x0 = 0. Plugging x0 = 0 in Eq. (2.8) we get that the null vector is a solution as far as

|(AT (y − Ax0))i| = |(ATy)i| ≤ λ⇔ λ ≥ ‖ATy‖∞.

It is known that the LASSO solution is piecewise linear [3]. During iteration k, let the

linear segment of the solution be9

xk+1(γk) = xk + γkdk,

9Note that we work with x here, while the original LARS works with y.
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where dk is an |I|-sparse vector such that all the inner products between the active columns

of A and the vector AIkdk have the same magnitude and sign equal to the current residual

correlations. We compute the active entries of dk by solving

ATIkAIkdk(Ik) = sign(ck(Ik)), (2.9)

and entries on Ic are set to 0. This is not an arbitrary selection. The vector dk is used to

construct the linear segment of the LASSO solution. For the linear segment to be a solution,

we need to satisfy the optimality conditions. Assume that the value of γk is correct (we will

derive conditions on γk later) and that xk−1 is a solution. For the entries on the support, we

will see that this choice of dk implies that the correlation c(I) decreases by the same amount

for all i ∈ I, meaning that the equality of condition (2.7) is satisfied along the solution path.

We will see later that the conditions on γk also guarantee that condition (2.8) is satisfied for

the inactive entries.

The solution path is valid as far as the optimality conditions are met. We find the

breaking points of the linear segments by finding when either (2.7) or (2.8), as a function of

γ, are violated. We need to consider two cases, one for each condition:

(i) The magnitude of the correlation for the inactive entries exceeds the value λ.

The residual correlation as a function of γ is

ck+1(γ) = AT (y − Axk+1(γ))

= AT (y − A(xk + γdk))

= AT (y − Axk)− γATAdk

= ck − γATAdk.
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Note that since dk is the solution of Eq. (2.9), the entries of ck supported on Ik satisfy

ck(γ) = ck − γ sign(ck).

This means that to satisfy the optimality conditions (2.7) and (2.8) as xk changes

linearly, λ must change according to

λk+1(γ) = λk − γk.

For a given entry i ∈ Ic, condition (2.8) will fail when

|ck(γk, i)| = |ck(i)− γkATAdk(i)| = λk − γk,

which happens when

ck(i)− γkATAdk(i) = λk − γk ⇒ γk(i) =
λk − ck(i)

1− aTi AIdk(I)
,

or when

ck(i) + γkA
TAdk(i) = λk + γk ⇒ γk(i) =

λk + ck(i)

1 + aTi AIdk(I)
.

Among all the positive γk(i), i ∈ Ic, we pick the one that makes the optimality condition

to fail first, i.e., we pick the smallest one:

γ+
k = min

i∈Ic
+

{
λk − ck(i)

1− aTi AIdk(I)
,

λk + ck(i)

1 + aTi AIdk(I)

}
.

(ii) The sign of the correlation for an active variable changes sign.

As the solution changes linearly, it is also possible that an active variable fails to satisfy
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condition (2.7). This happens when xk(γ, i), i ∈ I, change signs, i.e., when

xk(γ, i) = xk(i) + γkdk(i) = 0⇒ γk(i) = −xk(i)
dk(i)

.

Again, over all these positive γs, we choose the smallest one:

γ−k = min
i∈I

+

{
−xk(i)
dk(i)

}
.

Finally, for γk we choose the smallest γ between the two obtained in steps (i) and (ii):

γk = min{γ+
k , γ

−
k },

and if γ+
k < γ−k , I = I ∪ {i+}, and if γ−k ≤ γ+

k , I = I\{i−}.

Note that omitting step (ii) makes the solution equal to LARS.

Why do we always choose the smallest γ? Recall that the solution is piecewise linear.

The breakpoints of this piecewise linear path happen when an index enters or leaves the

active set. This event occurs when the linear path reaches a point where the optimality

conditions stop being satisfied. We pick the smallest γ because we need to find the very first

time that any of the optimality condition starts being violated.

The homotopy method is specified entirely in Algorithm 2.

2.3.6 Group LARS/LASSO

As before, consider the vector y = Ax, with y ∈ RM , A ∈ RM×N , x ∈ RN , and N > M .

If in addition to being sparse it is known that the nonzero elements of x appear in groups, it is

possible to improve the performance of an estimator by leveraging this extra knowledge. The

following method, known as Group LARS/LASSO, is designed with this goal in mind [104].
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Algorithm 2 Homotopy

input: A, y, stopping criterion
x0 = 0
c0 = ATy
λ0, I0 = maxi(|c0(i)|)
k = 0
while not converged do

ck = c0 − ATAx
dk = 0
dk(Ik) =

(
ATIkAIk)

−1 sign(ck(Ik)
)

γ+
k , i

+
k = min+

i∈Ic

{
λk−ck(i)

1−aTi AIdk(I)
, λk+ck(i)

1+aTi AIdk(I)

}

γ−k , i
−
k = min+

i∈I {−xk(i)/dk(i)}
if γ+

k < γ−k then
γk = γ+

k

Ik+1 = Ik ∪ {i+k }
else

γk = γ−k
Ik+1 = Ik\{i−k }

end if
xk+1 = xk + γkdk
λk+1 = λk − γk
k = k + 1

end while
output: xj, λj for j = 1, . . . , k

Partition x and A in J components10 x = [xT1 xT2 · · · xTJ ]T and A = [A1 · · ·AJ ], where

xj ∈ RnJ , Aj ∈ Rm×nJ , nJ = n/J , j = 1, . . . , J . Given y and A, group LASSO estimates x

as [104] [45, Sec. 2.3.1]

x̂gl = argmin
x∈Rn

(
1

2
||Ax− y||22 + λ

J∑

j=1

||xj||2

)
.

Using proposition 2.7 and example 2.9 we derive the necessary and sufficient conditions

10We assume that all the components have equal size and that nJ = n/J is an integer.

31



for the group LASSO estimate as:

(
AT (Ax− y)

)
j

+ λ
xj
||xj||

= 0 if xj 6= 0,

−λ ≤
∣∣∣
∣∣∣
(
AT (Ax− y)

)
j

∣∣∣
∣∣∣ ≤ λ if xj = 0.

Note that more generalized versions of group LASSO consider groups of vectors of

different lengths. For instance, Yuan and Lin [104] consider groups of vectors of length nj,

together with a weighted `2-norm ||xj||Kj in the cost function. They set the weight matrix to

Kj = nJInj , which implies that the term
√
nj appears in the optimality conditions11 [104, Eq.

(2.2)].

The first step for dealing with the idea of group sparsity is to extend the concept of

inner product between two vectors to the case of a group of vectors. We define the angle

between the residue r and a group of vectors Aj as the angle between r and the projection

of r onto the column-span of Aj. In general, this projection is given by [72]

rAj = Aj
(
ATj A

)−1
ATj r,

where Aj is a matrix with the columns of A corresponding to group j. If we assume that

these columns are orthonormal, i.e., that ATj Aj = I, the expression above simplifies to

rAj = AjA
T
j r.

11∂ ||x||K = ∂
√
xTKx = Kx/ ||x||K . If K = pI, Kx/ ||x||K = px/

√
p ||x|| = √px/ ||x||.
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The norm of this vector is given by

∣∣∣∣rAj
∣∣∣∣2 =

〈
rAj , rAj

〉

=
〈
AjA

T
j r, AjA

T
j r
〉

= rTAj A
T
j Aj︸ ︷︷ ︸
I

ATj r

= rTAjA
T
j r

=
〈
r, rAj

〉
.

Thus, the angle between r and its projection onto the colum-span of Aj is given by

cos2 θ =
〈r, rA〉2

||r||2 ||rA||2

=
〈r, rA〉2

||r||2
〈
r, rAj

〉

=
rTAjA

T
j r

||r||2

=

∣∣∣∣ATj r
∣∣∣∣2

||r||2
.

Since the solution of group LASSO is not piecewise-linear [104], it is useful to compute

the group LARS solution instead. Group LARS is an iterative algorithm that starts by

setting x0 = 0, r0 = y and k = 1 [104]. The active set is initialized with the index of the

group most correlated to the current residue:

I0 =

{
argmax
j=1,...,J

∣∣∣∣ATj r0

∣∣∣∣
}
.

At each iteration, the new coefficient is computed as

xk+1 = xk + γdk,

33



where dk is a vector such that the magnitude of all the active entries of the residual correla-

tions decline equally as γ increases. The vector of residual correlations at a given iteration

is defined as

ck = AT (y − Axk)

= AT rk,

with rk = y − Axk. The value of this correlation changes as a function of γ as

ck+1 = AT (y − Axk+1)

= AT (y − A(xk + γdk))

= AT (y − Axk)− γATAdk

= ck − γATAdk.

By setting dk as a sparse vector that on its support Ik satisfies

ATIkAIkd(Ik) = ATIkrk,

we can write the entries of ck+1 supported on Ik as

ck+1(i) = (1− γ)ck(i), for i ∈ Ik.

Thus, in effect, all the active entries of the correlation vector decline by the same amount.

To find the next index to add to the active set we compute, for each index not in the

active set, the value of γ such that the value of the group angle between the element not in

the support and the value of the group angle for items in the support are equal. In general,

the group angle between a group Aj and the residue as a function of γ is

∣∣∣∣ATj rk(γ)
∣∣∣∣2 =

∣∣∣∣ATj (rk − γAdk)
∣∣∣∣2 .
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Then, for each j ∈ Ick, we find the value of γ such that the group angle is the same as

the angles in the active set by solving:

∣∣∣∣ATj (rk − γjAdk)
∣∣∣∣2 =

∣∣∣∣ATj′(rk − γjAdk)
∣∣∣∣2 , (2.10)

for an arbitrarily12 chosen j′ ∈ Ik. Expanding Eq. (2.10) we get13

∣∣∣∣ATj rk − γjAjAdk
∣∣∣∣2 =

∣∣∣∣ATj′rk − γjAj′Adk
∣∣∣∣2

∣∣∣∣ATj rk
∣∣∣∣2 + γ2

j

∣∣∣∣ATj Adk
∣∣∣∣2 − 2rTkAjγjA

T
j Adk =

∣∣∣∣ATj′rk
∣∣∣∣2 + γ2

j

∣∣∣∣ATj′Adk
∣∣∣∣2 − 2rTkAj′γjA

T
j′Adk

(∣∣∣∣ATj Adk
∣∣∣∣2 −

∣∣∣∣ATj′Adk
∣∣∣∣2
)
γ2
j − 2rTk

(
AjA

T
j − Aj′ATj′

)
Adkγj +

∣∣∣∣ATj rk
∣∣∣∣2 −

∣∣∣∣ATj′rk
∣∣∣∣2 = 0.

Thus, finding γj corresponds to solving the quadratic equation

aγ2
j − bγj + c = 0

with

a =
∣∣∣∣ATj Adk

∣∣∣∣2 −
∣∣∣∣ATj′Adk

∣∣∣∣2

b = 2rTk
(
AjA

T
j − Aj′ATj′

)
Adk

c =
∣∣∣∣ATj rk

∣∣∣∣2 −
∣∣∣∣ATj′rk

∣∣∣∣2 .

Among all the j ∈ Ick we choose the one with the smallest γj, and add the corresponding

index to the active set. The algorithm stops when γ is equal to 1, or when |Ik| = J . The

Group LARS method is specified entirely in Algorithm 3.

12Since by construction all the active entries of the residual correlations decline equally,
∣∣∣∣ATj′(rk − γAdk)

∣∣∣∣
has the same value for all j′ ∈ Ik.

13Here we use the fact that ||v1 − v2||2 = ||v1||2 + ||v2||2 − 2vT1 v2.
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Algorithm 3 Group LARS

input: A, y, J , stopping criterion
x0 = 0
r0 = y
I1 = {argmaxj(

∣∣∣∣ATj r0

∣∣∣∣)}
k = 1
while not converged do

dk = 0
dk(Ik) =

(
ATIkAIk

)−1
ATIkrk

j′ = choose any from Ik
for j ∈ Ick do

a =
∣∣∣∣ATj Adk

∣∣∣∣2 −
∣∣∣∣ATj′Adk

∣∣∣∣2
b = 2rTk

(
AjA

T
j − Aj′ATj′

)
Adk

c =
∣∣∣∣ATj rk

∣∣∣∣2 −
∣∣∣∣ATj′rk

∣∣∣∣2
γj = solve(aγ2 − bγ + c)

end for
γj∗ , ik = min+

j {γj}
Ik+1 = Ik ∪ {ik}
xk+1 = xk + γj∗dk
rk+1 = y − Axk+1

k = k + 1
end while

output: xj

2.4 Greedy Methods

Greedy methods [98] are an alternative to the recovery algorithms based on convex

optimization shown so far. Orthogonal Matching Pursuit (OMP) [30, 80, 95, 99], described

in Algorithm 4, is one the most popular methods in this category. OMP is an iterative

algorithm that builds an estimate of the support of x by adding one index to this set at a

time. The algorithm starts with an empty estimate Γ(0). It keeps a residue vector r, initially

equal to y, which corresponds to the component of y perpendicular to the column span of

AΓ. At each iteration, OMP computes the correlation between the current residue and the

columns of A. The index of the column with the highest correlation is added to the current

estimate of the support. Using this new support estimate a new residue is computed. The

loop exits when the stopping criterion is met, typically when the norm of the residue is small

enough.
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Algorithm 4 Orthogonal Matching Pursuit

input: A, y, stopping criterion
initialize: r(0) = y, Γ(0) = ∅, ` = 0
while not converged do

match: h = |AT r|
identify: Γ(`+1) = Γ(`) ∪ argmaxj |h(j)|
update: x`+1 = argminz: supp(z)⊆Γ(`+1) ‖y − Az‖2

r`+1 = y − Ax`+1

` = `+ 1
end while

output: x̂ = x` = argminz: supp(z)⊆Γ(`) ‖y − Az‖2

Algorithm 5 BOMP

input: A, y, J , stopping criterion
initialize: r(0) = y, Γ(0) = ∅, ` = 0
while not converged do

match: h(j) =
∣∣∣∣ATj r

∣∣∣∣, j = 1, . . . , J
identify: Γ(`+1) = Γ(`) ∪ argmaxj h(j)
update: x`+1 = argminz: supp(z)⊆Γ(`+1) ‖y − Az‖2

r`+1 = y − Ax`+1

` = `+ 1
end while

output: x̂ = x` = argminz: supp(z)⊆Γ(`) ‖y − Az‖2

If, in addition to being K-sparse, x has some extra structure, it is possible to de-

sign recovery algorithms that outperform OMP. As before, we consider the case where

signals are group sparse [104], i.e., the vector x can be partitioned in J components14

x = [xT1 xT2 · · · xTJ ]T with at most KG � J nonzero components, where xj ∈ RnJ ,

nJ = n/J , and j = 1, . . . , J . The matrix A is also partitioned in the corresponding groups

as A = [A1 · · ·AJ ], Aj ∈ Rm×nJ .

An algorithm that allows one to recover group-sparse signals is Block Orthogonal Match-

ing Pursuit (BOMP) [44, 45], described in Algorithm 5. The key difference with respect to

OMP is that instead of computing the correlation between the current residue and the

columns of A, each entry of the correlation vector h is computed as h(j) =
∣∣∣∣ATj r

∣∣∣∣.

14As in the group LASSO case, we assume that all the components have equal size and that NJ = N/J is
an integer.
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CHAPTER 3

JOINT DENOISING

“Less is only more where more is no good.”

Frank Lloyd Wright

Faced with the task of estimating a signal from noisy observations, there is hope of

success only if some type of prior information about the signal of interest is available. In

other words, the cornerstone of any signal estimation scheme is the assumption that the

signals of interest can be described by a signal model. A simple example is the use of filters

in the frequency domain—low-pass, high-pass, or band-pass filters. In this case, the signal

model consists of assuming that the signals of interest are contained in a predefined range of

frequencies [89, Ch. 14]. A more sophisticated approach can be used if one knows the joint

probability distribution of the signal and the noise. If that is the case, it is possible to use

Bayesian techniques [50, Ch. 4]. Unfortunately, many times such probability distributions

are hard to find. Another signal model that has gained popularity is the sparse signal model.

Under this model one assumes that it is possible to represent the signals of interest in a basis

where only a small fraction of the coefficients are significant. For instance, if signals are

smooth, then they will admit a sparse representation in the frequency domain; and if they

are piecewise smooth, they will admit a sparse representation in the wavelet domain [67, Sec.

2.3.1 and 6.1.3].

Estimators based on the sparse signal model are known as thresholding estimators [31–

33, 37]. Although thresholding estimators have been improved in many ways—for instance,

by adapting the threshold to the data, by developing translation-invariant thresholding es-

timators, by developing nondiagonal estimators, etc. [67, Secs. 11.2.3 and 11.4]—one aspect

of this field that so far has been ignored is denoising a signal ensemble. This is a situation

commonly observed when working with sensor arrays or sensor networks. If one observes a
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set of signals it is possible to naively denoise the signals independently; in this thesis, though,

we exploit the structure that exists among the signals to obtain better results. Several au-

thors [5, 27, 94, 100] have proposed signal models for a set of signals based in the sparsity

patterns of the ensemble. Baron et al. [5] called this model the Joint Sparsity Model (JSM).

From the three proposed JSM model variants, we assume that our signals satisfy the JSM-2

model, where all the signals share the same support.

Similarly to the independent denoising of a signal, our proposed method, called joint

denoising, starts by transforming all the signals into a domain where the signals are sparse.

Then it processes all the signal coefficients at a given location at once. If all the coefficients at

that location are smaller than a threshold, they are all set to zero. If at least one coefficient

at that location is larger than the threshold, all the coefficients at that location are kept.

In the final step the signals are transformed back to the original domain. Since a “large”

coefficient is able to “save” all the coefficients at a given location, we call this a vetoing

scheme.

The chapter continues with a review of thresholding estimators. It follows with the

definition of the joint denoising problem and a description and analysis of the proposed joint

estimators. It finalizes with some empirical results.

3.1 Thresholding Estimators

Let x ∈ RN be a discrete signal. This signal can be represented in an orthonormal basis

as x = Ψθ, where Ψ is an N × N orthonormal matrix1 representing the basis, and θ ∈ RN

is a vector of coefficients. We consider the case where a sensor observes a noisy version of x

given by

ξ = x+ z,

1Note that if Ψ is an orthonormal matrix, then ΨΨT = ΨTΨ = I.

39



where z ∈ RN represents a zero-mean white noise term of variance σ2, i.e.,

E
[
zzT
]

= σ2IN ,

where IN is the N ×N identity matrix.

Let w = ΨT z be the noise in the coefficient domain. An important characteristic of

zero-mean white noise is that it remains white noise under an orthonormal transformation:

E
[
wwT

]
= E

[
ΨT zzTΨ

]

= ΨTE
[
zzT
]

Ψ

= σ2IN .

Thus, we can represent the noisy observations as

y = ΨT ξ

= ΨT (x+ z)

= θ + w,

where w is zero-mean white noise of variance σ2.

A diagonal estimator [67] is an estimator that operates on each observed coefficient

individually by multiplying the coefficient by a factor. We can write such estimators as

θ̂ = Dy

=
N∑

k=1

ak(y(k))y(k),

where ak(·) is the function that operates in the kth entry of y. If ak(y(k)) = ak is a constant

independent of the value of y(k), then D is a linear operator. To evaluate the performance

40



of a given operator, we use the concept of risk, defined as

r(D, θ) = E

[∣∣∣
∣∣∣θ − θ̂

∣∣∣
∣∣∣
2
]

=
N∑

k=1

E
[
(θ(k)− ak(y(k))y(k))2] .

If D is a linear operator, then

r(D, θ) =
N∑

k=1

E
[
(θ(k)− aky(k))2]

=
N∑

k=1

θ2(k)(1− ak)2 + σ2a2
k.

This expression is minimized by

ak =
θ2(k)

θ2(k) + σ2
.

Note that to compute this we need to know θ, precisely the signal we are trying to estimate.

Since to use this estimator we need access to information that is unknown, we call this an

oracle estimator. The risk of this estimator is given by

rinf (θ) =
N∑

k=1

θ2(k)σ2

θ2(k) + σ2
,

and provides a lower bound for other estimators.

It is also useful to consider the case where ak ∈ {0, 1}, i.e., a “keep it or kill it” estimator.

Such estimator is an orthogonal projector onto a subset of the basis defined by Ψ. The risk

for this estimator is

r(D, θ) =
N∑

k=1

E
[
(θ(k)− aky(k))2]

=
N∑

k=1





θ2(k) ak = 0,

σ2 ak = 1.
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The risk is minimized by setting

ak =





1 if θ(k) ≥ σ,

0 if θ(k) < σ.

Note that this is still an oracle estimator, since it requires the knowledge of the signal

coefficients. Its risk is given by

rpr(θ) =
N∑

k=1

min
(
θ(k)2, σ2

)
,

and is related to rinf by2

1

2
rpr(θ) ≤ rinf (θ) ≤ rpr(θ).

Naturally, for an estimator to be of practical use it must operate on the noisy ob-

servations. A class of estimators commonly use in practice are the so called thresholding

estimators. These estimators are based on the hard-thresholding function defined as

ρHT (x) =





x if |x| ≥ T,

0 if |x| < T,

and on the soft-thresholding function defined as

ρST (x) =





x− T if x ≥ T,

x+ T if x ≤ T,

0 if |x| < T,

where T > 0 is a given thresholding level. Note that the soft-thresholding function can also be

written as ρST (x) = max{|x| − T, 0} sign(x). Figure 3.1 shows a plot of both functions. The

2This follows from the inequality 1
2 min(x, y) ≤ xy

x+y ≤ min(x, y) for all x, y ∈ R.
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T

−T x

ρHT (x)

(a)

T

−T x

ρST (x)

(b)

Figure 3.1: Thresholding functions. (a) Hard-thresholding function ρHT (x) (b) Soft-
thresholding function ρST (x). Unlike hard-thresholding, soft-thresholding is a continuous
function.

main difference between the functions is that the soft-thresholding function is continuous,

while the hard-thresholding function is discontinuous.

The hard-thresholding estimator is given by

θ̂(k) = ρHT (y(k)), (3.1)

and the soft-thresholding estimator is given by

θ̂(k) = ρST (y(k)). (3.2)

For reasons that will become clearer in the next section, we call the estimator given by 3.3

the independent estimator and define

θ̂I(k) = ρHT (y(k)). (3.3)

As the next theorem shows, the theoretical guarantees for both estimators are the same. In
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practice however, the soft-thresholding estimator is sometimes preferred because it causes

less artifacts.

Theorem 3.1 (Donoho, Johnstone [67, Sec. 11.2.2])

Let T = σ
√

2 logN . The risk rth(θ) =
∑

k E

[∣∣∣θ(k)− θ̂(k)
∣∣∣
2
]
, where θ̂ is either a hard- or

soft thresholding estimator, satisfies for all N ≥ 4,

rth(θ) ≤ (2 logN + 1)
(
σ2
w + rpr(θ)

)
.

3.2 Joint Denoising

In this chapter the problem we wish to solve is the following. Given a signal ensemble,

and assuming that the signals in the ensemble possess some inter-signal structure, can we

design an estimator with better performance than the independent estimator?

We first extend the notation as follows. Let xj ∈ RN , for j ∈ Λ = {1, . . . , J}, be a

signal belonging to an ensemble of J signals. Let θj = Ψxj be the transform coefficients of

xj in the domain defined by Ψ, where Ψ is an N ×N orthogonal matrix. We observe a noisy

version of the signals given by xj + zj. We assume that zj is Gaussian i.i.d. zero-mean white

noise of variance σ2
z . The corresponding noisy coefficients are given by

yj = Ψ(xj + zj) = θj + wj. (3.4)

As before, since Ψ is orthonormal, it follows that wj is also Gaussian i.i.d. zero-mean white

noise with variance σ2
w = σ2

z . To stress the fact that classical thresholding estimators ignore

any inter-signal structures, we call them independent estimators.

In this work we assume that the signals satisfy the JSM-2 model [5,40]. Let the support

of θj be the index set Ωj = {k|θj(k) 6= 0}. A set of signals satisfies the JSM-2 model if

Ωj = Ωi := Ω for all i, j ∈ Λ. In words, this means that under this signal model, the location
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of the nonzero coefficients is the same for all the signals. A situation like this one may arise,

for instance, when a single signal source is captured by a sensor array. Since each sensor is

at a different location, they observe coefficients with different amplitudes and phases, but

with the same positions.

3.2.1 The Joint Estimator

We propose to denoise the signal ensemble using the joint estimator given by

θ̂Vj (k) =





0, |yj(k)| < T and |yi(k)| < T , for all i ∈ Λ\{j},

yj(k), |yj(k)| < T and |yi(k)| ≥ T , for some i ∈ Λ\{j},

yj(k), |yj(k)| ≥ T,

=





0, |yi(k)| < T , for all i ∈ Λ,

yj(k), |yi(k)| ≥ T , for some i ∈ Λ.

Figure 3.2 illustrates how joint denoising works. Observations larger than the threshold

are kept. When a measurement is smaller than the threshold, but there is a measurement

from another signal larger than the threshold at the same location, that coefficient is saved.

When all the coefficients at a given location are smaller than the threshold, these coefficients

are set to 0. In other words, a “large coefficient” has the power to “veto” the killing of small

coefficients located at the same position.

We wish to quantify the difference between the expected square errors of both estimators

(also known as risk). To this end, we first analyze the structure of the square error for the

independent estimator. We can write

∥∥∥θj − θ̂Ij
∥∥∥

2

=
∑

k

(
θj(k)− θ̂Ij (k)

)2

. (3.5)
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T

T

This coefficient vetoes the killing of this coefficient} }k
k

Signal
Noise

y1

y2

Figure 3.2: Joint denoising. If at a given location all the coefficients are smaller than T ,
these coefficients are set to 0. On the other hand, if at least one coefficient is larger than T ,
all the coefficients at this location are kept. In this example, one of the entries of y2 “vetoes”
the “killing” of a y1 coefficient that is smaller than T .

We can now write each element of the summation in equation (3.5) as

(
θj(k)− θ̂Ij (k)

)2

=





(θj(k)− yj(k))2 = w2
j (k), k ∈ Ω and |yj(k)| ≥ T , (3.6a)

(0− yj(k))2 = w2
j (k), k /∈ Ω and |yj(k)| ≥ T , (3.6b)

(θj(k)− 0)2 = θ2
j (k), k ∈ Ω and |yj(k)| < T , (3.6c)

(0− 0)2 = 0, k /∈ Ω and |yj(k)| < T . (3.6d)

Equation (3.6) sheds some light on the nature of the estimator error, and on how the two

estimators are different. Case (3.6d) occurs almost as many times as there are coefficients

with zero value, i.e., the more sparse the signal is, the more often this situation happens;

since in this case the contribution to the error is zero, it follows that, all other things being

equal, the more sparse the signals are, the smaller the error. Finally, we notice that cases

(3.6b) and (3.6c) are where the two methods to be analyzed differ.

We are now in a position to quantify the difference between the independent and the

joint denoising technique. At a given location, the outcome of the two methods is different
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whenever one of the following conditions happens:

Condition 1

(i) a coefficient θj(k) is non-zero,

(ii) an observation yj(k) is smaller than the threshold T , and

(iii) at least one observation yi(k) for i 6= j is greater than T ;

Condition 2

(i) a coefficient θj(k) is zero,

(ii) an observation yj(k) is smaller than the threshold T , and

(iii) at least one observation yi(k) for i 6= j is greater than T .

Figure 3.3 illustrates these two conditions. Notice that since both signals share the same

support (due to the JSM-2 assumption), when Condition 2 happens, all the measurements

at that position are only noise. We can now conclude that occurrences of Condition 1 result

in an improvement of Joint Denoising over Independent Denoising, while occurrences of

Condition 2 result in a loss of improvement.

In order to quantify the improvement of one method over the other for a given signal,

we define the quantity

Ij =
∥∥∥θj − θ̂Ij

∥∥∥
2

−
∥∥∥θj − θ̂Vj

∥∥∥
2

j ∈ Λ. (3.7)

Before presenting the theorem that quantifies Ij, we need the following lemmas and

definitions.
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Independent denoising of y1

Joint denoising of y1

T

T

Signal
Noise

Condition 1 Condition 2

k

k

k

k

Figure 3.3: Conditions under which the two methods produce a different result. Under
Condition 1, an observation equal to a nonzero coefficient plus noise saves an observation
smaller than T . Under Condition 2, an observation that is only noise, since at that location
all the coefficients are zero, saves an observation, that is also only noise, that is smaller than
T .

Lemma 3.2 (Gaussian distribution [53, Sec. 5.2])

Let X ∼ N (0, σ) be a random variable. Then

P {X ≤ x} = Φ
(x
σ

)
,

with Φ(x) =
∫ x
∞ φ(t)dt, φ(x) = 1√

2π
e−

1
2
x2 .

Definition 3.3 (Covariance and correlation [22, Sec. 4.5])

Let X and Y be two random variables with means µX and µY and variances σ2
X and σ2

Y ,
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respectively. The covariance of X and Y is defined by

Cov(X, Y ) = E [(X − µX)(Y − µY )] .

The correlation of X and Y is defined by

ρXY =
Cov(X, Y )

σXσY
.

Lemma 3.4 (See [22, Thm. 4.5.3])

For any random variables X and Y ,

Cov(X, Y ) = E [XY ]− E [X] E [Y ] .

Lemma 3.5 (Conditional expectation of bivariate Gaussians [9]3)

Let X ∼ N (µx, σ
2
x) and Y ∼ N (µy, σ

2
y). Then

E
[
X
∣∣ Y
]

= µx + ρXY
σx
σy

(Y − µy).

Lemma 3.6 (Sum of independent Gaussians [22, Thm. 4.2.14])

Let X ∼ N (µ, σ2) and Y ∼ N (γ, τ) be independent Gaussian random variables. Then the

random variable Z = X + Y has a N (µ+ γ, σ2 + τ 2) distribution.

Lemma 3.7 (Law of total expectation [22, Thm. 4.4.3])

If X and Y are two random variables, then

E [X] = E
[
E
[
X
∣∣ Y
]]
,

provided that the expectations exist.

3This result is available only in the first edition of this book. An online version of this result is available
at http://www.athenasc.com/Bivariate-Normal.pdf.
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Lemma 3.8 (Law of iterated expectations [54, Sec. 3.6])

If X, Y and Z are random variables, then

E
[
X
∣∣ Y
]

= E
[
E
[
X
∣∣ Y, Z

] ∣∣ Y
]
,

provided that the expectations exist.

Lemma 3.9 (Random sum)

Let Xi be i.i.d. random variables and let N be a random variable independent of Xi. Then

E

[
N∑

i=1

Xi

]
= E [N ] E [X1] ,

provided that the expectations exist.

Proof. For a fixed N , E
[∑N

i=1 Xi

]
=
∑N

i=1 E [Xi] = NE [X1]. Using the law of total expec-

tation (Lemma 3.7),

E

[
N∑

i=1

Xi

]
= E

[
E

[
N∑

i=1

Xi

∣∣ N
]]

= E

[
N

N∑

i=1

Xi

]

= E [N ] E [X1] .

Lemma 3.10

Let X ∼ N (0, σ2
x) and Y ∼ N (0, σ2

y) be two random variables, and let U = X + Y and

V = X − Y . Then

E
[
V
∣∣ U = u

]
= ρu, ρ =

σ2
x − σ2

y

σ2
x + σ2

y

.

Proof. U and V are both Gaussian random variables with zero mean and variance σ2
x + σ2

y
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(by Lemma 3.6). Since U and V have zero mean and by Lemma 3.4, the covariance of U

and V is

Cov(U, V ) = E [UV ]

= E [(X + Y )(X − Y )]

= E
[
X2
]
− E

[
Y 2
]

= σ2
x − σ2

y,

and the correlation is

ρ =
Cov(U, V )

σuσv

=
σ2
x − σ2

y

σ2
x + σ2

y

.

By Lemma 3.5

E
[
V
∣∣ U = u

]
= E [V ] + ρ

σv
σu

(u− E [U ])

= ρu.

Lemma 3.11 (Variance of a truncated zero mean Gaussian [56], [75, Sec. 4.3])

Let X ∼ N (0, σ2). Then

Var
[
X
∣∣ −T < X < T

]
= σ2

(
1− 2Tφ

(
T
σ

)

σ
(
Φ
(
T
σ

)
− Φ

(−T
σ

))
)
.

Lemma 3.12 (Variance of a complementary truncated zero mean Gaussian)

Let X ∼ N (0, σ2). Then

Var
[
X
∣∣ |X| > T

]
= σ2

(
1 +

2Tφ(T
σ

)

σ
(
1 + Φ(−T

σ
)− Φ(T

σ
)
)
)
.
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Proof. The pdf of X conditioned by |X| > T is

fX(x
∣∣ |X| > T ) =

1

c

1√
2πσ

e−
x2

2σ2 I|x|>T ,

where c is the normalization constant

c = 1 + Φ

(
−T
σ

)
− Φ

(
T

σ

)
.

By the symmetry of the pdf and of the conditioning interval, E
[
X
∣∣ |X| > T

]
= 0. Thus,

to compute the conditional variance it suffices to compute

E
[
X2
∣∣ |X| > T

]
=

∫ ∞

−∞
fX(x

∣∣ |X| > T ) dx.

Since4

1√
2πσ

∫
x2e−

x2

2σ2 dx =
σ

2

(
σ erf

(
x√
2σ

)
−
√

2

π
xe−

x2

2σ2

)
+ constant,

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function, and using the facts that limx→−∞ erf(x) =

−1, limx→∞ erf(x) = 1, and erf(x) = 2Φ(
√

2x)− 1 we can write

cVar
[
X2
∣∣ |X| > T

]
=

1√
2πσ

∫

|x|>T

x2e−
x2

2σ2 dx

=
σ

2

[(
σ erf

(
x√
2σ

)
−
√

2

π
xe−

x2

2σ2

)∣∣∣∣
−T

−∞
+

(
σ erf

(
x√
2σ

)
−
√

2

π
xe−

x2

2σ2

)∣∣∣∣
∞

T

]

= σ2

(
1 + Φ

(
−T
σ

)
− Φ

(
T

σ

)
+

2T

σ
φ

(
T

σ

))
.

Theorem 3.13

Consider a signal ensemble satisfying the JSM-2 model, with the nonzero coefficients i.i.d.

4Computed using Wolfram Alpha: http://bit.ly/ZFz3nF. The expression can be verified by taking the
derivative. See also http://bit.ly/WaJpLg.
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drawn at random from a Gaussian distribution with variance σ2
θ , i.e., θj(k) ∼ N (0, σ2

θ) for

k ∈ Ω. Denote the sparsity of each signal by S = |Ω|. Then

E [Ij] = EC1 − EC2

with

EC1 = Sp1(1− pJ−1
1 )ρσ2

y


1−

2Tφ
(
T
σy

)

σyp1


 ,

EC2 = (N − S)p2(1− pJ−1
2 )σ2

w


1−

2Tφ
(
T
σw

)

σwp2


 ,

where

p1 = Φ

(
T

σy

)
− Φ

(−T
σy

)
,

p2 = Φ

(
T

σw

)
− Φ

(−T
σw

)
,

σ2
y = σ2

θ + σ2
w, ρ =

σ2
θ − σ2

w

σ2
θ + σ2

w

,

φ(x) =
1√
2π
e−

1
2
x2 , and Φ(x) =

∫ x

∞
φ(t)dt.

Proof. Equation (3.7) can be written as

Ij =
∑

k

(
θj(k)− θ̂Ij (k)

)2

−
∑

k

(
θj(k)− θ̂Vj (k)

)2

. (3.8)

For a given k, the terms in the two summations will cancel out whenever the two
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methods produce the same result. As discussed previously, joint denoising produces a result

different than independent denoising when Condition 1 or Condition 2 happens. We can

write the expected value of Ij as E [Ij] = EC1−EC2, where EC1 quantifies the improvement

due to the occurrence of Condition 1, and EC2 quantifies the decline of the improvement due

to the occurrence of Condition 2. The proof follows by computing each term.

(i) Condition 1

When this condition happens, independent denoising contributes with an error term

equal to θ2
j (k), k ∈ Ω (as in equation (3.6c)), while the joint denoising contributes with

an error term equal to w2
j (k). Thus, EC1 is given by

EC1 = E

[ ∑

k∈ΩC1

(
θ2
j (k)− w2

j (k)
)
]
, (3.9)

where ΩC1 is the index set of the coefficients that satisfy Condition 1.

Since the non-zero coefficients are i.i.d. drawn from a Gaussian distribution, and from

equation (3.4), it follows that

yj(k) ∼ N(0, σ2
y) k ∈ Ω,

with σ2
y = σ2

θ + σ2
w. The probability that the absolute value of a given measurement is

smaller than T is

p1 = P
{
|yj(k)| < T

∣∣ k ∈ Ω
}

= Φ

(
T

σy

)
− Φ

(−T
σy

)
,

with Φ(x) =
∫ x
∞ φ(t)dt and φ(x) = 1√

2π
e−

1
2
x2 . For a given observation yj(k) with k ∈ Ω
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the probability that Condition 1 happens is

pC1 = P
{
|yj(k)| < T and any |yi(k)| > T

∣∣ k ∈ Ω
}

i, j ∈ Λ, i 6= j

= p1P
{

any |yi(k)| > T
∣∣ k ∈ Ω

}

= p1

(
1− P

{
all |yi(k)| < T

∣∣ k ∈ Ω
})

= p1

(
1− pJ−1

1

)
.

(3.10)

Since we are assuming a sparsity level S, the total number of times that Condition 1

occurs (the cardinality of ΩC1) follows a binomial distribution (we have S independent

trials, each with probability pC1):

|ΩC1| ∼ B(S, pC1),

where B(n, p) denotes the binomial distribution with parameters n and p, and

E [|ΩC1|] = SpC1 = Sp1

(
1− pJ−1

1

)
. (3.11)

Using Lemma 3.9 and Eq. (3.11) we can write Eq. (3.9) as:

EC1 = E [|ΩC1|] E
[
θ2
j (k)− w2

j (k)
∣∣ |θj(k) + wj(k)| < T

]
. (3.12)

Using the change of variables

u = θj(k) + wj(k)

v = θj(k)− wj(k),

the conditional expectation of Eq. (3.12) becomes

E
[
uv
∣∣ |u| < T

]
.
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Using the law of iterated expectations (see Lemma 3.8), we can write

E
[
uv
∣∣ |u| < T

]
= E

[
E
[
uv
∣∣ |u| < T, u

] ∣∣ |u| < T
]

= E
[
uE
[
v
∣∣ u
] ∣∣ |u| < T

]
.

(3.13)

By Lemma 3.10,

E
[
v
∣∣ u
]

= ρu,

with

ρ =
σ2
θ − σ2

w

σ2
θ + σ2

w

.

We can now write Eq. (3.13) as

E
[
uv
∣∣ |u| < T

]
= E

[
ρu2

∣∣ |u| < T
]

= ρ

∫ ∞

−∞
u2fu

(
u
∣∣ |u| < T

)
du.

(3.14)

This integral corresponds to the variance of a zero mean truncated Gaussian. By

Lemma 3.11

E
[
uv
∣∣ |u| < T

]
= ρσ2

u


1−

2Tφ
(
T
σu

)

σu

(
Φ
(
T
σu

)
− Φ

(
−T
σu

))


 . (3.15)

By Lemma 3.6, σ2
u = σ2

θ + σ2
w = σ2

y. Since p1 = Φ
(
T
σy

)
− Φ

(
−T
σy

)
, we get

EC1 = E [|ΩC1|] E
[
θ2
j (k)− w2

j (k)
∣∣ |θj(k) + wj(k)| < T

]

= Sp1(1− pJ−1
1 )ρσ2

y


1−

2Tφ
(
T
σy

)

σyp1


 .

(3.16)

(ii) Condition 2

The derivation for EC2 follows the same steps as EC1. Since under this condition θj(k)
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is 0, we have

EC2 = E

[ ∑

k∈ΩC2

w2
j (k)

]
. (3.17)

where ΩC2 denotes the index set of the observations that satisfy Condition 2.

Since yj(k) = wj(k) when k /∈ Ω and since wj(k) ∼ N(0, σ2
w), the probability that yj(k)

is smaller than T is

p2 = P (|wj(k)| < T ) = Φ

(
T

σw

)
− Φ

(−T
σw

)
.

and for k /∈ Ω the probability that Condition 2 happens is

pC2 = p2

(
1− pJ−1

2

)
,

The expected value of the cardinality of ΩC2 is

E [|ΩC2|] = (N − S)pC2 = (N − S)p2

(
1− pJ−1

2

)
,

and we can write

EC2 = E [|ΩC2|] E
[
w2
j (k)

∣∣ |wj(k)| < T
]

= (N − S)p2(1− pJ−1
2 )σ2

w


1−

2Tφ
(
T
σw

)

σwp2


 .

Note that although this theorem is about the signal dependent quantity E [Ij], the

expression we get does not depend on j. It is easier to derive the theorem by focusing in the

improvement for a single signal, but the improvement is the same for all values of j ∈ Λ.

The proposed veto estimator is able to produce significant improvements over the In-
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Figure 3.4: Expected improvement of Joint Denoising over Independent Denoising for signal
j for different numbers of signals J . We fix the signal length to N = 1024, the sparsity level
to S = 50, the standard deviation of the nonzero coefficients to σθ = 1, and the standard
deviation of the noise to σw = 0.4. The threshold T is set to T = σw

√
2 logN = 1.49. We

observe how initially the improvement increases with the number of signals J , but then it
starts decreasing.

dependent Denoising method as the number of signals increases. However, its asymptotic

behavior is not ideal. To see why, we show its behavior by fixing the signal length to

N = 1024, the sparsity level to S = 50, the standard deviation of the nonzero coefficients

to σθ = 1, and the standard deviation of the noise to σw = 0.4. The threshold T is set

to T = σw
√

2 logN = 1.49. We plot the expected improvement of Joint Denoising over

Independent Denoising for signal j for different number of signals J as given by Theorem

3.13 (see Fig. 3.4). Although initially the expected improvement increases significantly as

the number of signals J increases, we observe that it peaks and then it starts decreasing

slowly.

This less than optimal asymptotic behavior happens because the current implementation

of the veto mechanism is agnostic with respect to the number of signals J , and as J increases

Condition 2 occurs more often and the performance of Joint Denoising deteriorates.
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3.2.2 A Better Joint Estimator

To improve the asymptotic behavior of the veto scheme we propose the following esti-

mator based on a voting scheme. Let V (k) be the number of observations yj(k), j ∈ Λ, with

magnitude larger than T :

V (k) =
∑

j∈Λ

I|yj(k)|>T ,

where IA denotes the indicator function of the set A.

The voting estimator is given by5

θ̂Rj (k) =





yj(k), V (k) ≥ NJ ,

0, V (k) < NJ ,

for a given 1 ≤ NJ ≤ J−1, NJ ∈ N. Recall that the veto estimator will “save” an observation

if any other measurement is larger than T at the same location. The voting estimator, on

the other hand, requires at least NJ observations larger than T to “save” a coefficient. Note

that NJ = 1 corresponds to the veto joint estimator.

As before, it is useful to identify the conditions under which the vote and the independent

estimator differ. Table 3.1 shows the four possible combinations of the outputs of both

estimators. There are two cases, rows (ii) and (iii) of the table, where the estimates are

different. Since for each of these cases a coefficient θj(k) can be either zero or nonzero, there

are four conditions that need to be analyzed.

Condition A

(i) a coefficient θj(k) is non-zero,

(ii) an observation yj(k) is smaller than the threshold T , and

5Since we already use the superscript V to identify the veto estimator, we use the superscript R, as in
the first letter of referendum, to identify the voting estimator.
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Table 3.1: Outcomes of the independent and the vote denoising estimators. The output
of the independent estimator (θ̂Ij (k)) and the vote estimator (θ̂Rj (k)) can be combined in
four possible ways. Under two of these combinations—rows (ii) and (iii)—the outputs are
different.

|yj(k)| ≥ T V (k) ≥ NJ θ̂Ij (k) θ̂Rj (k)

(i) F F 0 0
(ii) F T 0 yj(k)
(iii) T F yj(k) 0
(iv) T T yj(k) yj(k)

(iii) at least NJ observations yj(k) are greater than T , i.e., V (k) ≥ NJ ;

Condition B

(i) a coefficient θj(k) is zero,

(ii) an observation yj(k) is smaller than the threshold T , and

(iii) at least NJ observations yi(k) are greater than T , i.e., V (k) ≥ NJ ;

Condition C

(i) a coefficient θj(k) is non-zero,

(ii) an observation yj(k) is larger than the threshold T , and

(iii) the number of observations yj(k) greater than T is smaller than NJ , i.e., V (k) < NJ ;

Condition D

(i) a coefficient θj(k) is zero,

(ii) an observation yj(k) is larger than the threshold T , and

(iii) the number of observations yj(k) greater than T is smaller than NJ , i.e., V (k) < NJ .

The following theorem quantifies the behavior of the voting estimator.
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Theorem 3.14

Consider a signal ensemble satisfying the JSM-2 model, with the nonzero coefficients i.i.d.

drawn at random from a Gaussian distribution with variance σ2
θ , i.e., θj(k) ∼ N (0, σ2

θ) for

k ∈ Ω. Denote the sparsity of each signal by S = |Ω|. Define the improvement of the voting

estimator over the independen estimators as IRj =
∣∣∣
∣∣∣θj − θ̂Ij

∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣θj − θ̂RJ

∣∣∣
∣∣∣
2

, j ∈ Λ. Then

E
[
IRj
]

= ECA − ECB − ECC + ECD (3.18)

with

ECA = Sp1 (1− F (NJ − 1; J − 1, 1− p1)) ρσ2
y


1−

2Tφ
(
T
σy

)

σyp1


 ,

ECB = (N − S)p2 (1− F (NJ − 1; J − 1, 1− p2))σ2
w


1−

2Tφ
(
T
σw

)

σwp2


 ,

ECC = Sp1 (1− F (NJ − 2; J − 1, 1− p1)) ρσ2
y


1 +

2Tφ
(
T
σy

)

σy(1− p1)


 ,

ECD = (N − S)p2 (1− F (NJ − 2; J − 1, 1− p2))σ2
w


1 +

2Tφ
(
T
σw

)

σw(1− p2)


 ,

where

F (x;n, p) =

bxc∑

i=0

(
n

i

)
pi(1− p)n−i

is the cumulative distribution function of the binomial distribution, and p1, p2, σ2
y, ρ, φ(x),

and Φ(x) are as defined in Theorem 3.13.

Proof. As in the proof of Theorem 3.13, the proof follows by quantifying the contribution of

each condition to the improvement.

(i) Condition A
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For k ∈ Ω, the probability that condition A happens is6

pCA = P
{
|yj(k)| < T and V (k) ≥ NJ

∣∣ k ∈ Ω
}

= P
{
|yj(k)| < T

∣∣ k ∈ Ω
}
P
{
V (k) ≥ NJ

∣∣ |yj(k)| < T, k ∈ Ω
}

= p1P
{
Vj(k) ≥ NJ

∣∣ k ∈ Ω
}

= p1

(
1− P

{
Vj(k) ≤ NJ − 1

∣∣ k ∈ Ω
})

= p1 (1− F (NJ − 1; J − 1, 1− p1)) ,

(3.19)

where Vj(k) is the number of observations yi(k), i 6= j with magnitude larger than T:

Vj(k) =
∑

i∈Λ,i 6=j

I|yi(k)|>T .

By following the same steps as in the proof of Theorem 3.13(i) we get the expression

for ECA.

(ii) Condition B

For k /∈ Ω, the probability that condition B happens is

pCB = P
{
|yj(k)| < T and V (k) ≥ NJ

∣∣ k ∈ Ωc
}

= P
{
|yj(k)| < T

∣∣ k ∈ Ωc
}
P
{
V (k) ≥ NJ

∣∣ |yj(k)| < T, k ∈ Ωc
}

= p2P
{
Vj(k) ≥ NJ

∣∣ k ∈ Ωc
}

= p2

(
1− P

{
Vj(k) ≤ NJ − 1

∣∣ k ∈ Ωc
})

= p2 (1− F (NJ − 1; J − 1, 1− p2)) .

(3.20)

By following the same steps as in the proof of Theorem 3.13(ii) we get the expression

for ECB.

6Note that the events |yj(k)| < T and V (k) ≥ NJ are not independent, thus to compute this probability
we use the fact that P {A ∩B} = P

{
A
∣∣ B
}
P {B}.
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(iii) Condition C

For k ∈ Ω, the probability that condition C happens is

pCC = P
{
|yj(k)| ≥ T and V (k) ≤ NJ − 1

∣∣ k ∈ Ω
}

= P
{
|yj(k)| ≥ T

∣∣ k ∈ Ω
}
P
{
V (k) ≤ NJ − 1

∣∣ |yj(k)| ≥ T, k ∈ Ω
}

= (1− p1)P
{
Vj(k) ≤ NJ − 2

∣∣ k ∈ Ω
}

= (1− p1) (1− F (NJ − 2; J − 1, 1− p1)) .

(3.21)

We can write

ECC = E

[ ∑

k∈ΩCC

(
wj(k)2 − θj(k)2

)
]

= E [|ΩCC |] E
[(
wj(k)2 − θj(k)2

) ∣∣ |wj(k) + θj(k)| ≥ T
]
,

(3.22)

Where ΩCC is the index set of the coefficients that satisfy Condition C. By the same

argument used in the proof of Theorem 3.13

E [|ΩCC |] = SpCC .

Using the change of variables u = wj(k) + θj(k) and v = wj(k) − θj(k) and Lem-

mas 3.7 and 3.10, and by the same arguments followed to derive Eq. (3.13), the second

expectation in Eq. (3.22) becomes

E
[
uv
∣∣ |u| ≥ T

]
= E

[
uE
[
v
∣∣ u
] ∣∣ |u| ≥ T

]

= E
[
ρCu

2
∣∣ |u| ≥ T

]

= ρC

∫ ∞

−∞
u2fu

(
u
∣∣ |u| < T

)
du,

with ρC =
σ2
w−σ2

θ

σ2
w+σ2

θ
= −ρ. Since this is the variance of a complementary-truncated zero
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mean Gaussian, using Lemma 3.12 we can write

ρC

∫ ∞

−∞
u2fu

(
u
∣∣ |u| < T

)
du = ρCσ

2
u


1 +

2Tφ( T
σu

)

σu

(
1 + Φ(− T

σu
)− Φ( T

σu
)
)




= ρCσ
2
y

(
1 +

2Tφ( T
σy

)

σy (1− p1)

)
.

(iv) Condition D

For k /∈ Ω, the probability that condition D happens is

pCC = P
{
|yj(k)| ≥ T and V (k) ≤ NJ − 1

∣∣ k ∈ Ωc
}

= P
{
|yj(k)| ≥ T

∣∣ k ∈ Ωc
}
P
{
V (k) ≤ NJ − 1

∣∣ |yj(k)| ≥ T, k ∈ Ωc
}

= (1− p2)P
{
Vj(k) ≤ NJ − 2

∣∣ k ∈ Ωc
}

= (1− p2) (1− F (NJ − 2; J − 1, 1− p2)) .

(3.23)

By following the same steps as in the proof of Theorem 3.13(ii) and using Lemma 3.12

we get the expression for ECD.

Figure 3.5 shows the expected improvement for the voting estimator for different values

of the numbers of signals J and different values of the number of votes NJ . The signal length

is set to N = 1024, the sparsity level set to S = 50, the standard deviation of the nonzero

coefficients set to σx = 1, and the standard deviation of the noise set to σw = 0.4. For

each value of J there is a value of NJ that maximizes the improvement. Since Theorem 3.14

provides an expression to compute the improvement it is possible to compute the optimal

NJ as

N∗J = argmax
NJ∈[1,J−1]

{voteImprovement(NJ ;N,S, J, σw, σx)}, (3.24)
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Figure 3.5: Expected improvement of voting over independent estimator, for different number
of signals J and different values of NJ . We fix the signal length to N = 1024, the sparsity
level to S = 50, the standard deviation of the nonzero coefficients to σx = 1, and the standard
deviation of the noise to σw = 0.4. The threshold T is set to T = σw

√
2 logN = 1.49. We

observe that for a given J , there is a value of NJ that maximizes the improvement.

where voteImprovement is the function induced by Eq. (3.18). Note that computing N∗J only

involves evaluating the improvement function J − 1 times and then selecting the NJ leading

to the larger value. It is, thus, easy to compute.

Figure 3.6 shows the expected improvement of the voting estimator, this time using

the optimal number of votes N∗J , calculated using Eq. (3.24). For comparison we also show

the expected improvement for the veto estimator. We observe that the voting estimator

using an optimal number does not exhibit the undesired asymptotically behavior of the veto

estimator.

3.3 Experimental Results

To validate the proposed estimators and their corresponding analysis, we first test our

approach using synthetic signals. In the following experiments we consider signals sparse
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Figure 3.6: Expected improvement of voting over independent estimator, for different number
of signals J for NJ set to the optimal value N∗J . We fix the signal length to N = 1024, the
sparsity level to S = 50, the standard deviation of the nonzero coefficients to σx = 1,
and the standard deviation of the noise to σw = 0.4. The threshold T is set to T =
σw
√

2 logN = 1.49. For comparison we also show the improvement of the veto over the
independent estimator for the same conditions. We observe that the voting estimator with
optimal NJ exhibits the desired asymptotic behavior lacking in the veto estimator.

in the time domain (this corresponds to setting Ψ equal to the identity matrix). We set

the signal length to N = 2048 and the sparsity level to S = 100. The location of the

nonzero coefficients is chosen uniformly at random, and their amplitudes are i.i.d. drawn at

random from a standard Gaussian distribution with zero mean and variance σ2
θ = 1. The

observations are corrupted by Gaussian Gaussian i.i.d. zero-mean additive white noise with

variance σ2
w = 0.237.

Figure 3.7(a) shows the risk for both methods together with the risk for the oracle

estimator. Notice that in this case, as the number of signals J increases, the veto denoising

risk gets close to the oracle risk. Figure 3.7(b) shows the theoretical and simulation values

for the risk improvement. We observe that the results from the experiment match the risk

improvement predicted by Theorem 3.13.
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Figure 3.7: Simulation results for a signal ensemble sparse in the time domain for different
values of the number of signals J . (a) Risk for independent, veto, and oracle estimator.
(b) Experimental and theoretical risk improvement. (c) Effect of the noise variance on the
risk.

In the second experiment we consider different values of the noise variance σ2
w and

number of signals J . Figure 3.7(c) shows the risk for the oracle, independent and veto

denoising7. We observe that the improvement of our method is more significant at higher

levels of signal noise. In other words, the noisier the observations, the greater are the benefits

of exploiting the inter-signal structure.

In the third experiment we show the behavior of joint denoising by showing the outcome

for one of the signals. We show the original signal (Fig. 3.8(a)), the noisy observations

(Fig. 3.8(b)), and the outcome of independent and joint denoising (Fig. 3.8(c)). We observe

7For the values of J used in this experiment, the veto and that vote estimators are the same.
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Figure 3.8: Simulation results for one of the signals in the ensemble. (a) Original signal.
(b) Noisy observation. (c) Joint and independent estimates.

that joint denoising saved many of the small coefficients that otherwise would be killed by

the independent denoising.

In the fourth experiment we validate the result of Theorem 3.14. Fig. 3.9 shows the risk

of the voting estimator, with the number of votes set to the optimal N∗J , for different values

of J . For comparison, we also show the risk of the independent, veto, and oracle estimators.

We also show the improvement of the voting and vetoing estimators together with their

corresponding theoretical values, as predicted by Theorems 3.14 and 3.13, respectively. This

result confirm the soundness of the theorems; it also shows that the asymptotic behavior of

the voting estimator gets very close to the one of the oracle.

In the final experiment we validate our solution using real world signals. We used the

dataset from the temperatures collected in the Intel Berkeley Research lab.8 These signals are

sparse in the Fourier domain, and satisfy approximately the JSM-2 model. Figure 3.10 shows

the results. We observe that our method9 does a better job than independent denoising,

particularly at the locations corresponding to higher frequencies. This is because the higher

frequency components are relatively small, thus, are killed by the independent denoising

algorithm.

8http://www.select.cs.cmu.edu/data/labapp3/index.html
9For this example the veto and voting estimators are the same, since N∗J = 1 for the given signal

parameters.
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Figure 3.9: Simulation results for the voting estimator. The first panel shows the risk for
different values of the number of signals J . For comparison we also shows the performance of
the veto and oracle estimator. The second panel shows the corresponding improvements over
the independent estimator, together with the expected improvement predicted by Theorems
3.14 and 3.13. Note that the risk of the voting estimators gets very close to the risk of the
oracle estimator as the number of signals increases.

3.4 Remarks

In this chapter we proposed two methods to denoise a signal ensemble. The first one,

a veto scheme, exhibited good performance, but its asymptotic behavior was not as good as

desired. The second one, a voting scheme, exhibited a behavior uniformly better than the

veto scheme, including a good asymptotic behavior.

There are several aspects of the joint denoising problem that deserve further considera-

tions. Firstly, we would like to extend the proposed methods to other joint sparse models [5],

as the JSM-1 model—where each signal in the ensemble can be decomposed in a common

sparse component plus a sparse innovation component—and the JSM-3 model—where each

signal in the ensemble can be decomposed in a dense common component plus a sparse
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Figure 3.10: Simulation results for temperature signals from a sensor network. (a) One of
the original signals. (b) Noisy observation. (c) Joint and independent estimates.
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innovation component. Secondly, we would like to study an alternative approach to joint

denoising, based on the framework of hypothesis testing. At this point it is not clear what

kind of performance such methods would exhibit with respect to the ones proposed so far.

For this reason, we think it would be interesting to explore the use of this formulation.
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CHAPTER 4

DECLIPPING A SIGNAL IN SPARSELAND

“Nothing in nature is random . . . A thing appears

random only through the incompleteness of our

knowledge.”

Spinoza

In many practical situations, either because a sensor has the wrong dynamic range or

because signals arrive that are larger than anticipated, it is common to record signals whose

amplitudes have been clipped. Any method for restoring the values of the clipped samples

must—implicitly or explicitly—assume some model for the structure of the underlying signal.

For example, one of the first attempts to “de-clip” a signal was the work of Abel and Smith [1],

who assumed that the underlying signal had limited bandwidth relative to the sampling rate

(i.e., that it was oversampled) and recovered the original signal by solving a convex feasibility

problem. Godsill et al. [51] later tackled the de-clipping problem using a parametric model

and a Bayesian inference approach. Along the same lines, Olofsson [76] proposed a maximum

a posteriori estimation technique for restoring clipped ultrasonic signals based on a signal

generation model and a bandlimited assumption.

Meanwhile, recent research in fields such as Compressive Sensing (CS) [19] has shown the

incredible power of sparse models for recovering certain signal information. Many signals can

be naturally assumed to be sparse in that they have few non-zero coefficients when expanded

in a suitable basis; the name “Sparseland” has been used to describe the broad universe of

such signals [43]. Although a typical CS problem involves an incomplete set of random mea-

surements (as opposed to a complete—but clipped—set of deterministic samples), sparse

models have made a limited appearance in the de-clipping literature. In particular, Gem-

meke [49] et al. imputed noisy speech features by considering the spectrogram of the signal
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as an image with missing samples, representing the spectrogram in terms of an overcomplete

dictionary, and using sparse recovery techniques to recover the missing samples.

It is also interesting to note that observing only the sign of a signal—or equivalently

registering its zero crossings—can be considered as an extreme case of clipping. Several works

in “1-bit CS” [12, 55, 82] consider measurements of the form y = sign(Φx). However, this

setup is different than the one we consider, since it involves recording the sign of the signal

after it has been multiplied by a random matrix Φ.1 Our scenario is also different than the

one considered by Boufounos and Baraniuk [13], who tackled the problem of reconstructing

sparse signals from their zero crossings. In this case, the key difference with respect to

our work is that they restrict the problem to periodic analog signals whose nonzero Fourier

series coefficients all fall within one octave of frequency.2 In contrast, we formulate the

problem purely in the discrete domain and make no assumptions regarding the locations of

the nonzero Discrete Fourier Transform (DFT) coefficients.

In this work, we present two methods for de-clipping a signal under the assumption

that the original signal is sparse in the frequency domain, i.e., that it can be represented

as a concise sum of harmonic sinusoids. This model is general enough to embrace a wide

set of signals that could be recorded from certain communication systems, resonant physical

systems, etc. This model is also commonplace in the CS literature, particularly in settings

involving random time-domain measurements. Note that our choice of this frequency domain

model is an important one, as many other sparse bases could not be used for de-clipping.

Consider, for instance, a signal that is 1-sparse in the Haar wavelet domain (see Fig. 4.1 for

an example); it is evident that any amount of clipping will render impossible the recovery

of the signal. Additionally, in any wavelet basis, a nonzero coefficient corresponding to a

1The exact nature of the random measurement operator Φ appears to play an important role in 1-bit CS.
For instance, recovery is possible when Φ has independent standard Gaussian entries, but not when it has
independent Bernoulli entries [82].

2To illustrate the limitations of using the zero crossings as the only available observations, consider the
signals x1(n) = sin(2πn/N) and x2(n) = sin(2πn/N)+0.25 sin(2π3n/N) (see Fig. 4.6 for a plot of x2). Since
the zero crossings of x1 and x2 are the same, it would be impossible to discern between these two signals
using only this information.

73



n

Cl

0

Cu

k

w
av

el
et

co
ef

.

Figure 4.1: A 1-sparse signal sparse in the Haar wavelet domain. This signal can be repre-
sented by one nonzero Haar wavelet coefficient. Any amount of clipping makes the recovery
of the original signal impossible.

wavelet whose support is entirely contained in a clipped region cannot generally be recovered.

To some extent, this issue can be understood using the concept of mutual incoherence [36]:

as is known in CS, to successfully recover a sparse signal from incomplete measurements, the

sparsifying basis must be uncorrelated with the domain where the observations are taken.

The clipping process takes samples in the time domain, and the wavelet basis consists of

functions that are also localized in time. On the other hand, the Fourier basis is known to

be maximally incoherent with the time domain.

Although the measurements we consider are not random—in fact they are “adversarial”

in that clipping eliminates the samples with the highest energy content—we do find that

certain ideas from CS can be leveraged. In particular, we have modified several CS algorithms

in an attempt to account for the clipping constraints. In this work, we first consider a

modified version of the canonical recovery algorithm known as Basis Pursuit (BP) [43], and

defined as (P1) in Sec. 2.2. This modified version, dubbed Basis Pursuit with Clipping

Constraints (BPCC), is essentially the same recovery algorithm proposed by Mansour et
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al. [69] in the framework of image desaturation. Since by design they select image patches

with small numbers of saturated samples, however, they do not evaluate its behavior for a

wide range of clipping levels. Smaragdis [88] also proposed to recover a clipped signal using an

optimization problem equivalent to BPCC. Since Smaragdis’ approach selectively attenuates

the samples, however, the non-clipped observations are significantly different than the ones

considered in our work.3 Next, we consider a modified version of Reweighted `1 minimization

[21] that uses BPCC in the inner loop and a modified version of the Thresholding algorithm

[43], also known as Trivial Pursuit (TP) [5]. By a considerable margin, these are the two

methods with the best performance among all the alternatives that we consider. This is

surprising since (i) the performance improvements using Reweighted `1 minimization are

much more substantial than are typically observed in CS problems, and (ii) TP, a very

simple greedy algorithm, is one of the poorest performing algorithms in conventional CS

problems [43]. We also show that, when tested on frequency sparse signals, these two methods

outperform constraint-Orthogonal Matching Pursuit (OMP). The work in this chapter was

published in [103].

4.1 Preliminaries

Let x ∈ RN be a K-sparse signal in the Fourier domain, i.e., x = Ψα and ‖α‖0 = K,

where Ψ is the N×N inverse DFT matrix and ‖·‖0 denotes the number of non-zero entries of

a vector.4 Because of the Hermitian symmetry property of real signals, the sparsity level K

is in general twice the number of harmonics in x (the exceptions are harmonics of frequency

0 or π, which contribute only one DFT coefficient each). Let the clipped version of x be xc,

3Note that although similar, this is different than the problem considered in this work, since Smaragdis’
approach requires modifying the sampling architecture, e.g., by using two synchronized Analog to Digital
Converters (ADCs) with different gains.

4We focus on the purely discrete setting. While one could consider the vector x as arising from sampling
an analog signal, issues concerning the selection of the sample rate and duration are beyond the scope of our
work.
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where

xc(n) =





Cu if x(n) ≥ Cu,

Cl if x(n) ≤ Cl,

x(n) otherwise,

and Cu and Cl are the known upper and lower clipping values, respectively. Our goal is to

recover the original signal x from the observed clipped signal xc.

Denote by Ωu, Ωl, and Ωnc the index sets of the upper clipped, lower clipped, and

non-clipped samples, respectively:

Ωu = {n|xc(n) = Cu}, Ωl = {n|xc(n) = Cl}, Ωnc = (Ωu ∪ Ωl)
c.

Similarly, denote by Ψu and Ψl the matrices formed with the rows i ∈ Ωu and j ∈ Ωl of

Ψ, respectively. We can write the non-clipped values of xc as y = Φx, where Φ is a restriction

operator formed with the rows j ∈ Ωnc of the N ×N identity matrix.

4.1.1 Basis Pursuit, Basis Pursuit with Clipping Constraints, and Reweighted

`1 with Clipping Constraints

The canonical CS method for recovering a sparse signal is known as Basis Pursuit [43],

and defined as (P1) in Sec. 2.2. Given a set of non-clipped linear measurements y = Φx =

ΦΨα, Basis Pursuit involves solving the following convex optimization problem:

α = argmin
α∈CN

‖Wα‖1

s.t. ΦΨα = y,

(BP)

where W is a diagonal weighting matrix with the norm of the columns of ΦΨ in its main
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diagonal and zeros elsewhere.5 In the de-clipping problem, we also know that samples clipped

by the upper limit must have values greater or equal than Cu, and samples clipped by the

lower limit must have values smaller or equal than Cl. We can then propose a version of

Basis Pursuit with clipping constraints:

α = argmin
α∈CN

‖Wα‖1

s.t. ΦΨα = y

Ψuα ≥ Cu

Ψlα ≤ Cl.

(BPCC)

Another technique commonly used in CS is “Reweighted `1 minimization” [21]. In its

original formulation, this method iterates over a weighted version of (BP), adjusting the

weights based on the solution obtained in the previous iteration. This method typically

has better signal recovery performance than Basis Pursuit but at the expense of a higher

computational load. We adapt this method to the de-clipping problem by replacing (BP) at

each iteration with (BPCC). We dub this method Reweighted `1 with Clipping Constraints

(R`1CC). Algorithm 6 shows the complete method.

Algorithm 6 Reweighted `1 minimization with clipping constraints (R`1CC)

input: Φ, Ψ, Ψu, Ψl, y, Cl, Cu, `max, ε, δ
` = 1, W

(1)
i = 1, i = 1, . . . , N

repeat
α(`) = arg min ‖W (`)α‖1

s.t. ΦΨα = y, Ψuα ≥ Cu, Ψlα ≤ Cl
W

(`+1)
i = 1

|α(`)
i |+ε

, i = 1, . . . , N

` = `+ 1
until ` ≥ `max + 1 OR ‖α(`) − α(`−1)‖2 < δ

output: α`−1

5The definition of (P1) in Sec. 2.2 does not consider the weighting matrix W since in the standard CS
setting the columns of ΦΨ are normalized; in the declipping problem we do not have the degrees of freedoms
to make this happens.
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Figure 4.2: Reconstruction of x(n) = sin (2πn/N + π/4) by (BP), (BPCC), and Algorithm 1
(R`1CC). (a) Clipping level ±0.75. All three approaches recover the signal. (b) Clipping level
±0.72. Only R`1CC recovers the signal exactly.

We test these three approaches with the signal

x(n) = sin (2πn/N + π/4) (4.1)

for N = 128. Figure 4.2(a) shows the result for a clipping level of ±0.75, at which there

are 70 non-clipped samples, and Fig. 4.2(b) shows the result for a clipping level of ±0.72, at

which there are 66 non-clipped samples. These numbers of non-clipped samples6 correspond

to the transition between the recovery and non-recovery zones of operation of (BP) and

(BPCC).

In this experiment and in others (see Sec. 4.3), we observe that adding clipping con-

straints to Basis Pursuit does not help to perfectly recover signals with lower clipping thresh-

olds. R`1CC, on the other hand, can recover signals with more significant levels of clipping.

This improvement of R`1CC over (BP) and (BPCC) is actually substantially better than is

typically observed in CS [21].

Thinking in terms of CS principles, the Restricted Isometry Property (RIP) (see Sec 2.2

and [19] for more details) is commonly used for theoretical analysis of compressive mea-

6Due to the nature of this signal x(n), it is not possible to set the clipping level so that the number of
non-clipped samples is between 66 and 70.
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surement operators. The RIP can be shown to hold with high probability for a randomly

generated matrix with a small number of rows, and when it holds, such a matrix can be

used to exactly recover any sparse signal (up to a certain sparsity level). This perspective

is not the right one to analyze the de-clipping problem, however, and it cannot be used to

explain why (BP) and (BPCC) fail in the previous example. First, since the matrix ΦΨ is

not random, we cannot use any of the standard probabilistic tools to predict whether it will

satisfy the RIP. Second, while the RIP guarantees that a fixed measurement matrix can be

used to recover any sparse signal, in the de-clipping problem the matrix ΦΨ is relevant only

for the small set of signals that, when clipped, actually produce the samples given by this

matrix. In other words, Φ itself is dependent on the unknown signal x. This dependency is

not only unusual in CS, it is also contrary to what makes a measurement matrix favorable in

CS: while random matrices tend to capture a representative sample of signal entries, both

large and small, the clipping process deliberately excludes all of the large signal entries and

keeps only the small ones.

4.1.2 About the Uniqueness of the Solutions

Mangasarian [68] provides some characterizations to determine if a linear program has

a unique solution. Since the optimization programs (BP) and (BPCC) can be cast as linear

programs, we use one of these characterizations to study the uniqueness of the solutions. In

particular, let the linear program and its dual be

minimize
x

pTx maximize
u,v

bTu+ dTv

subject to Ax = b subject to ATu+ CTv = p

Cx ≥ d v ≥ 0,

and denote its solutions by x̄, ū and v̄. Let CI be a matrix formed by the rows i ∈ I of C,
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and define the following index sets:

K = {i|v̄i > 0} = {i|Cix̄ = di, v̄i > 0}

L = {i|Cix̄ = di, v̄i = 0}.

Then, the linear program has a unique solution if and only if the rows of [AT CT
K CT

L ] are

linearly independent and the linear program

maximize
x

1TCLx

subject to Ax = 0

Ckx = 0

CLx ≥ 0

has a zero maximum. The convex program (BP) can be written as the aforementioned linear

program by defining

p =

[
0 1

]T
, A =

[
ΦΨ 0

]
, b = y,

C =



W I

−W I


 , d = 0.

For the convex program (BPCC), we need to change the definition of C and d as

C =




W I

−W I

Ψu 0

−Ψl 0



, d =




0

Cu1

−Cl1
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We now analyze the uniqueness of the solution of the problems introduced in Sec. 4.1.1.7

Table 4.1 shows the recovery—declared as successful when the output of the optimization

problem is equal, up to numerical precision, to the original signal—and the uniqueness—

determined by the Mangasarian test—of the convex programs (BP) and (BPCC), at the

two clipping levels where the recovery transition happens. As suggested previously, we can

see, at least for this example, that the “recovery transition” coincides with the “uniqueness

transition”.

Table 4.1: Recovery and uniqueness of the solution using (BP) and (BPCC), for the 1-sparse
signal defined by Eq. (4.1).

Method Measurements Correct recovery Uniqueness ‖α‖1

P1 66 No No 11.3
70 Yes Yes 11.3

P2 66 No No 11.3
70 Yes Yes 11.3

Does this behavior generalize to other sparsity levels? We try with a 2-sparse signal

defined as

x(n) = sin (2πn/N) + 0.5 sin (2π3n/N) . (4.2)

For this signal the recovery transition occurs when the number of measurements de-

creases from 76 to 74. Table 4.1 shows the uniqueness, as computed by the Mangasarian

test, and the `1 norm of the solutions. As can be seen, now all the solutions are unique.

To get a more definite answer about this issue, we perform a more thorough experiment,

where we analyze the relationship between recovery and uniqueness for different values of the

sparsity level and the number of measurements. For comparison, we also show the results for

standard Compressive Sensing on the same unclipped signal using measurements in the time

domain, for the same levels of sparsity and number of measurements. For each combination

7Appendix A describes a sanity check used to check the correctness of our implementation.
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Table 4.2: Recovery and uniqueness of the solution using (BP) and (BPCC), for the 2-sparse
signal defined by equation (4.2).

Method Measurements Recovery Uniqueness ‖α‖1

P1 74 No Yes 10.6
76 Yes Yes 12.0

P2 74 No Yes 11.9
76 Yes Yes 12.0

of sparsity level and number of measurements, we check if we can recover the original signal,

and if the solution to the optimization problem is unique. Table 4.3 shows the symbols used

to indicate the four possible outcomes, and Figure 4.3 shows the results.

Table 4.3: Symbols used to indicate recovery and uniqueness.

Recovery Uniqueness Symbol

No No 0

No Yes 1

Yes No 5

Yes Yes 6

We can observe that for all sparsity methods, and the three methods, all the solutions

are unique. This experiment suggests that the lack of uniqueness associated with the non-

recovery condition only happens for single-tone signals. It remains an open question why

this phenomenon is happening, and if it has any significance.

4.2 Trivial Pursuit with Clipping Constraints

Let us note that the DFT of the clipped signal xc generally contains, in addition to the

harmonics introduced by the clipping process, all of the harmonics present in the original

signal x. Interestingly, the harmonics with the biggest magnitude typically coincide with the

ones from the original signal. Figure 4.4 shows an example for a signal with sparsity level
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Figure 4.3: Uniqueness analysis. For each sparsity K and number of measurements M ,
we show the recovery and uniqueness of the solutions of (BP), (BPCC) and the equivalent
Compressive Sensing (CS) problem. See Table 4.3 for the meaning of the symbols.

K = 10 clipped at an amplitude corresponding to 20% of its peak value. We see that the 5

biggest harmonics of xc are at the same locations as the 5 harmonics of x. Why is it that

the harmonics of the original signal are present in its clipped version? Intuitively, one can

think of what happens when we listen to saturated audio signals: in spite of being distorted,

we can still understand the signal content. This situation suggests that the harmonics of

the original signal are still present. A bit more formally, this phenomenon can be explained

by decomposing the clipped signal as xc = x + xd, where xd represents the distortion intro-

duced by the clipping process. Figure 4.5 shows an example of such decomposition. Since
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Figure 4.4: Support estimation using the DFT of the clipped signal. (a) A signal x with sparsity
level K = 10 and its clipped version xc, with Cu/‖x‖∞ = 0.2, corresponding to M = 40 non-clipped
samples. (b) DFT of x and xc for 0 ≤ k < N

2 . Note that the 5 biggest harmonics of xc are at the
same locations as the harmonics of x.

DFT{xc} = DFT{x} + DFT{xd}, the harmonics of x will generally be present in xc.
8 Our

second proposed de-clipping algorithm exploits this observation.

The method is very simple and consists of two stages. First, we identify the support

(the location of the non-zero Fourier coefficients) of the signal. Second, we estimate the

value of the coefficients on this support using a least-squares approach, similar to that used

in other greedy methods such as Matching Pursuit or OMP [43]. If we know the sparsity

level K a priori, we can estimate the support simply by finding the K biggest harmonics of

xc. In the more general case where we do not know K, we select the elements of the support

one at a time in a greedy manner, until the reconstruction error on the non-clipped samples

is small enough.

Algorithm 7 shows a detailed description of the method. In the match step we compute

the DFT of the clipped signal—this happens only once. Then we repeat the following steps

until the residual r is arbitrary small (we use ε = 10−6 in our experiments). In the identify

step we add the indices associated with the current largest harmonic to the support index set

Λ, and we then set those coefficients to zero to avoid selecting them again. In the update

step we compute the DFT coefficients of a signal—restricted to the support Λ—that best

8Note that at some point the amount of distortion introduced by the clipping process will render it
impossible to distinguish the harmonics of x.
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Figure 4.5: Decomposition of a clipped signal. A clipped signal xc can be decomposed as xc =
x+xd. Since the DFT is a linear transformation, the DFT of the clipped signal can be decomposed in
the same way. (a) Clipped signal xc. (b) Original signal x. (c) Distortion term xd. (d)-(f) Absolute
value of the DFT coefficients of xc, x, and xd for 0 ≤ k < N

2 .

approximates the non-clipped samples y in a least-squares sense. Note that the coefficients

αΛ on this support are easily computed as αΛ = (ΦΨ)†Λy, where (ΦΨ)†Λ is the pseudoinverse

of the columns of ΦΨ indexed by Λ.

Although perhaps not evident at first sight, Algorithm 7 corresponds to a modified

version of the method known as Trivial Pursuit (TP) [5, 43]. Given a set of non-clipped

linear measurements

y = Φx = ΦΨα,

TP would estimate the support of α simply by computing the score hTP = (ΦΨ)Ty and

selecting the indices of the largest entries of hTP . We can write

hTP = (ΦΨ)Ty = ΨTΦTy

and note that the vector ΦTy ∈ RN corresponds to a zero-padded version of y with the non-

clipped samples at the proper locations. Since multiplying by ΨT is equivalent to computing
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Algorithm 7 Trivial Pursuit with Clipping Constraints

input: Φ, Ψ, xc, y, ε
initialize: r = y, Λ(1) = ∅, ` = 1
match: h = DFT{xc} (indexed from 0 to N − 1)
while ‖r‖2 > ε do

identify: k = argmax0≤j≤N
2
|h(j)|

Λ(`+1) = Λ(`) ∪ {k, (N − k) mod N}
h(k) = 0

update: α = argminz: supp(z)⊆Λ(`+1) ‖y − ΦΨz‖2

r = y − ΦΨα
` = `+ 1

end while
output: x̂ = Ψα = Ψ argminz: supp(z)⊆Λ(`) ‖y − ΦΨz‖2

the DFT of a vector, hTP is in fact the DFT of the zero-padded version of y. The vector h

computed in the match of Algorithm 7 is actually very similar to hTP , except that instead

of computing the DFT of the zero-padded version of y, we compute the DFT of xc, which

is equal to y padded with the clipped values instead of zeros. In other words, Algorithm

7 exploits the knowledge of the clipped values. For this reason we dub our method Trivial

Pursuit with Clipping Constraints (TPCC).

To illustrate the effectiveness of TPCC we experiment with the signal x(n) = sin(2πn/N)+

0.25 sin(2π3n/N) of length N = 128. We clip this signal, shown in Fig. 4.6, at a level just

below the “bumps”. It might seem impossible to recover the signal once the oscillations due

to the third harmonic are missing. Remarkably, however, TPCC not only recovers this signal

at the clipping level of Cu = 0.7, but it can even recover this signal down to the clipping

level of Cu = 0.2, at which point there are only 10 non-clipped samples.

Although in CS TP is arguably the simplest reconstruction method for sparse signals,

it is also one of the methods with the poorest performance in terms of the number of mea-

surements required for successful signal recovery [43]. For this reason it is quite surprising

that in this experiment and in others (see Sec. 4.3) TPCC can be so effective for de-clipping

sparse signals.
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Figure 4.6: Recovering a two-tone signal using TPCC. The clipping level Cu = 0.7 is just below
the high-frequency “bumps”. It is possible to recover the signal with a clipping level down to
Cu = 0.2. We set the signal length to N = 128.

4.3 Experimental Results

In this section we empirically evaluate the methods described previously. We also com-

pare with constraint-OMP.9 For all experiments that follow we generate, for each value of

the sparsity level K, signals of length N = 128 having K non-zero coefficients with frequen-

cies selected randomly, amplitudes chosen randomly from a uniform distribution between 0.5

and 1.5, and phases selected randomly. We also set Cl = −Cu.10

In the first experiment, we find the average minimum number Mmin of non-clipped

samples required to recover a signal as a function of K. We compute the average over 100

simulation runs. Figure 4.7(a) shows the results. BP and BPCC perform very poorly, being

unable to recover the original signal except when the clipping is very mild. Constraint-OMP

performs better, while TPCC and R`1CC perform much better still. In fact, both TPCC

and R`1CC can reliably recover the signal using a number of non-clipped samples that is not

much larger than K, while BP and BPCC require a number of non-clipped samples much

closer to N .

In the second experiment, we compare R`1CC and TPCC in a different way. We fix

9We have found that constraint-OMP exhibits better performance with signals sparse in the Direct Cosine
Transform (DCT) domain than with signals sparse in the DFT domain. We thus use the DCT as the sparsity
basis for testing this method.

10Matlab code is available at https://github.com/aweinstein/declipping.

87



2 4 6 8 10 12 14 16 18 20
Sparsity level K

0

20

40

60

80

100
M

m
in

BP
BPCC
R`1CC

TPCC
consOMP

(a)

4 6 8 10 12 14 16 18 20
Sparsity level K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

re
co

ve
ry R`1CC

TPCC

(b)

Figure 4.7: Recovering a clipped signal using BP, BPCC, constraint-OMP, R`1CC, and TPCC. (a)
The average minimum number of non-clipped samples Mmin required to recover signals of different
sparsity levels K. (b) The probability of perfect recovery as a function of the sparsity level K for
M = 70 non-clipped samples.

the number of non-clipped samples to M = 70 and plot the probability of perfect recovery

(declared when ‖x − x̂‖ ≤ 10−3) as a function of the sparsity level K. Figure 4.7(b) shows

the results using 500 trials. Although R`1CC performs somewhat better than TPCC, it is

important to underscore that TPCC requires significantly fewer computations.

In the two next experiments we examine the performance of TPCC more closely. We plot

the probability of perfect recovery as a function of K for different values of M . Figure 4.8(a)

shows the results using 500 simulation runs for each combination of M and K. As expected,

the probability of recovery increases as the sparsity level K decreases and as the number

of non-clipped samples M increases. Again, in general, we can expect a high probability

of recovery from TPCC (over our random signal model) when M is a small multiple of

K. Another relevant figure of merit is the clipping ratio CR = Cu/‖x‖∞ ∈ [0, 1]. Over

1000 simulation runs, we find the average minimum clipping ratio CRmin required for signal

recovery as a function of K. Figure 4.8(b) shows the result. Even for relatively high values

of K, TPCC is able to recover signals with clipping levels smaller than 1
4

of the maximum

absolute signal value. The apparent anomaly that for K = 2 the performance is worse than
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Figure 4.8: Recovering a clipped signal using TPCC. (a) The probability of perfect recovery as a
function of the sparsity level K for different numbers of non-clipped samples M . (b) The average
minimum clipping ratio required to recover signals of different sparsity levels K.

for K = 4 is explained by the fact that samples of a high frequency single-tone signal tend

to concentrate around a few values (the limit case being x(n) = cos(πn)). Thus, for such

signals, a small amount of clipping translates to a small number of observations.

It is also possible to extend TPCC to the case where the original signal x is contaminated

by additive noise. All we need to do, as is commonly done with greedy methods [43, Sec.

5.31], is to modify the value of ε used in the stopping condition of Algorithm 7 as a function

of the noise level. In particular, we consider the noisy signal xn = x+z, where z is a bounded

noise term with ‖z‖2 < δ. We observe the clipped signal xc equal to xn if Cl < xn < Cu,

equal to Cu if xn ≥ Cu, and equal to Cl if xn ≤ Cl.

We illustrate the effectiveness of this approach with two signal realizations. Both signals

have sparsity level K equal to 10 and fixed support (equal to the 10 lowest frequencies). We

fix the noise level ‖z‖2 to 1 and ε to 1. Figure 4.9(a) shows the simulation result for a

signal with 54 non-clipped samples, and Fig. 4.9(b) shows the result for a signal with 46

non-clipped samples.

Next, we examine the performance of TPCC under noisy observations in more detail.
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Figure 4.9: Recovering a clipped noisy signal using TPCC. We plot the original noisy signal x+ z
and the recovered signal x̂ for two signal realizations. We fix both the noise level ‖z‖2 and ε to 1.
The number of non-clipped samples is (a) 54 and (b) 46.
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Figure 4.10: Recovering a noisy clipped signal using TPCC. We plot the average normalized `2
error ‖x − x̂‖22/‖x‖22 over 500 simulation runs as a function of the sparsity level K for different
numbers of non-clipped samples M . We set both the noise level ‖z‖2 and ε to 1.

In this experiment, for a fixed number of non-clipped samples M and noise level ‖z‖2,

we compute the average normalized `2 error ‖x − x̂‖2
2/‖x‖2

2 over 500 simulation runs as a

function of the sparsity level K. We set both the noise level ‖z‖2 and ε to 1. Figure 4.10

shows the results. We observe a behavior similar to the case of noise-free clipped signals,

where performance degrades as the sparsity level K increases.
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CHAPTER 5

SPARSE MODELS FOR REINFORCEMENT LEARNING

“Thus, I thought dynamic programming was a good

name. It was something not even a Congressman

could object to. So I used it as an umbrella for my

activities.”

Richard Bellman [39].

Reinforcement Learning (RL) is a branch of machine learning1 [8, 16, 83, 92, 93]. It

considers an agent that interacts with a given environment. The agent is able to take actions

and to observe its current state. After taking an action, the agent observes its new state

together with an immediate reward—this reward does not need to be positive, if negative, it

can be considered as a cost. The goal is to design a policy, or control law, such that the sum

of all the observed rewards is maximized. This problem is challenging because typically to

maximize the total reward the agent needs to take actions that do not always look promising.

This is why it is common to say that in RL “things need to get worse before they get better”.

This is also challenging because we are interested in cases where the agent does not have

access to a model of the environment; all it can do is to interact with it.

RL has been applied successfully in different domains. An early success case was TD-

Gammon [96], a program that learned to play Backgammon. It is also common to use RL

to solve classic control problems (e.g., controlling an inverted pendulum [92]), in robotics

(autonomous helicopter [74], obstacle avoidance [70]), and in Operations Research (e.g.,

maintenance with limited resources, channel allocation in cellular systems [8]).

As discussed in Sec. 5.2, solving an RL problem requires the use of a function approx-

1RL is closely related to the concept of Dynamic Programming (DP). The exact meaning of DP is not well
defined (see the epigraph at the beginning of this chapter and [39]). Commonly it is said that DP provides
a set of techniques to solve an RL problem given a perfect model of the environment [92, Ch. 4].
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imation scheme. Among the several function approximation architectures typically used in

RL, the linear approximation approach is one of the most common ones. An important step

in any linear approximation solution is the design of the feature vectors (or alternatively, the

design of an approximation basis). Typically, this step involves designing these features or

basis functions by hand, and it can become quite involved as the problem at hand becomes

more complex. For this reason, researchers have focused on simplifying this step.

In this chapter we show how the use of sparse approximations [43] helps to alleviate

the difficulties practitioners encounter when designing an approximation architecture. After

reviewing some of the sparse approximation solutions proposed so far in the literature, we

show a new approach that exploits the additional structure existing in the functions of

interest.

The chapter follows with a description of Markov Decision Process (MDP) and their

use to formalize the RL problem. Section 5.2 explains the use of function approximations

in RL. Section 5.3 describes the role of sparse approximation in RL, and introduces the new

proposed algorithms. We finalize with some empirical results.

5.1 Markov Decision Processes

In RL the interaction between the agent and the environment is modeled by an MDP.

An MDP is defined by the tuple 〈S,A,P , R〉. The finite set2 S = {s1, s2, . . . , sN} denotes

all the possible states where the agent can be, while the finite set A = {a1, a2, . . . , aM}

denotes the set of actions available to the agent. The agent interacts with the environment

by taking actions sequentially. The outcome of taking an action is governed by the transition

probability function P(s, a, s′) that returns the probability that the next state is s′, given

that the current state is s, and that the agent executed action a. The agent also gets a

2Although this formulation considers a finite number of states, it is possible to deal with countable and
continuous state environments by using function approximation schemes (see Sec. 5.2).
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Figure 5.1: The agent-environment interaction. At time t and based on its current state,
the agent executes action at. Then it gets a reward and observes the new state st+1 and
immediate reward rt+1.

reward3 R(s, a, s′) determined by the function R : S × A × S → R. Figure 5.1 summarizes

the interaction between the agent and the environment.

Let t = 0, 1, 2, . . . and let st ∈ S, at ∈ A, rt ∈ R denote the sequence of states, actions,

and rewards observed and executed by the agent, respectively. The agent objective is to

maximize the discounted return

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=0

γkrt+k+1,

where γ is the discount factor, with 0 < γ < 1.

At this point it is useful to clarify the following. The word “Markov” is used to de-

scribe systems that satisfy the Markov property, that is, systems for which the next state

depends only on the present state. In addition to MDPs, other systems that also exhibit

this property are Markov Chains, Hidden Markov Models (HMMs), and Partially Observed

Markov Decision Processes (POMDPs). The difference among these class of systems lays in

two facts: if it is possible to have control over the state transitions, and if it is possible to

observe the state completely. Figure 5.2 shows the relationship between these facts and the

3It is also possible to formulate the MDP using a reward function defined as R(s, a) or as R(s). Given
an MDP defined using one of these definition, it is always possible to transform it into an equivalent MDP
that uses one of the other reward function definitions [86, Ex. 17.5].
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Figure 5.2: Depending on if it is possible to have control over the state transitions and if it
is possible to observe the states completely, systems that satisfy the Markov property can
be classified as Markov Chains, Markov Decision Processes (MPDs), Hidden Markov Models
(HMMs) or Partially Observable Markov Decision Processes (POMPDs) (original concept of
this figure taken from http://www.cassandra.org/pomdp/pomdp-faq.shtml).

four class of systems.

5.1.1 The Chain Environment

To make the discussion concrete, we introduce the chain environment [61]. In this

environment the state space is given by S = {1, 2, . . . , N}, and the agent can choose between

taking the action ‘Left’ (L) or ‘Right’ (R), i.e., A = {L,R}. The states are ordered in

ascending order from left to right. If the agent takes the action ‘Right’ (‘Left’) the next

state will be the one to its right (left) with probability 0.9 and the one to its left (right) with

probability 0.1; the exception to this rule being when the agent is at one of the chain ends

(s = 1 or s = N), in which case actions may cause the agent to “bounce back” to the same
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state. In summary, the transition probability function is given by

P(s, L, s+ 1) = 0.1 s = 1, . . . , N − 1,

P(s, L, s− 1) = 0.9 s = 2, . . . , N,

P(s, R, s+ 1) = 0.9 s = 1, . . . , N − 1,

P(s, R, s− 1) = 0.1 s = 2, . . . , N,

P(1, L, 1) = 0.9,

P(1, R, 1) = 0.1,

P(N,R,N) = 0.9,

P(N,L,N) = 0.1.

The agent gets a reward of 1 when it reaches the state s = 1 + bN/5c or the state

s = N − bN/5c and a reward of 0 otherwise. Thus, the reward function is

R(s, a, s′) =





1, s′ = 1 + bN
5
c,

1, s′ = N − bN
5
c,

0, otherwise.

Figure 5.3 shows an instance of the chain environment for N = 5.

5.1.2 The Four-Rooms Grid Environment

Another environment that we use in this chapter is the four-rooms grid. In this envi-

ronment the state space is given by S = {1, . . . , N}, with the states organized as a two-

dimensional grid with GN rows and GM columns, and GN × GM = N the largest factors

of N—for instance, if the number of states is set to N = 40, the number of rows is set to
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Figure 5.3: A chain environment with five states. Each arrow represents a possible action,
left (L) or right (R). The bifurcation of the arrows follow the possible next states. The
numbers indicate the transition probabilities.

GN = 8, and the number of columns is set to GM = 5. The grid represents four inter-

connected rooms. See Fig 5.4 for an example with the number of states set to N = 60.

The mapping between the state s ∈ S and its (i, j) grid location is given by the row-major

order [71, Sec. 7.9.2]

s 7→
(⌈

s

GM

⌉
, (s mod GM) + 1

)
, (i, j) 7→ (i− 1)GM + j.

Note that using row-major order is an arbitrary decision; what is relevant is to be consistent

when translating from s to (i, j), and vice versa.

We consider two different options for the action space. (i) The agent can move in the

four cardinal directions, i.e., A = {N,W, S,E}. (ii) In addition to the cardinal directions the

agent can also move in the four ordinal directions, i.e., A = {N,NW,W, SW, S, SE,E,NE}.

We call agents able to move in the eight cardinal plus ordinal directions “king move” agents,

due to the similarity with the movements of the corresponding chess piece.

5.1.3 Policies and Value Functions

The agent executes actions according to a policy function π : S → Ω(A), where Ω(A) is

the set of all probability distributions overA. Let π(s, a) be the probability of choosing action
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31 32 33 34 35 36 37 38 39 40
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Figure 5.4: Four-room grid environment for a king moves agent. The state space S =
{1, . . . N} is organized as a two-dimensional grid representing four interconnected rooms.
The mapping between the state and the location in the grid is given by the row-major order.
Shown in blue are the two goal states. In this example the number of states is set to N = 60.

a after observing that the current state is s. Although the theoretical derivation considers

stochastic policies, in practice we usually only consider deterministic policies where, for a

given state, the agent always selects the same action, i.e., π(s, a) = 1 if a is the action

selected by the deterministic policy and 0 otherwise. In such cases we denote the selected

action as a = π(s).

Central to the RL problem is to evaluate the quality of a given policy. This evaluation

is commonly done using value functions, which are functions that indicate “how good” a

state is, in terms of the expected return that can be obtained by beginning in that state and

executing a given policy.

Let the state-value function for policy π be

V π(s) = Eπ

[
Rt

∣∣ st = s
]

= Eπ

[
∞∑

k=0

γkrt+k+1

∣∣ st = s

]
.

For any policy π and state s the state-value function satisfies the following recursive
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relationship [92]:

V π(s) = Eπ

[
∞∑

k=0

γkrt+k+1

∣∣ st = s

]

= Eπ

[
rt+1 + γ

∞∑

k=0

γkrt+k+2

∣∣ st = s

]

=
∑

a∈A(s)

π(s, a)
∑

s′∈S

P (s, a, s′)

[
R(s, a, s′) + γEπ

[
∞∑

k=0

γkrt+k+2

∣∣ st+1 = s′

]]

=
∑

a∈A(s)

π(s, a)
∑

s′∈S

P (s, a, s′) [R(s, a, s′) + γV π(s′)] .

(5.1)

Equation (5.1) is known as Bellman’s equation for V π [8, 92]. Notice that it is a linear

system of equations, with |S| unknowns and |S| equations4, and it can be written in matrix

form as

V π = R+ γΠπPV
π, (5.2)

where Ππ is an |S| × |S||A| matrix given by

Ππ = [diag(π(s1, a1), . . . , π(s|S|, a1))| · · · | diag(π(s1, a|A|), . . . , π(s|S|, a|A|))],

P is an |S||A| × |S| matrix given by

P =




Pa1
...

Pa|A|



, Pak(i, j) = P (si, ak, sj), ak ∈ A,

and R is a vector of length |S| with entries given by

R(i) =
∑

a∈A

π(si, a)
∑

s′∈S

P (si, a, s
′)R(si, a, s

′) i = 1, . . . |S|.

4It can be shown that it has a unique solution [92].
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By defining the Bellman operator as (Tπ)(·) = R + γΠπP (·), Eq. (5.2) becomes V π =

TπV
π. Note that this means that the value function V π is a fixed-point of the Bellman

operator.5

Example 5.1

Consider the chain environment with N = 5 states, γ = 0.9, and deterministic policy6

π = [R R L L L]. We have

Ππ =




0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0




P =




0.9 0.1 0.0 0.0 0.0

0.9 0.0 0.1 0.0 0.0

0.0 0.9 0.0 0.1 0.0

0.0 0.0 0.9 0.0 0.1

0.0 0.0 0.0 0.9 0.1

0.1 0.9 0.0 0.0 0.0

0.1 0.0 0.9 0.0 0.0

0.0 0.1 0.0 0.9 0.0

0.0 0.0 0.1 0.0 0.9

0.0 0.0 0.0 0.1 0.9




R =




0.9

0.0

1.0

0.0

0.9




V π =




5.2

4.7

5.2

4.7

5.2




.

5This fact is useful, since by studying the properties of this operator, it is possible to infer some of the
properties of V π [8].

6For a deterministic policy we summarize the policy by a vector, under the understanding that π(si) is
equal to the ith entry of the vector.
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Matrix Ππ is built by concatenating two diagonal matrices, each diagonal matrix with

the probabilities of choosing ‘Left’ and ‘Right’ for each state, respectively. Given that for

the first state π(1) = R, i.e., the agent chooses action ‘Right’ with probability one, there is

a 1 in the first entry of the first location of the second diagonal matrix (note that the actions

are ordered arbitrarily as [L,R]). The construction of the remaining rows follows the same

logic.

Matrix P encodes the transition probabilities. The first five rows corresponds to prob-

abilities conditioned on action ‘Left’ being selected, and the last five to probabilities condi-

tioned on action ‘Right’ being selected. For instance, the first row contains the probabilities

of the next state, given that the current state is s1 = 1 and action ‘Left’ is selected. In this

case, the probability of staying in the same state is 0.9, and the probability of moving to the

state to the right is 0.1. The probabilities of reaching the remaining states are 0.

Vector R contains the expected rewards. In this case, for instance, when the agent is in

the first state (corresponding to the first entry of the vector), it will execute action ‘Right’,

reaching state s2 = 2 with probability 0.9 and getting a reward equal to 1, and staying in

the same state and getting a reward equal to 0 with probability 0.1. Thus, the expected

reward for the first state is 0.1 · 0 + 0.9 · 1 = 0.9.

Finally, once Ππ, P , and R are built, V π is found by solving Bellman’s equation.

Many algorithms use the action-value function for policy π [93], defined as

Qπ(s, a) = Eπ

[
Rt

∣∣ st = s, at = a
]

= Eπ

[
∞∑

k=0

γkrt+k+1

∣∣ st = s, at = a

]
.

Similarly to the value function, the action-value function can be written in matrix form as

Qπ = R+ γPΠπQ
π,
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where Qπ and R are vectors of length |S||A|, and the entries of R are

R(s, a) =
∑

s′∈S

P (s, a, s′)R(s, a, s′).

As before, Qπ is the fixed-point of the Bellman operator (Tπ)(·) = R + γPΠπ(·). Although

similar, this is not the same operator as the one used to compute V π. In particular the

vector R that appears in both expressions is not the same. To avoid notation clutter, we

use the same symbols for both expressions.

For a given MDP, value functions define a partial ordering over different policies, i.e.,

π ≥ π′ if and only if V π(s) ≥ V π′(s) for all s ∈ S. Note that here we use the formal

mathematical meaning of “partial order” [41]. That means that not every pair of policies

π and π′ can be related by the binary operator “≥”. For example, if V π(si) > V π′(si) and

V π(sj) < V π′(sj) for i 6= j, it is not possible to order these two policies. A policy that

satisfies the relationship π∗ ≥ π for all π is called an optimal policy. This policy defines the

optimal state-value function, denoted V ∗, and the optimal action-value function, denoted

Q∗(s, a), defined as

V ∗(s) = max
π

V π(s), ∀s ∈ S,

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A(s).

Note that although for a given MDP the optimal state- and action-value functions are unique,

optimal policies are not [92]. We can also write Q∗ as a function of V ∗ as follows:

Q∗(s, a) = E
[
rt+1 + γV ∗(st+1)

∣∣ st = s, at = a
]
.

Because V ∗ is the optimal value, its consistency condition can be written without ref-

erence to the optimal policy:

101



V ∗(s) = max
a∈A(s)

Q∗(s, a)

= max
a

Eπ∗
[
Rt

∣∣ st = s, at = a
]

= max
a

Eπ∗

[
∞∑

k=0

γkrt+k+1

∣∣ st = s, at = a

]

= max
a

Eπ∗

[
rt+1 + γ

∞∑

k=0

γkrt+k+2

∣∣ st = s, at = a

]

= max
a

E
[
rt+1 + γV ∗(st+1)

∣∣ st = s, at = a
]

(5.3)

= max
a

∑

s′

P (s, a, s′) [R(s, a, s′) + γV ∗(s′)] . (5.4)

Equations (5.3) and (5.4) are two forms of the Bellman optimality equation for V ∗. The

Bellman optimality equation is a system of |S| non-linear equations with |S| unknowns. This

system of equations has a unique solution and can, in principle, be solved by a variety of

techniques.

The Bellman optimality equation for Q∗ is

Q∗(s, a) = E
[
rt+1 + γmax

a′
Q∗(st+1, a

′)
∣∣ st = s, at = a

]

=
∑

s′

P (s, a, s′)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
.

The Bellman optimality equation for Q∗ is a system of |S||A| non-linear equations with

|S||A| unknowns. This system of equations has a unique solution and can be solved by a

variety of techniques similar to the ones used to find V ∗ [92].

It is easy to find the optimal policy from V ∗: for each state s, search for the action that

maximizes the expected optimal value:
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π∗(s) = argmax
a

∑

s′

P (s, a, s′)V ∗(s′).

Similarly, we can find the policy using Q∗(s, a):

π∗(s) = argmax
a

Q∗(s, a).

5.1.4 Policy Evaluation

The linear system of equations defined by the value function (5.1) can be solved by

traditional linear algebra methods. However, it is useful to consider how to solve it using an

iterative formulation. Let Vk denote the approximate value of V π(s) at iteration k. We can

use equation (5.1) to write the recursion

Vk+1(s) =
∑

a∈A(s)

π(s, a)
∑

s′∈S

P (s, a, s′) [R(s, a, s′) + γVk(s
′)] . (5.5)

By definition if Vk = V π, then Vk is a solution of the Bellman equation. This implies

that it is a fixed point of the iteration rule (5.5). If the conditions for the existence of V π(s)

are met7, it can be shown that Vk → V π as k →∞. This algorithm is called iterative policy

evaluation.

Note that the new values of the value function depend on all the old values of the

function. In practice this means that we need to keep two arrays in memory. We call

this a full backup [92]. It is also possible to update the values “in place,” using the new

updates of the function value as soon as they are available. We call this a sweep through the

states [92]. The “in-place” approach usually converges faster than the full backup. However,

the particular order used to back up the states is significant, and can change the rate of

7The conditions are: either γ < 1 or there is a guarantee that there is an eventual termination for a given
episode.
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convergence [92]. As a stopping condition we use maxs∈S |Vk+1(s) − Vk(s)| < θ for some

small value of θ.

5.1.5 Policy Improvement

Given a policy π, is it possible to modify it to get a better policy? To answer this let us

focus first on modifying π for a single state, i.e., at the state s, select the action a 6= π(s),

and follow π for the rest of the states. Following steps similar to the ones used in equation

(5.1), we can write

Qπ(s, a) =
∑

s′

P (s, a, s′) [R(s, a, s′) + γV π(s′)] ,

and use this expression to compute the value of executing action a. If this value is greater

than V π(s), then the modified policy is better than the original. This idea is generalized by

the policy improvement theorem. Let π and π′ be any pair of deterministic policies such that

Qπ(s, π′(s)) ≥ V π(s) ∀s ∈ S.

Then π′ must be as good or better than π, i.e.,

V π′(s) ≥ V π(s) ∀s ∈ S.

Using Qπ(s, a) we can find a new policy π′ that improves over all the states simultane-

ously:

π′(s) = argmax
a

Qπ(s, a)

= argmax
a

∑

s′

P (s, a, s′) [R(s, a, s′) + γV π(s′)] .
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This is known as policy improvement. It can be shown that if the new policy π′ has the

same value function as π, then π′ is the optimal policy.

It is possible to improve a given policy until it becomes the optimal policy by sequentially

applying a policy evaluation/improvement cycle:

π0
E−→ V π0 I−→ π1

E−→ V π1 I−→ π2
E−→ · · · I−→ π∗

E−→ V ∗,

where
E−→ denotes a policy evaluation and

I−→ denotes a policy iteration. This is called policy

iteration.

5.1.6 Value Iteration

It is possible to compute the optimal value function iteratively, by using the Bellman

optimality equation (5.4):

Vk+1(s) = max
a

∑

s′

P (s, a, s′) [R(s, a, s′) + γVk(s
′)] .

As in the policy evaluation case, we stop the iterations when the difference between two

consecutive value functions is small enough.

5.2 Function Approximation

Computing state- and action-value functions requires finding the value of these functions

for all the states and state-action pairs, respectively. This becomes problematic as the

environment dimension increases. Not only does the memory footprint become too large,

but the time required to fill it becomes unrealistic. In addition, by approximating the value

function, we are able to generalize from limited experience of a subset of the state-action

space. This function approximation problem can be tackled by a variety of techniques
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originating in diverse fields, such as machine learning, artificial neural networks, pattern

recognition, and statistical curve fitting [8, 16, 92].

Linear approximations are among the most popular approximation architectures used

in RL. In this approach the state-value function is approximated as

V̂ = Φw, (5.6)

where Φ is an |S|×k matrix and w is a vector of length k. Each row of Φ is set to φ(s), where

φ(·) is a feature function that returns a vector of length k for each state s ∈ S. Examples of

features commonly used in RL includes Radial Basis Functions (RBFs) and polynomials. See

Sec. 5.2.5 for details about the feature vectors used in this work. Note that using functions

like RBFs and polynomials requires having a meaningful ordering of the states, otherwise

notions as smoothness and location lose their meaning. Mahadevan et al. [66] introduced the

notion of proto-value functions as an alternative to the commonly used features to ameliorate

this issue.

Action-value functions can also be approximated as

Q̂ = Φw. (5.7)

In this case8 Φ is an |S||A| × k matrix and w is a vector of length k × |A|. Each row of Φ

is set to φ(s, a), where φ(·, ·) is a feature function that returns a vector of length k ×A for

each state-action pair (s, a) ∈ S × A. See Sec. 5.3 for a more detailed discussion about the

construction of Φ.

Two methods commonly used to find w are discussed next.

8The matrix Φ and vector w used to approximate the action-value function are different than the ones
used to approximate the state-value function. To avoid notation clutter, we use the same symbol in both
cases.
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TπV̂

colspan(Φ)

PΦTπV̂

V̂ = Φw

BRM minimizes
this distance

LSFP
minimizes this

distance

Figure 5.5: Approximation of the value-function using a linear architecture. While V̂ = Φw
lives in the column span of Φ, in general TπV̂ does not. BRM approximates V̂ by minimizing∣∣∣
∣∣∣V̂ − TπV̂

∣∣∣
∣∣∣, while LSFP approximates V̂ by minimizing

∣∣∣
∣∣∣V̂ − PΦTπV̂

∣∣∣
∣∣∣, where PΦ is the

orthogonal projection onto the column span of Φ.

5.2.1 Bellman Residual Minimizing Approximation

The state-value function V π is approximated as V̂ π = Φwπ. One option to compute

this approximation is to choose V̂ π such that the Bellman equation is satisfied as closely as

possible (see Fig. 5.5):

w = argmin
w∈Rk

∣∣∣
∣∣∣V̂ π −

(
R+ γPπV̂

π
)∣∣∣
∣∣∣
2

= argmin
w∈Rk

||Φw − (R+ γPπΦw)||2

= argmin
w∈Rk

||(Φ− γPπΦ)w −R||2 ,

(5.8)

where Pπ = ΠπP . Since Eq. (5.8) corresponds to a least-squares problem, wπ is given by

w = (Φ− γPπΦ)†R. (5.9)
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The solution given by Eq. (5.9) is known as the Bellman Residual Minimization (BRM)

approximation [61].

Following the same analysis it is possible to find the Bellman Residual Minimization

approximation of the action-value function Q̂(s, a) = Φw. In this case the solution is given

by

w = (Φ− γPΠπΦ)†R. (5.10)

5.2.2 Least-Squares Fixed-Point Approximation

Another option to compute the value-function approximation is to force V̂ π to be a fixed-

point of the Bellman operator, i.e., we want V̂ π ≈ TπV̂
π. In general this approximation can

not be exact, since typically TπV̂
π does not live in the column span of Φ. The best we can

do is to find a V̂ π that is invariant under one application of Tπ followed by the orthogonal

projection onto the column span of Φ (see Fig. 5.5). The orthogonal projection onto the

column span of Φ is given by PΦ = Φ(ΦTΦ)−1ΦT . Thus, to find the approximation we solve

V̂ = Φ(ΦTΦ)−1ΦT
(
R+ γPπV̂

)

Φw = Φ(ΦTΦ)−1ΦT (R+ γPπΦw)

(
Φ− γΦ(ΦTΦ)−1ΦTPπΦ

)
w = Φ(ΦTΦ)−1ΦTR

Φ(ΦTΦ)−1
(
ΦTΦ− γΦTPπΦ

)
w = Φ(ΦTΦ)−1ΦTR

(
ΦTΦ− γΦTPπΦ

)
w = ΦTR.

which corresponds to a k × k linear system of equations with solution

w =
(
ΦTΦ− γΦTPπΦ

)−1
ΦTR. (5.11)

The solution given by Eq. (5.11) is known as the Least-Squares Fixed-Point (LSFP)

approximation [61]. Since both V̂ and PΦTπV̂ live in the column span of Φ, this solution
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TπV̂

colspan(Φ)

V̂ = Φw = PΦTπV̂

Figure 5.6: LSFP solution. Since both V̂ and PΦTπV̂ live in the column span of Φ, by

minimizing
∣∣∣
∣∣∣V̂ − PΦTπV̂

∣∣∣
∣∣∣ LSFP makes this distance equal to zero.

makes the
∣∣∣
∣∣∣V̂ − PΦTπV̂

∣∣∣
∣∣∣ equal to zero (see Fig. 5.6). It follows then than finding w is

equivalent to finding the fixed point of the function of w

f(w) = argmin
u∈Rk

||Φu− (R+ γPπΦw)||22 . (5.12)

This fact will be used later in this chapter to derive an extension to this approximation

approach.

Following the same analysis it is possible to find the LSFP approximation of the action-

value function Q̂(s, a) = Φw. In this case the solution is given by

w =
(
ΦTΦ− γΦTPΠπΦ

)−1
ΦTR. (5.13)

5.2.3 Learning Through the Agent-Environment Interaction

The methods presented in the two previous sections require access to the exact model

of the underlying MDP—they require one to know Φ, P , Ππ and R. As stated at the

beginning of this chapter, we are interested in cases where we only have access to samples of

the form (s, a, r, s′) obtained by an agent interacting with the environment. Since we need

to evaluate the action-value function rather than the state-value function (see Sec. 5.2.4), in
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the sequel we focus in approximating the former. In particular, we need to find how to solve,

approximately and using only the samples gathered by the agent, Eqs. (5.10) and (5.13).

Solving Eq. (5.13) is equivalent to solving the linear system of equations

Aw = b,

with

A = ΦT (Φ− γPΠπΦ)

and

b = ΦTR.

The problem of approximating the action-value function then becomes estimating A

and b from the samples, and then just solving this system of equations.

Using the definitions of Φ, P and Ππ (see Sec. 5.1.3), we can write9 A as [61]

A = ΦT (Φ− γPΠπΦ)

=
∑

s∈S

∑

a∈A

φ(s, a)

(
φ(s, a)− γ

∑

s′∈S

P(s, a, s′)φ(s′, π(s′))

)T

=
∑

s∈S

∑

a∈A

∑

s′∈S

P(s, a, s′)
[
φ(s, a) (φ(s, a)− γφ(s′, π(s′)))

T
]
,

and b as

b = ΦTR

=
∑

s∈S

∑

a∈A

φ(s, a)
∑

s′∈S

P(s, a, s′)R(s, a, s′)

=
∑

s∈S

∑

a∈A

∑

s′∈S

P(s, a, s′) [φ(s, a)R(s, a, s′)] .

9In this and the following derivations we use the fact that
∑
s′∈S P(s, a, s′) = 1.
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Note that A is a sum of matrices of the form

φ(s, a)

(
φ(s, a)− γ

∑

s′∈S

φ(s′, π(s′))

)T

weighted by the transition probabilities P(s, a, s′), and that b is a sum of vectors of the form

φ(s, a)R(s, a, s′),

also weighted by the transition probabilities P(s, a, s′).

If the agent observes a set of samples

D = {(si, ai, ri, s′i) | i = 1, . . . , L} ,

then A and b can be estimated by

Ã =
1

L

L∑

i=1

[
φ(si, ai) (φ(si, ai)− γφ(s′i, π(s′i)))

T
]
,

b̃ =
1

L

L∑

i=1

[φ(si, ai)ri] .

It is convenient to write

Ã =
1

L
Φ̃T
(

Φ̃− γΦ̃′
)

and

b̃ =
1

L
Φ̃T R̃,

with

Φ̃ =




φ(s1, a1)T

...

φ(sL, aL)T



, Φ̃′ =




φ(s′1, π(s′1))T

...

φ(s′L, π(s′L))T




R̃ =




r1

...

rL



.
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Algorithm 8 LSTDQ

input: D = {(si, ai, ri, s′i) | i = 1, . . . L}, φ(·, ·), γ.

Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T

Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T

R̃ = [r1 · · · rL]T

Ã = 1
L

Φ̃T
(

Φ̃− γΦ̃′
)

b̃ = 1
L

Φ̃T R̃

w = Ã−1b̃
output: w

Approximating the action-value function by solving Ãw = b̃ is known as Least Squares

Temporal Difference for Q(s, a) (LSTDQ) [61]. LSTDQ is specified entirely in Algorithm 8.

For BRM, we need to solve Eq. (5.10). This is equivalent to solving the linear system

of equation

Aw = b

with

A = (Φ− γPΠπΦ)T (Φ− γPΠπΦ)

and

b = (Φ− γPΠπΦ)TR.

As before, using the definitions of Φ, P and Ππ (see Sec. 5.1.3), we can write10 A as [61]

A = (Φ− γPΠπΦ)T (Φ− γPΠπΦ)

=
∑

s∈S

∑

a∈A

(
φ(s, a)− γ

∑

s′′∈S

P(s, a, s′′)φ(s′′, π(s′′))

)(
φ(s, a)− γ

∑

s′∈S

P(s, a, s′)φ(s′, π(s′))

)T

=
∑

s∈S

∑

a∈A

∑

s′∈S

P(s, a, s′)
∑

s′′∈S

P(s, a, s′′)
[
(φ(s, a)− γφ(s′′, π(s′′))) (φ(s, a)− γφ(s′, π(s′)))

T
]

10Here we use the fact that for a matrix M , M† = (MTM)−1MT .
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and

b = (Φ− γPΠπΦ)T R

=
∑

s∈S

∑

a∈A

(
φ(s, a)− γ

∑

s′∈S

P (s, a, s′)φ(s′, π(s′))

)∑

s′′∈S

P (s, a, s′′)R(s, a, s′′)

=
∑

s∈S

∑

a∈A

∑

s′∈S

P (s, a, s′)
∑

s′′∈S

P (s, a, s′′) (φ(s, a)− γφ(s′, π(s′)))R(s, a, s′′).

Note that in the expressions above there is a sum over s′ and a sum over s′′. This implies

that to get an unbiased estimator of A and b an agent needs to collect double samples [61].

That is, samples of the form

D1 = {(si, ai, r′i, s′i)} i = 1, . . . , L

D2 = {(si, ai, r′′i , s′′i )} i = 1, . . . , L.

Then the agent can estimate A as

Ã =
1

L

L∑

i=1

(φ(si, ai)− γφ(s′′i , π(s′′i ))) (φ(si, a)− γφ(s′i, π(s′i)))
T

and b as

b̃ =
1

L

L∑

i=1

(φ(si, ai)− γφ(s′′i , π(s′′i ))) r
′′
i .

As before, for BRMQ it is convenient to write

Ã =
1

L

(
Φ̃− γΦ̃′

)T (
Φ̃− γΦ̃′′

)

and

b̃ =
1

L

(
Φ̃− γΦ̃′

)T
R̃,
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Algorithm 9 BRMQ

input: D1 = {(si, ai, ri, s′i)} D2 = {(si, ai, r′′i , s′′i )} i = 1, . . . L, φ(·, ·), γ.

Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T

Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T

Φ̃′′ = [φ(s′′1, π(s′′1)) · · · φ(s′′L, π(s′′L))]T

R̃ = [r1 · · · rL]T

Ã = 1
L

(
Φ̃− γΦ̃′

)T (
Φ̃− γΦ̃′′

)

b̃ = 1
L

(
Φ̃− γΦ̃′

)T
R̃

w = Ã−1b̃
output: w

with Φ̃, Φ̃′, and R̃ defined as before, and Φ̃′′ = [φ(s′′1, π(s′′1)) · · · φ(s′′L, π(s′′L))]T .

BRMQ is specified entirely in Algorithm 9.

5.2.4 Least Squares Policy Iteration

The two methods described before can be used to find approximations of the state- and

the action-value function of a given policy. These approaches can be used to find an optimal

policy using Least Squares Policy Iteration (LSPI).

LSPI, proposed by Lagoudakis and Parr [61], is an iterative mechanism to find the

optimal policy. The key idea is that the policy is represented implicitly by Q̂, or equivalently,

by w (see Eq. (5.7)):

π̂(s;w) = argmax
a∈A

Q̂(s, a)

= argmax
a∈A

φ(s, a)Tw.

LSPI starts by setting all the entries of the vector w to zero. Inside an iteration loop,

it uses the policy induced by the current w to compute an approximated action-value func-

tion, i.e., a new w′ vector that approximates the action-value function induced by w; this

new w′ vector is used again to compute a new approximation of the action-value function.
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Algorithm 10 LSPI

input: D = {(si, ai, ri, s′i) | i = 1, . . . L}, φ(·, ·), policy evaluation(·), γ, ε.
w′ = 0
repeat

w = w′

w′ = policy evaluation(D,φ(·, ·), γ, π̂(·, w))
until ||w − w′|| < ε

output: w′

The iteration stops when the difference between two consecutive w vectors—or correspond-

ingly, two consecutive policies induced by w—is small enough. LSPI is specified entirely in

Algorithm 10.

LSPI comes with the following theoretical guarantee.

Theorem 5.2 (Lagoudakis and Parr)

Let π0, π1, . . . , πm be the sequence of policies generated by LSPI and let Q̂π1 , Q̂π2 , . . . , Q̂πm

be the corresponding approximate action-value functions as computed by LSTDQ. Let ε be a

positive scalar that bounds the errors between the approximate and the true value functions

over all iterations:
∣∣∣
∣∣∣Q̂πm −Q∗

∣∣∣
∣∣∣
∞
≤ ε, m = 1, 2, . . . .

Then, this sequence eventually produces policies whose performance is at most a constant

multiple of ε away from the optimal performance:

lim sup
m→∞

∣∣∣
∣∣∣Q̂πm −Q∗

∣∣∣
∣∣∣
∞
≤ 2γε

(1− γ)2
.

5.2.5 Feature Vectors

To approximate the value function we need to define the feature vector φ(s). In our

experiments we use RBFs to construct this vector. Among the different types of RBFs, we
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use the Gaussian RBF [84, Sec. 3.7] defined as

fη,a(x) = e−η(x−a)2 ,

where η and a are the scale and location parameters, respectively. For a given state space

S = {s1, . . . , sN}, number of features k, and scale η, the feature vector is given by

φ(s) = [1 fη′,a1(s) fη′,a2(s) · · · fη′,ak′ (s)]T s ∈ S,

with k′ = k− 1, ai = 1 + (i− 1)N−1
k′−1

, i = 1, . . . , k′, and η′ = η(k′−1)
N−1

. Note that, to be able to

approximate the continuous component of value functions efficiently, we augment the feature

vector with a constant term. Figure 5.7(a) shows an example of these features for N = 50

and k = 10 (the constant term is omitted).

We also consider feature vectors defined by multilevel RBFs, where we concatenate

RBFs at different scales. Let L be the number of levels, and let li, i = 1, . . . , L, be the

number of RBFs at level i. We set the number of levels for each scale such that li is

approximately twice li−1. We find these values by solving

2x1 = x2

2x2 = x3

...

2xL−1 = xL

x1 + x2 + · · ·+ xL = k′,

with k′ = k − 1, and then setting li = round(xi) for i = 1, . . . , L− 1, and lL = k′ −∑L−1
i=1 li.
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Figure 5.7: RBF features. (a) RBF features for N = 10 and k = 9. (b) Multilevel RBF
features for N = 50, k = 250 and L = 5. Only a fraction of the 250 features are shown.

The feature vector is given by

φ(s) = [1 fη′1a11(s) · · · fη′1a1l1 (s)
︸ ︷︷ ︸

level 1 RBFs

· · · fη′LaL1 (s) · · · fη′LaLlL (s)
︸ ︷︷ ︸

level L RBFs

]T ,

with ajij = 1 + (ij − 1)N−1
lj−1

, ij = 1, . . . , lj, j = 1, . . . , L, and η′j =
η(lj−1)

N−1
. Note that as before,

we augment the feature vector with a constant term. Figure 5.7(b) shows an example of

these features for N = 50, k = 250 and L = 5 (only a fraction of the 250 features are

shown).

If the state space can be considered as a two dimensional space—as is the case for

grid-like environments—it is convenient to use two dimensional RBFs. We define the two

dimensional Gaussian RBF as

fη,a(x, y) = e−η1(x−a1)2−η2(y−a2)2 ,

where η = (η1, η2) and a = (a1, a2) are the 2-dimensional scale and location parameters,

respectively. For a given state space S = {1, . . . , N}, a mapping from the state representation

s ∈ S to the two-dimensional representation (x, y) ∈ G = [0, xmax]× [0, ymax], scale η, and a
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(a) (b)

Figure 5.8: Two dimensional RBF features. (a) 2-by-2 grid. (b) 4-by-4 grid (only five of the
sixteen features are shown).

d-by-d grid, feature vector is given by

φ(s = x, y) = [1 fη′,a1(x, y) · · · fη′,a′k(x, y)]T ,

with ai ∈ {(xmaxd+1
p, ymax

d+1
q) | p, q = 1, . . . , d}, i = 1, . . . , d2, and η′ = (η(d+1)

xmax
, η(d+1)
ymax

). With this

setup one ends with k = k′ + 1 = d2 + 1 features. It is also possible to concatenate features

for grids with different numbers of points. Figure 5.8 shows an example of two dimensional

RBFs for a 2-by-2 and a 4-by-4 grid.

5.3 Sparse Approximations

Sparse approximation algorithms can be used to approximate the state- and action-

value function used in RL. Sparse approximations allow us to simplify the design of the

feature vectors. For instance, LSTDQ requires the definition of k features, where k must be

relatively small. Selecting the right features is critical to obtain good state- and action-value

approximations and to learn an optimal policy. Sparse approximations, on the other hand,

allow the use of a much larger number of features, which makes the design process much

118



simpler.

Several sparse approximation techniques for RL have been proposed in the literature.

Kolter and Ng [60] proposed a method known as LARS-TD, an algorithm that combines

LSTD with the LASSO estimator [97]. Loth et al. [64], on the other hand, applied the LASSO

regression directly to the BRM error function. Finally, Painter-Wakefield and Parr [78]

proposed to use greedy algorithms, applying OMP directly to the BRM, and also using a

modified version of OMP. We now review the sparse approximation techniques used in this

chapter.

5.3.1 LARS-TD

LARS-TD extends the LASSO/LARS estimators (see Sec. 2.3) to the RL problem. The

key idea is to add an `1 regularization term to Eq. (5.12), used to compute the LSTD solution:

f(w) = argmin
u∈Rk

1

2
||Φu− (R+ γPπΦw)||22 + β ||u||1 , (5.14)

where β is a regularization parameter.

The optimality conditions of the optimization problem in Eq. (5.14) are [60]

−β ≤ (ΦT ((R+ γΦ′w)− Φu))i ≤ β

(ΦT ((R+ γΦ′w)− Φu))i = β ⇒ ui ≥ 0

(ΦT ((R+ γΦ′w)− Φu))i = −β ⇒ ui ≤ 0

−β < (ΦT ((R+ γΦ′w)− Φu))i < β ⇒ ui = 0,

(5.15)

for i = 1, . . . , k. Note that these are the conditions on u for a given w. For w to be a fixed
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point of Eq. (5.14) we need that the conditions in Eq. (5.15) hold for u = w, i.e., that

−β ≤ (ΦTR− ΦT (Φ− γΦ′)w)i ≤ β

(ΦTR− ΦT (Φ− γΦ′)w)i = β ⇒ wi ≥ 0

(ΦTR− ΦT (Φ− γΦ′)w)i = −β ⇒ wi ≤ 0

−β < (ΦTR− ΦT (Φ− γΦ′)w)i < β ⇒ wi = 0,

(5.16)

for i = 1, . . . , k. Note that this is not the same as solving Eq. (5.14) with the additional

fixed point constraint. See [60] for a detailed discussion of this issue.

The derivation of the LARS-TD algorithm follows from the optimality conditions defined

in Eq. (5.15) and from following the same steps used to derive the LARS and Homotopy

method (see Sec. 2.3). LARS-TD is described entirely by Algorithm 11.11

5.3.2 OMPBRM and OMP-TDQ

Unlike LSTD, BRM computes w just by solving the optimization problem given by

Eq. (5.9) directly, not by finding a fixed point of it. For this reason, it is easy to enforce a

sparse solution by invoking OMP (see Sec. 2.4) with A = (Φ−γPπΦ) and b = R. OMPBRMQ

is specified entirely in Algorithm 12. The only caveat is that, as before, to estimate A and

b from the samples gathered by the agent, we need to use doubled-samples. Note, however,

that Ã is a square matrix, so it cannot be used to compute the correlation vector h. For this

reason, h is computed using only single samples as12 h = |(Φ̃− γΦ̃′)T r|.

Painter-Wakefield and Parr [78, 79] also proposed a greedy algorithm that uses the

LSFP (see Eq. (5.13)) instead of the BRM approximation. The method, called OMP-TDQ, is

specified entirely in Algorithm 13. As in OMP, at each iteration it adds to the list of selected

features I the one most correlated with the residual—in this case the residual is given by

11We show the version of the algorithm used to compute the action-value function.
12This fact was checked with the authors of [78] via personal communication.
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Algorithm 11 LARS-TDQ

input: {si, ai, ri, s′i}, i = 1 . . . L, φ : S ×A → Rk, π : S → A, γ, β
Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T , R = [r1 · · · rL]T

Ã = Φ̃T (Φ̃− γΦ̃′)
w = 0
c = Φ̃TR
{β̄, i} = maxj{|cj|}
I = {i}
while β̄ > β do

∆wI = Ã−1
I,I sign(cI)

. Variables subscripted by I indicate submatrices and subvectors
d = Φ̃T (Φ̃− γΦ̃′)∆wI

{α1, i1} = min+
j /∈I

{
cj−β̄
dj−1

,
cj+β̄

dj+1

}

{α2, i2} = min+
j∈I

{
− wj

∆wj

}

α = min{α1, α2, β̄ − β}
wI = wI + α∆wI
β̄ = β̄ − α
c = c− αd
if α1 < α2 then
I = I ∪ {i1}

else
I = I\{i1}

end if
end while

output: w

(R+ γΦ̃′w− Φ̃w). It then uses the LSFP formula to compute the current approximation. It

stops when the stopping criterion, typically stated in terms of the cardinality of I, is met.

Note that calling this method OMP-TDQ is a misnomer. In OMP the residue is orthog-

onal to the currently selected features—remember that the “O” in OMP is for orthogonal.

This fact is fundamental in the analysis of the algorithm [30, 43, 98]. On the other hand, in

OMP-TDQ, since w is computed using the LSFP approximation, the residue is not orthog-

onal to the selected features. Thus, it is not possible to carry on most of the theoretical

guarantees of OMP. To be consistent with the literature, we keep the name of the algorithm.
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Algorithm 12 OMPBRM-Q

input: D1 = {(si, ai, ri, s′i)} D2 = {(si, ai, r′′i , s′′i )} i = 1, . . . L, φ(·, ·), γ, stopping criterion

Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T ,

Φ̃′′ = [φ(s′′1, π(s′′1)) · · · φ(s′′L, π(s′′L))]T , R̃ = [r1 · · · rL]T

Ã = 1
L

(
Φ̃− γΦ̃′

)T (
Φ̃− γΦ̃′′

)
, b̃ = 1

L

(
Φ̃− γΦ̃′

)T
R̃

r = b̃, I = ∅
while not converged do

h = |(Φ̃− γΦ̃′)T r|
I = I ∪ argmaxj /∈I |h(j)|
w = argminz: supp(z)⊆I ‖b̃− Ãz‖2

r = b̃− Ãw
end while

output: w

Algorithm 13 OMP-TDQ

input: D = {(si, ai, ri, s′i)}, i = 1, . . . L, φ(·, ·), γ, stopping criterion

Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T

Ã = Φ̃T (Φ̃− γΦ̃′), R̃ = [r1 · · · rL]T

w = 0, I = ∅
while not converged do

c = |Φ̃T (R + γΦ̃′w − Φ̃w)|
I = I ∪ argmaxi/∈I ci
wI = A−1

I,IΦ
T
IR . Variables subscripted by I indicate submatrices and subvectors

end while
output: w

5.3.3 The Case for Group Sparsity

In addition to admitting a sparse representation, we claim that the action-value function

possesses additional structure, and that this additional structure can be exploited to improve

the existing sparse RL algorithms.

To approximate the action-value function Q(s, a) as Q̂ = Φw, one typically starts with

a feature vector φ(s), as the ones described in Sec. 5.2.5. Using this vector, the feature

vector for a state-action pair (s, ai), with s ∈ S, ai ∈ A, and i ∈ {1, . . . , |A|}, is built by

zero-padding the vector φ(s) such that φ(s, ai) is a vector of length k|A|, entries (i− 1)k+ 1

to ik are set to φ(s), and the remaining entries are set to zero. In other words, φ(s, ai) is
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given by

φ(s, ai) = [— 0 — · · · — φ(s) — · · · — 0 —]T . (5.17)

Note that although this is standard practice, and that it is the approach taken in this work,

nothing prevents one from constructing the feature vector φ(s, ai) differently (see [77] for an

example of an alternative formulation of the feature vector). Given the structure of φ(s, a)

defined by Eq. (5.17), it follows that matrix Φ has the following structure:

Φ =




— φ(s1) — — 0 — · · · — 0 —

...
...

...
...

— φ(s|S|) — — 0 — · · · — 0 —

— 0 — — φ(s1) — · · · — 0 —

...
...

...
...

— 0 — — φ(s|S|) — · · · — 0 —

— 0 — 0 · · · — φ(s1) —

...
...

...
...

— 0 — — 0 — · · · — φ(s|S|) —




=




ΦS 0 · · · 0

0 ΦS · · · 0

...
...

...
...

0 0 · · · ΦS



,

(5.18)

where ΦS is an |S| × k matrix, with rows set to φ(si), i = 1, . . . ,S, and 0 a |S| × k matrix

with all its entries set to zero.

Firstly, this means that we can partition vector w as w = [wa1 · · · wa|A| ]T where

each vector wai has length k; and that we can write Q(s, ai) = ΦSwai for s ∈ S, ai ∈ A,

i = 1, . . . , |A|. Secondly, the general structure of the action-value function Q(s, a) is such

that all the functions Q(s, ai) = ΦSwai for ai ∈ A, although different, share in general
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Figure 5.9: Action-value function for a four-rooms environment with king moves and |S| =
256 states. The panels show the action-value function Q(s, ai) for ai ∈ {N,NW, . . . ,NE}.
In blue the action-value function and in red the action-value function approximated by

BOMP using 240 nonzero features. The approximation error is
∣∣∣
∣∣∣Q− Q̂BOMP

∣∣∣
∣∣∣
2

= 20.79. In

comparison, the approximation error using OMP with the same number of nonzero features

is
∣∣∣
∣∣∣Q− Q̂OMP

∣∣∣
∣∣∣
2

= 24.00.

the same structure. This behavior follows from the nested structure of value functions:

Q(s, ai) is in general not much different than Q(s, aj), for i 6= j. To see this, compare, for

instance, the action-value function of the chain environment (see Sec. 5.1.1). Fig. 5.11 shows

Q(s, Left) and Q(s, Right) in panels (a) and (b), respectively. We observe that Q(s, Left)

and Q(s, Right) are similar. We observe a similar situation for a four-rooms environment.

Figure 5.9 shows the corresponding action-value function indexed by the different actions.

Again we observe that all the Q(s, ai) are similar.

The similarity between Q(s, ai) and Q(s, aj) implies that wai and waj are also similar.

Moreover, if an entry at a given location of wai is nonzero, it is reasonable to expect that the

entry of waj at the same location is also nonzero. In other words, it is reasonable to expect

that wai and waj have the same support.

To illustrate this phenomenon, let us consider the action-value function of a four-rooms
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Figure 5.10: Support of the OMP approximation of the action-value function of a four-rooms
environment with king moves and |S| = 256 states. Each slot represents an entry of wOMP .
Nonzero entries are black, and zero entries are white. The vector is split in eight parts and
stacked. Although OMP does not enforce any additional structure beyond sparsity, many
nonzero coefficients are located in the same group.

environment with king moves and |S| = 256 states (see Sec. 5.1.2). Using the known model

of the environment we compute the action-value function Q(s, a). Then we approximate the

action-value function using OMP and BOMP. We concatenate two-dimensional RBFs (see

Sec 5.2.5) over 2-by-2, 4-by-4, 8-by-8, and 16-by-16 grids to create the feature vectors, for

a total of 2728 features. In summary, we are computing a sparse representation of Q of the

form Q̂ = Φw, with Q and Q̂ a vector of length 256, Φ a 256×2728 matrix with the structure

shown by Eq. (5.18), and w a vector of length 2728.

We compute the approximation using OMP and BOMP, denoting them Q̂OMP =

ΦwOMP and Q̂BOMP = ΦwBOMP , respectively. For both cases we compute an approxi-
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mation with sparsity set to 120. Figure 5.10 shows the support of wOMP . In the figure,

each slot represents an entry of this vector. Nonzero entries are black, and zero entries are

white. The vector is split in eight parts and stacked. Although OMP does not enforce

any additional structure beyond sparsity, many nonzero coefficients are located in the same

group. This behavior confirms our claim that the action-value approximation has a structure

beyond sparsity. Moreover, the BOMP approximation13, shown in Fig. 5.9, is able to ap-

proximate the action-value function with a smaller error—
∣∣∣
∣∣∣Q− Q̂BOMP

∣∣∣
∣∣∣
2

= 20.79 versus
∣∣∣
∣∣∣Q− Q̂OMP

∣∣∣
∣∣∣
2

= 24.00— using the same number of features. Note also that since BOMP

adds 8 (the number of available actions) indices to the support at each iteration, rather than

1 at time, it is able to compute the approximation almost eight times faster.

5.3.4 Group Sparse Methods for RL

In the previous section we motivated the use of group sparsity to approximate the

action-value function. However, the example above approximated the action-value function

computed using the model of the environment. While useful to motivate the discussion, this

is not the problem we are interested in, since in general we do not have access to this model.

In this section we present several methods that exploit the group sparsity in an RL setup,

i.e., in cases where an agent needs to learn only through interactions with the environment.

Recall that OMPBRM-Q consisted of invoking OMP with with A = (Φ − γPπΦ) and

b = R. By the same token, we can enforce the group sparsity condition by invoking BOMP

with the same arguments. This method, dubbed BOMPBRM-Q, is specified entirely in

Algorithm 14. The main difference is that now the correlation vector c is computed as cj =

||Xjr||, j = 1, . . . , k, where Xj denotes the submatrix corresponding to columns j+ (i− 1)k,

i = 1, . . . , |A|, of X.

13The original formulation of BOMP considers the case where nonzero elements appear in blocks. Given
the structure of Φ, in this case, rather than in blocks, the nonzero elements appear at known non-contiguous
locations. From a theoretical and practical point of view, this difference is nil. Although this means that
a better name for the algorithm would be “Group OMP,” we use BOMP since is the name used in the
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Algorithm 14 BOMPBRM-Q

input: D1 = {(si, ai, ri, s′i)} D2 = {(si, ai, r′′i , s′′i )} i = 1, . . . L, φ(·, ·), |A|, γ, k, stopping
criterion
Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T ,

Φ̃′′ = [φ(s′′1, π(s′′1)) · · · φ(s′′L, π(s′′L))]T , R̃ = [r1 · · · rL]T

Ã = 1
L

(
Φ̃− γΦ̃′

)T (
Φ̃− γΦ̃′′

)
, b̃ = 1

L

(
Φ̃− γΦ̃′

)T
R̃

X = Φ̃− γΦ̃′

r = b̃, I = ∅
while not converged do

cj = ||Xjr||, j = 1, . . . , k
I = I ∪ argmaxj /∈I |c(j)|
w = argminz: supp(z)⊆I ‖b̃− Ãz‖2

r = b̃− Ãw
end while

output: w

Algorithm 15 BOMP-TDQ

input: D = {(si, ai, ri, s′i)}, i = 1, . . . L, φ(·, ·), γ, stopping criterion

Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T

Ã = Φ̃T (Φ̃− γΦ̃′), R̃ = [r1 · · · rL]T

w = 0, I = ∅
while not converged do

h = Φ̃T (R + γΦ̃′w − Φ̃w)
cj = ||hj||, j = 1, . . . , k
I = I ∪ argmaxi/∈I ci
wI = A−1

I,IΦ
T
IR . Variables subscripted by I indicate submatrices and subvectors

end while
output: w

We also add the group sparsity condition to OMP-TDQ. The method, dubbed, BOMP-

TDQ, is specified entirely in Algorithm 15. The main difference is that, similarly to BOMPBRM-

Q, the correlation vector is computed considering the group sparsity constraint by setting

cj = ||hj||, where hj denotes the entries j + (i− 1)k, i = 1, . . . , |A|, of h.

Finally, we add the group sparsity condition to LARS-TD. The method, dubbed GLARS-

TDQ, is specified entirely in Algorithm 16. Starting from the standard GLARS algorithm

(see Algorithm 3) GLARS-TDQ follows from using R−(Φ̃−γΦ̃′)w as a proxy for the residue,

literature.
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Algorithm 16 GLARS-TDQ

input: {si, ai, ri, s′i}, i = 1 . . . L, φ : S ×A → Rk, π : S → A, γ, β
Φ̃ = [φ(s1, a1) · · · φ(sL, aL)]T , Φ̃′ = [φ(s′1, π(s′1)) · · · φ(s′L, π(s′L))]T , R = [r1 · · · rL]T

w = 0
I =

{
argmaxj

(∣∣∣
∣∣∣Φ̃T

j R
∣∣∣
∣∣∣
)}

k = 1
while not converged do

r = R− (Φ̃j − γΦ̃′)wj
d = 0

d(I) =
(

Φ̃T
I

(
Φ̃I − γΦ̃′I

))−1

Φ̃T
I rk

j′ = choose any from I
for j ∈ Ic do

a =
∣∣∣
∣∣∣Φ̃T

j

(
Φ̃− γΦ̃′

)
d
∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣Φ̃T

j′

(
Φ̃− γΦ̃′

)
d
∣∣∣
∣∣∣
2

b = 2rT
(

Φ̃jΦ̃
T
j − Φ̃j′Φ̃

T
j′

)(
Φ̃− γΦ̃′

)
d

c =
∣∣∣
∣∣∣Φ̃T

j r
∣∣∣
∣∣∣
2

−
∣∣∣
∣∣∣Φ̃T

j′r
∣∣∣
∣∣∣
2

γj = solve(aγ2 − bγ + c)
end for
γj∗ , i

∗ = min+
j {γj}

I = I ∪ {i∗}
w = w + γj∗d
k = k + 1

end while
output: xj

Φ̃T as AT , and (Φ̃−γΦ̃′) as A. From an implementation point of view, it is important to note

that the description of the innermost loop in Algorithm 16 follows from the mathematical

derivation of the algorithms, and that it is not an efficient way to compute the terms a, b,

and c. For instance, all the computations that depend on j′ can be taken outside the loop.

In addition, since the term (Φ̃jΦ̃
T
j − Φ̃j′Φ̃

T
j′) used to compute b only depends on j and j′, is

advantageous to cache this result using a memoization technique [26, Sec. 15.3].

5.4 Experimental Results

This section describes some empirical results of the methods described previously. The

experiments are based on the chain environment with N = 50 states (see Sec. 5.1.1), and
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Figure 5.11: Action-value function Q̂(s, a) for the chain environment with N = 50 states,
computed using OMP-BRM (in green) and BOMP-BRM (in red). Also shown is the exact
action-value function Q(s, a) (in blue).

in the four-rooms environments (see Sec. 5.1.2) with different configurations. For the chain

environment we use multi-level RBF features with a total of 200 features and 5 levels. For

the four-room environment we compute the feature vector by concatenating two-dimensional

RBFs (see Sec 5.2.5) over 2-by-2, 4-by-4, 8-by-8, and 16-by-16 grids, for a total of 2728

features. In all the experiments the agent collects L samples by starting at a random state,

executing a random policy for five steps, and repeating this L/5 times.

In the first experiment we find the approximation of the action-value function for the

chain environment, using OMP-BRM, denoted by Q̂OMPBRM , and BOMP-BRM, denoted

by Q̂BOMPBRM . The policy is fixed to the optimal policy (computed by hand). Figure 5.11

shows the results, together with the exact action-value function Q(s, a) (left panel shows

Q(s, L) and right panel shows Q(s, R)). Note that for all the states Q̂BOMPBRM is closer to

Q(s, a) than Q̂OMPBRM . We quantify this difference by comparing the error14 between both

14To compute the errors the action-value functions are transformed to a vector by concatenating the
function horizontally across each action, i.e., Q(s, a) is transformed to [Q(s, L) Q(s,R)].
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Figure 5.12: Optimal policy computed using LSPI and (a) OMP-BRM, (b) BOMP-BRM.
‘Left’ and ‘Right’ actions are represented by cells in red and blue, respectively. For com-
parison, an optimal policy π∗ is shown in the last row. The approximation errors are∣∣∣
∣∣∣Q− Q̂OMPBRM

∣∣∣
∣∣∣
2

= 3.6 and
∣∣∣
∣∣∣Q− Q̂BOMPBRM

∣∣∣
∣∣∣
2

= 1.7.

approximations:

∣∣∣
∣∣∣Q− Q̂OMPBRM

∣∣∣
∣∣∣
2

= 3.6,

∣∣∣
∣∣∣Q− Q̂BOMPBRM

∣∣∣
∣∣∣
2

= 1.7.

In the second experiment we use LSPI to find an optimal policy, using both OMP-BRM

and BOMP-BRM. As observed in Fig. 5.12, for both methods the policy oscillates between

two options.15 However, while LSPI with OMP-BRM oscillates between two non-optimal

policies, LSPI with BOMP-BRM oscillates between two optimal policies (recall that optimal

policies are not unique).

In the next experiment we use the four-rooms environment to quantify the effect of the

number of samples on the approximation error. We consider four different environments,

with numbers of states set to |S| = 50 and |S| = 100 and with and without king moves.

A single trial consists of approximating the action-value function using L samples with

OMP-TDQ and BOMP-TDQ, both methods using 240 nonzero features. For each value

15This behavior is predicted by the LSPI theory [61].
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Figure 5.13: Approximation error of action-value function using OMP-TDQ and BOMP-
TDQ for the four-rooms environment. Both methods use 240 nonzero features. Average
error computed over 200 trials. Note that the scale is logarithmic.

of L ∈ {250, 300, . . . , 1000} the experiment is repeated 200 times and average errors are

reported. Figure 5.13 shows the results (note that the ordinate is in logarithmic scale). We

observe how BOMP-TDQ is significantly better than OMP-TDQ. The main advantage of

BOMP-TDQ is that it is much more robust. Our conjecture is that by selecting a group of

features per each iteration, BOMP-TDQ is much better at generalizing from a small number

of samples.

BOMP-TDQ is not only able to compute better approximations, but it also faster.

Table 5.1 shows the time16 required to approximate the action-value function using OMP-

16Algorithms executed in a machine with an Intel Core i5 processor operating at 2.6 GHz. The execution
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Table 5.1: Time required to approximate the action-value function using OMP-TDQ and
BOMP-TDQ in a four-rooms environment with |S| = 100 states and king moves. The
number of nonzero features is set to 240 for both methods.

L OMP-TDQ BOMP-TDQ Ratio

250 2.9 0.63 4.6
500 4.7 0.96 4.9
1000 8.1 1.52 5.3
2000 18.8 3.12 6.0

TDQ and BOMP-TDQ in a four-rooms environment with |S| = 100 states and king moves,

and the number of nonzero features is set to 240 for both methods for different values of the

number of samples L. We observe that BOMP-TDQ is faster by a factor of 6 for L = 2000.

This is not surprising, since per each BOMP-TDQ iteration, OMP-TDQ executes |A|—in

this example |A| is 8. Each BOMP-TDQ iteration is more expensive than an OMP-TDQ

iteration, since it involves a norm computation. This explains why the ratio is not exactly

|A|.

Next, we use OMP-TDQ and BOMP-TDQ combined with LSPI (see Sec 5.2.4) to

approximate an optimal policy for the four-rooms environment. In this experiment we learn

policies for environments with different numbers of states. For each value of |S|, an agent

approximates a policy using both methods. To compare the policies we compute the state-

value function17 corresponding to each policy. For each value function, we compute its sum

over all the states
∑

s∈S V̂
π(s), and report the average and standard deviation of the sum

over 50 trials. Note that a larger value is indicative of a better policy. Figure 5.14 shows the

results. We note that, with the exception of one case, the agent is able to learn better policies

using BOMP-TDQ than OMP-TDQ. As expected the difference between both methods is

more evident for environments with king moves, since under this condition the cardinality

time is measured using the timeit IPython magic function [81].
17This computation is done using the known environment model. Note that we use the model only to

evaluate the performance of the learned policies. The policies were learned using only samples from the
environment.
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Figure 5.14: Policy iteration using OMP-TDQ and BOMP-TDQ. The plots show the average
over 50 trails of the sum of the state-value function of policies learned with OMP-TDQ and
BOMP-TDQ for the four-room environment, with and without king moves, for different
values of the number of states |S|. The error bars show the standard deviation.

of the action space |A| is 8 rather than 4.

Finally, we repeat the approximation error experiment, this time comparing LARS-TDQ

and GLARS-TDQ. As before, we use the four-room environment to quantify the effect of

samples on the approximation error. We consider four different environments, with numbers

of states set to |S| = 25 and |S| = 50 and with and without king moves. Figure 5.15 shows

the result. Unfortunately, this time group sparsity addition does not provide any benefit,

GLARS-TDQ being in fact slightly worse than LARS-TDQ. It is possible that the reason

for this behavior is that, although called LARS-TDQ, this methods is in fact mimicking

the LASSO estimator—note that LARS-TDQ adds and remove items to the set of nonzero

features. On the other hand, GLARS-TDQ is mimicking GLARS. It is known that in general

LARS is not always as effective as the LASSO estimator, making in turn GLARS-TDQ less

effective. The reason why we implemented a GLARS-like method rather than a GLASSO-

like method, is that while the GLARS estimate is piecewise linear, making it amenable to a

homotopy implementation, the GLASSO estimate is not [104].
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(a) |S| = 25 without king moves
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(b) |S| = 25 with king moves
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(c) |S| = 50 without king moves
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Figure 5.15: Approximation error of action-value function using LARS-TDQ and GLARS-
TDQ for the four-rooms environment. Both methods use 240 nonzero features. Average
error computed over 200 trials. Error bars indicate one standard deviation.

5.5 The Stationary Distribution of the Random Walk of the State-Action Graph

for Deterministic 1-step Invertible Environments

The concept of state-action graphs can be used to find feature vectors that approximate

the action-value function efficiently [77]. In this section we present a result that potentially

can help to develop this approach.

Let G = (V,E) be an undirected graph, and Gsa = (Vsa, Esa) its corresponding state-
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action graph [77]. For each s ∈ V let

Ns = (neighbors of s)

be the arbitrarily ordered set of neighbors of s. For a given s ∈ V and 1 ≤ a ≤ ds, where ds

is the degree of s, the next state after taking action a when current state is s is given by the

function

nextStateG(s, a) = Ns(a).

Lemma 5.3

Let (s, a) ∈ Vsa be a vertex of Gsa. The out-degree of (s, a) is equal to the degree of

nextStateG(s, a).

Proof. Vertex (s, a) has out-neighbors (s′, a1), (s′, a2), . . . , (s′, an), where s′ =

nextStateG(s, a) and a1, . . . , an are the actions available at state s′. The number of

available actions is equal to the degree of s′.

Lemma 5.4

For s ∈ V and (s, a) ∈ Vsa, let Λs = {(s′, a′) ∈ Vsa : nextStateG(s′, a′) = s}. The cardinality

of Λs is |Λs| = ds.

Proof. The elements of Λs are all the state-action pairs with nextStateG equal to s. Thus,

the number of elements in Λs is equal to the number of states that can transition to s, which

is equal to the degree of s.

Theorem 5.5

Let P be the random walk matrix of the state-action graph Gsa, and ψ the (left) Perron

vector of P , i.e., it satisfies the relationship ψP = ψ, and
∑

i ψ(i) = 1. Then, ψ(i) = 1/|Vsa|

for all i, i.e., the stationary distribution of the random walk is uniform.
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Proof. Since ψ is a left eigenvector of P , ψ = 1/|Vsa| if and only if P is a column-stochastic

matrix18. In other words, we need to prove that
∑

u P (u, v) = 1 for all v ∈ Vsa. In general

for a directed graph, P is defined as [23]

P (u, v) =





1
du

if (u, v) ∈ Esa

0 otherwise,

(5.19)

where du is the out-degree of u. Note that since Gsa is the state-action graph of G, all the

positive entries of the column of P corresponding to v = (sv, av) are the vertices u = (su, au)

such that nextStateG(su, au) = sv. Let Λsv = {u = (su, au) : nextStateG(su, au) = sv}. It

follows that for all v ∈ Vsa

∑

u∈Vsa

P (u, v) =
∑

Λsv

P (u, v)

=
∑

Λsv

1

dsu,au
by (5.19)

=
∑

Λsv

1

dnextStateG(su,au)

by Lemma 5.3

=
∑

Λsv

1

dv
by nextStateG(su, au) = sv

= 1 by Lemma 5.4.

18Note that P is always row-stochastic, but in general it is not column-stochastic.
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5.5.1 Comments

Theorem 5.5 is true only for undirected graphs (if G is directed, it is easy to find a

counter example that does not satisfy the theorem). This implies that this result is only

useful when the environment is 1-step invertible and deterministic. Although not as general

as we wish, this is still a class of problems worth studying. In particular, the Information

Gathering [101] problem (at least in its simplest formulation) belongs to this class. See

also [58, 59] for other examples.

At least in principle, this result suggests that the Perron vector can be used to eval-

uate the status of the exploration stage used to construct Gsa, since a Gsa graph with a

corresponding Perron vector that is not uniform is an indication that the exploration is in-

complete. It is important to note that the Perron vector is meaningful, in the sense that it

represents the stationary distribution of a random walk over the graph, only if the graph is

strongly connected and aperiodic [23]. We can overcome this issue by using the PageRank

vector instead of the Perron vector (see Appendix B for more details about PageRank).

Preliminary simulation results indicates that if the exploration is complete, i.e., that the

estimated graph is equal to Gsa, then the Perron vector is equal to the PageRank. It might

be interesting to prove this result.
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CHAPTER 6

ONLINE SEARCH ORTHOGONAL MATCHING PURSUIT

“It is not unscientific to make a guess, although many

people who are not in science think it is.”

Richard Feynman [46, Ch. 7].

Many areas of signal processing, including Compressive Sensing, image inpainting and

others, involve solving a sparse approximation problem. This corresponds to solving a system

of equations y = Φx where the matrix Φ has more columns than rows and x is a sparse vector.

An important class of methods for solving this problem are the so called greedy algorithms,

for which Orthogonal Matching Pursuit (OMP) is one of the classic representatives [98].

It is possible to think of greedy algorithms as instances of search problems. Karahanoğlu

and Erdoğan [57] used the A* search method, a well known heuristic search algorithm for

finding the shortest path between two nodes in a graph, to design a new greedy solver called

A*OMP. This method stores the solution as a tree, where each node represents an index of

the estimated support. At each iteration it selects, using a heuristic based on the evolution

of the norm of the residue, which leaf node to expand. To avoid an exponential growing of

the candidate solutions, this tree is pruned by keeping a relatively small number of leaves.

In this chapter we present a new greedy algorithm for solving sparse approximation

problems. Like A*OMP, it frames the recovery of a sparse signal as a search instance.

However, instead of using A* search which involves a monolithic planning stage, we formulate

the problem as an online search, where the planning and execution stages are interleaved.

This allows us to achieve a performance significantly better than OMP and similar to A*OMP

while maintaining a reasonable computational load. Our simulations confirm this recovery

performance with a computational speed 20× faster than A*OMP and less than 2× slower

than OMP. The work in this chapter was published in [102].
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6.1 Preliminaries

We start this section by introducing some notation and defining the problem we wish

to solve. Let x be a real K-sparse vector of dimension N . That is, x ∈ RN with ‖x‖0 = K,

where ‖ ·‖0 denotes the number of non-zero elements of a vector. Let the support of x be the

index set supp(x) = {i | x(i) 6= 0}. Let y = Φx, with Φ ∈ RM×N an M ×N full-rank matrix

with M < N and y ∈ RM a measurement or observation vector. Let φj denote column j of

Φ, and we assume that ‖φj‖2 = 1 for all j. For any index set Γ, let ΦΓ be the M×|Γ| matrix

corresponding to the columns of Φ indexed by Γ, where |Γ| is the cardinality of the index

set. We are interested in finding x given y and Φ. Formally, we wish to solve the non-convex

optimization problem

x̂ = argmin
x∈RN

‖x‖0 s.t. Φx = y. (P0)

Although this problem is NP-hard, it is possible under appropriate conditions (which depend

on the particular values of N,M,K and Φ) to solve it using greedy methods [98].

6.1.1 Orthogonal Matching Pursuit

One of the classic greedy algorithms for solving this problem is OMP, described in

Algorithm 17. OMP is an iterative algorithm that builds an estimate of the support of x by

adding one index to this set at a time. The algorithm starts with an empty estimate Γ(0).

It keeps a residue vector r, initially equal to y, which corresponds to the component of y

perpendicular to the column span of ΦΓ. At each iteration, OMP computes the correlation

between the current residue and the columns of Φ. The index of the column with the highest

correlation is added to the current estimate of the support. Using this new support estimate

a new residue is computed. The loop exits when the stopping criterion is met, typically

when the norm of the residue is small enough.

We will later exploit the fact that in OMP the norm of the residue vector r(`) decays
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Algorithm 17 Orthogonal Matching Pursuit

input: Φ, Ψ, xc, y, ε
initialize: r = y, Λ(1) = ∅, ` = 1
match: h = DFT{xc} (indexed from 0 to N − 1)
while ‖r‖2 > ε do

identify: k = argmax0≤j≤N
2
|h(j)|

Λ(`+1) = Λ(`) ∪ {k, (N − k) mod N}
h(k) = 0

update: α = argminz: supp(z)⊆Λ(`+1) ‖y − ΦΨz‖2

r = y − ΦΨα
` = `+ 1

end while
output: x̂ = Ψα = Ψ argminz: supp(z)⊆Λ(`) ‖y − ΦΨz‖2

exponentially [43, Sec. 3.1.2]. In particular,

‖r(`)‖2
2 ≤ (1− δ(Φ))`‖y‖2

2, (6.1)

where δ(Φ) ∈ (0, 1) is the universal decay-factor of Φ defined as δ(Φ) = infv max1≤j≤M
|φTj v|
‖v‖22

.

Thus, the norm of the residue converges to 0. In fact, it must reach 0 in M or fewer iterations,

although a residue of 0 does not necessarily imply that the solution is correct.

6.1.2 Online Search

Search algorithms are methods that solve the problem of finding a minimal cost path

between a given pair of start and goal states belonging to a state space [86]. The state space

can be described by a graph where nodes represent states and weighted edges represent

potential transitions between states.

Search algorithms can be broadly classified into offline and online algorithms. A way

to understand the differences between these two classes is by thinking in terms of an agent

that lives in the state space; the agent begins at the initial state and wants to go to the goal

state. In the offline approach the agent finds a complete solution to reach the goal in what

is called a planning stage, and then executes the corresponding actions. Dijkstra and A*
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Figure 6.1: Examples of searching in a state space. S and G are the start and goal state,
respectively. (a) Offline search during an intermediate stage of execution: explored, un-
explored, and fringe states are represented by triangles, squares, and circles, respectively.
(b) Evolution of online search. Execution depicted from left to right. A dot indicates the
current state. Bold circles and edges represent visited states and transitions, respectively.
Dotted lines represent unexplored regions.

are two classic offline search algorithms. Online approaches, on the other hand, interleave

planning and execution of actions.

In offline searching the agent classifies the states into three different classes: explored

states, unexplored states, and the fringe. At each iteration, the agent selects one node of the

fringe (the criteria used to select the node from the fringe are what differentiate the different

offline search algorithms). This node becomes an explored node, and all its successors are

added to the fringe. The planning stops when the goal state is removed from the fringe.

Figure 6.1(a) shows an example of a state space during an intermediate step of the planning.

As explained above, offline search algorithms must keep a list of the fringe states. When

the branching factor (the number of successors for each state) is too large, this approach

is unfeasible; colloquially, it said that “you run out of space before you run out of time”.

Online search algorithms are able to overcome situations like this one since they have memory

requirements that do not depend on the number of states or the branching factor.

In online search [58] an agent starts by setting its current state s equal to the start

state. Then it performs a local search among its neighbors and it moves to the state that
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looks most promising. It repeats these two steps, planning and execution, until the current

state is equal to the goal state. The agent uses a value-function u(s) to store its knowledge

about the state space. This function represents the current estimate of the distance to the

goal for each state. The first time the value-function is evaluated it is set using a heuristic

function h(s) that returns an initial estimate of the distance to the goal. When the agent

moves from the state s to the state s′ it updates u(s) using the value of u(s′). Note that the

heuristic function is fixed, while the value-function changes as the agent learns about the

structure of the state space. Figure 6.1(b) shows an instance of online search for a simple

state space with five states.

6.2 Online Search OMP

Inspired by OMP and search methods in state spaces, we propose a new algorithm to

solve (P0). One way to think about OMP is that it searches for a support that is able

to “explain” the observation vector y. This search proceeds by adding one element to the

support at a time, and it is not possible to remove an element once it is added. In other words,

OMP does not have the ability to backtrack. On the other hand, online search methods are

backtracking algorithms that provide effective mechanisms to search for a solution in a

state space. Our algorithm, dubbed “Online Search OMP” (OS-OMP), merges the above

mentioned approaches. It combines the greedy addition of indices to the support based on

the value of the residue used in OMP, with the use of a value-function to represent the

accumulated knowledge.1

We adopt the “agent perspective,” typically used in Artificial Intelligence [86], to explain

OS-OMP. Consider an agent whose state is an index set Γ. The agent can move to any state

corresponding to an index set with one extra element. It can also move to its predecessor

state (it may be useful to consider this as an “undo” movement). Thus, the successor function

1Note that although methods such CoSaMP [73] and IHT [10] are also able to remove items from the
support, they do this by estimating the complete support at each iteration, rather than by adding one
element at a time.
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can be written as

succs(Γ) = {Γ′ | Γ′ ⊃ Γ, |Γ′| = |Γ|+ 1} ∪ predecessors(Γ),

where predecessors is a table that keeps track of the state transitions.

Under this setup, solving (P0) corresponds to finding, starting at the state Γ = ∅, the

Γ with residue 0 and smallest cardinality. OS-OMP is specified entirely in Algorithm 18. It

starts with an empty table to store the value function u and another empty table to store

the state predecessors. The current support is set equal to the empty set. At each iteration

it checks to see whether the current Γ exists in u. If it does not, this Γ is added to the table

with a value equal to the heuristic function h(Γ) (lines 3 to 5). As the heuristic function we

use the norm of the residue corresponding to that support:

h(Γ) = min
z: supp(z)⊆Γ

‖y − Φz‖2. (6.2)

Note that this is the norm of the residue vector r computed in the update step of OMP.

Also note that since this function is computed only when a support set does not have an

entry in the value-function table, the computational cost of using the norm of the residue

as a heuristic is reasonable. Then, OS-OMP computes and stores in the table usuccs the

value-functions for all the successors of Γ (lines 7 to 12). As before, if there is no entry for

a given successor, the value-function table is initialized using the heuristic function h.

The next steps in the algorithm are based on the following observation. As stated by

(6.1), when the new elements added to the support are selected greedily, the norm of the

residue decays exponentially. This implies that when the support is not sparse enough, i.e.,

the estimate is the wrong one, the reduction in the norm of the residue is very small. This

behavior of the norm of the residue helps us to identify two search regimes: one during which

the norm of the residue decays quickly, and one during which there is little change of the
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norm of the residue. We consider this last situation as an indication that the current Γ is

in the wrong region of the state space and that the algorithm should start backtracking.

OS-OMP computes the difference between the maximum and the minimum of the value-

function evaluated at the successors of Γ, and compares this difference with a threshold η.

If the difference is above this threshold, Γnew is set equal to the Γ′ ∈ succs(Γ) with the

smallest u(Γ′); otherwise, Γnew is set equal to the support in the successors with the smallest

cardinality (lines 13 to 17).

After OS-OMP selects Γnew, it checks to see if this new support is a backtrack move.

If that is the case, the value-function of the current Γ is updated to +∞. This guarantees

that the path corresponding to this Γ will not be expanded in future iterations (lines 18 to

20). Finally, Γnew is added to the table of predecessors if necessary (lines 21 to 23), and Γ is

updated to its new value.

We continue with an example where OS-OMP works successfully but OMP fails. We

set the length and sparsity of x to N = 128 and K = 5, respectively, and the length of y to

M = 19. The matrix Φ has i.i.d. entries drawn from a standard Gaussian distribution. We

compare the evolution of the norm of the residue between OS-OMP and OMP in Fig. 6.2.

Note that, as explained in Sec. 6.1.1, finding a solution with a residue of norm 0 does not

guarantee successful recovery of x. We observe the predicted exponential decay for OMP.

For OS-OMP, on the other hand, the algorithm is able to detect that it is going in the wrong

direction and backtracks several times until it finds the correct solution.

6.3 Experimental Results

In this section we empirically evaluate OS-OMP.2 We also compare with OMP and

A*OMP. For all experiments that follow we generate, for each value of the sparsity level

K, signals of length N = 128 having K non-zero coefficients at locations selected uniformly

2Code available at https://github.com/aweinstein/osomp.
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Algorithm 18 Online Search OMP

input: Φ, y, η > 0, stopping criterion
1: initialize: Γ = ∅, u: empty table, predecessors: empty table
2: while not converged do
3: if Γ /∈ u then
4: u(Γ) = h(Γ)
5: end if
6: usuccs: empty table
7: for Γ′ ∈ succs(Γ) do
8: if Γ′ /∈ u then
9: u(Γ′) = h(Γ′)

10: end if
11: usuccs(Γ

′) = u(Γ′)
12: end for
13: if max(usuccs)−min(usuccs)

‖y‖ > η then

14: Γnew = argmin(usuccs)
15: else
16: Γnew = argmin({|Γ′| | Γ′ ∈ succs(Γ)})
17: end if
18: if |Γnew| < |Γ| then
19: u(Γ) = +∞
20: end if
21: if Γnew /∈ predecessors then
22: predecessors(Γnew) = Γ
23: end if
24: Γ = Γnew
25: end while
output: x̂ = argminz: supp(z)⊆Γ ‖y − Φz‖2

at random. We fix the value of M and plot the rate of perfect recovery (declared when

‖x − x̂‖ ≤ 10−4 and estimated using 500 trials) as a function of the sparsity level K.

For each trial the matrix Φ has i.i.d. entries drawn from a standard Gaussian distribution.

Since greedy methods are sensitive to the distribution of the non-zero signal coefficients, we

consider three cases, each one with a different distribution.

In the first experiment we select the amplitude of the non-zero signal coefficients uni-

formly at random from the interval [−2,−1] ∪ [1, 2] and fix the dimension of y to M = 30.

Figure 6.3(a) shows the results. Both OS-OMP and A*OMP perform significantly better

than OMP, with OS-OMP performing slightly better than A*OMP for most values of K.
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Figure 6.2: Comparison of the norm of the residue of OMP and OS-OMP for an instance
with N = 128, M = 19 and K = 5. In this example OMP (green squares) fails to recover x,
while OS-OMP (blue circles) successes.

In the second experiment we fix the magnitudes of the non-zero signal coefficients to

1 and set their signs uniformly at random. We fix the dimension of y to M = 30. Figure

6.3(b) shows the results. As in the previous experiment, both OS-OMP and A*OMP perform

significantly better than OMP. This time the improvement of OS-OMP over A*OMP is more

significant.

In the third experiment the amplitude of the non-zero signal coefficients are i.i.d. drawn

at random from a standard Gaussian distribution. We fix the dimension of y to M = 25.

Figure 6.3(c) shows the results. This time the difference between the three methods is less

significant. OMP is still the method with the poorest performance. This time A*OMP is

slightly better than OS-OMP.

Finally, we test OS-OMP in a scenario where the observations are corrupted by additive

noise. We set y = Φx + e, where e is a vector with i.i.d. entries drawn from a zero-mean

Gaussian distribution with standard deviation set to σ = 0.1. To handle this situation, we

only need to modify the algorithm to stop when the norm of the residual is smaller than the

noise level. We select the amplitude of the non-zero signal coefficients uniformly at random

from the interval [−2,−1]∪ [1, 2] and fix the dimension of y to M = 30. Figure 6.3(d) shows
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(b) Binary distribution
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(c) Gaussian distribution
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Figure 6.3: Experimental results. (a, b, c) Rate of perfect recovery as a function of the
sparsity level K using OS-OMP, A*OMP, and OMP for three different distributions of the
non-zero coefficients. (d) Relative `2 error for the recovery of x from noisy observations.

the results. We observe that OS-OMP performs better than OMP.

Although OS-OMP and A*OMP exhibit similar performance in terms of rate of recovery,

we must stress the fact that the execution time of OS-OMP is significantly faster, roughly

by a factor of 20. For instance, to recover a signal of length N = 128 and sparsity K = 5

from a vector y of length M = 35 using OS-OMP takes 5 ms, while recovering the same

signal using A*OMP takes 140 ms. OMP takes 3 ms to recover the same signal.
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CHAPTER 7

CONCLUSIONS

“Probably they will fail and die, but if they flourish,

it should make Randy’s life a little more interesting.

Not that it’s devoid of interest now, but it is easier to

introduce new complications than to resolve the old

ones.”
Cryptonomicon, Neal Stephenson

In this thesis we have investigated several high-dimensional problems. Our main contri-

bution is the design and analysis of a cornucopia of methods that, by exploiting the problem

structure, allow one to solve these problems in a more effective way.

The third chapter of this thesis deals with the joint denoising problem, where we con-

sidered the situation where one needs to estimate a signal ensemble from noisy observations,

under the assumptions that all the signals in the ensemble have the same support. We

proposed two methods. The first one, a veto scheme, exhibited good performance, but its

asymptotic behavior was not as good as desired. The second one, a voting scheme, exhibited

a behavior uniformly better than the veto scheme, including a good asymptotic behavior.

There are several aspects of the joint denoising problem that deserve further considera-

tions. Firstly, we would like to extend the proposed methods to other joint sparse models [5],

such as the JSM-1 model—where each signal in the ensemble can be decomposed in a com-

mon sparse component plus a sparse innovation component—and the JSM-3 model—where

each signal in the ensemble can be decomposed in a dense common component plus a sparse

innovation component. Secondly, we would like to study an alternative approach to joint

denoising, based on the framework of hypothesis testing. At this point it is not clear what

kind of performance such methods would exhibit with respect to the ones proposed so far.
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For this reason, we think it would be interesting to explore the use of this formulation.

In the fourth chapter of this thesis we have presented two methods for restoring a clipped

signal using the model assumption of sparsity in the frequency domain. One of our methods,

Trivial Pursuit with Clipping Constraints (TPCC), is particularly simple to implement; its

running time is dominated by the computation of the Discrete Fourier Transform (DFT)

and the solution of the least-squares problem, and it is significantly faster than Reweighted

`1 with Clipping Constraints (R`1CC).

Our algorithms are inspired by existing techniques from Compressive Sensing (CS), and

the performance we achieve (where the requisite number of non-clipped samples M scales

with K) is fully in line with the state-of-the-art performance in CS. This is in spite of the

fact that standard RIP analysis does not apply to the de-clipping problem and that the

measurement operator in our problem is non-random and signal-dependent. Insight from

CS would suggest that this signal dependence could be catastrophic for standard sparse

approximation algorithms. Thus, we believe that further work is warranted to understand

(i) why R`1CC offers such a substantial improvement over BPCC in the de-clipping problem

and (ii) why a simple algorithm such as TPCC can succeed for de-clipping when much more

complicated algorithms are required in CS.

In the fifth chapter we have presented several algorithms related to the Reinforcement

Learning (RL) problem. These algorithms exploit the fact that in addition to admitting a

sparse representation, action-value functions also admit a group sparse representation. The

proposed method BOMP-TDQ not only exhibits a significantly better performance than its

counterpart OMP-TDQ, but it is also faster. The other proposed method, GLARS-TDQ,

unfortunately did not exhibit any benefit over its counterpart LARS-TDQ. Although unclear

at the moment, we believe that a possible reason for this behavior is that, although called

LARS-TDQ, this methods is in fact mimicking the LASSO estimator—note that LARS-

TDQ adds and remove items to the set of nonzero features. On the other hand, GLARS-
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TDQ is mimicking GLARS. It is known that in general LARS is not always as effective

as the LASSO estimator, making in turn GLARS-TDQ less effective. The reason why we

implemented a GLARS-like method rather than a GLASSO-like method, is that while the

GLARS estimate is piecewise linear, making it amenable to a homotopy implementation,

the GLASSO estimate is not [104]. Further work in necessary to understand this problem

fully, and, ideally, to find the appropriate modifications required to extend the LARS-TDQ

algorithm effectively.

At the end of the RL chapter we presented an interesting theorem related to state-action

graphs. At the moment we have not been able find how to use this result, but we think that

future work should also consider this problem.

In the sixth chapter we have presented a new method, called OS-OMP, for recovering

a sparse vector x. The new algorithm merges ideas from greedy techniques and from online

search methods. OS-OMP performs significantly better than OMP without incurring a

significant extra computational load. It has a similar performance to A*OMP, a method

also inspired by search algorithms, but it has a much faster execution time. Future work

will include theoretical analysis of OS-OMP. We will also study the possibility of adjusting

the parameter η automatically.
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APPENDIX A

SANITY CHECK FOR THE UNIQUENESS TEST

In order to check that our implementation of the Mangasarian test is correct, we try our

program with a simple example where we know the uniqueness of the solution. The linear

program is given by

minimize
x1,x2

zi

subject to x1 + x2 ≥ 1, x1 + x2 ≤ 2

x1 − x2 ≥ −1, x1 − x2 ≤ 1.

(A.1)

We analyze the uniqueness of the solution for three different objective functions:

z1 = −x2, z2 = x1 − x2 and z3 = x1 + x2.

As can be seen in Figure A.1, minimizing z1 has a unique solution, while minimizing z2

and z3 have non-unique solutions. Our implementation of the Mangasarian test successfully

computed these same results.

x1

x2

x1 − x2 ≥ −1

x1 − x2 ≤ 1

x1 + x2 ≥ 1 x1 + x2 ≤ 2

solution
to min z2

solution
to min z3

solution
to min z1

Figure A.1: Graphic representation of the Linear Program (A.1).
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APPENDIX B

PAGERANK

The following details about the PageRank algorithm are based on Ch. 4 of [62].

Given a directed graph G = (V,E), the hyperlink matrix (also known as the random-

walk matrix, denoted by P ) is given by

H = D−1A,

where D is the degree matrix and A is the adjacency matrix. Let π(k)T be the PageRank

vector (or Perron vector) at the kth iteration. The iteration is given by1

π(k+1)T = π(k)TH. (B.1)

Equation (B.1) will converge to the stationary distribution if H is stochastic, irre-

ducible2, and aperiodic (a matrix that is both irreducible and aperiodic is called primitive).

Note that in general H does not satisfy these conditions.

The matrix H is not stochastic if there are dangling nodes, i.e., nodes with out-degree

equal to zero. For each dangling node, H will have row equal to 0T ; and the existence

of such rows implies that H is not stochastic. This problem is fixed by the “stochasticity

adjustment,” where each zero row in H is replaced by 1
n
1T . This is equivalent to letting

the random-walker to jump to any node once it enters a dangling node. We can write this

modified H as

S = H + a
1

n
1T ,

1This is a “linear stationary method”. In fact, is the power method applied to H.
2G is strongly connected iff H is irreducible.
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where

a(i) =





1 if i ∈ V is a dangling node,

0 otherwise

is the “dangling vector”. Note that a 1
n
1T is a rank-one matrix. This adjustment guarantees

that S is stochastic, but it does not imply that it is primitive, i.e., irreducible and aperiodic.

For this reason, we also need to consider a “primitivity adjustment,” which corresponds to

add the teleporting capability to the random-walker. It is equivalent to constructing the

Google matrix

G = αS + (1− α)
1

n
11T , for 0 < α < 1.

Since G is the convex combination of the two stochastic matrices S and E = 1
n
11T it is also

stochastic. Note that although G is dense, we can write it as a rank-one update to H:

G = αS + (1− α)
1

n
11T

= α

(
H

1

n
a1T

)
+ (1− α)

1

n
11T

= αH + (αa+ (1− α)1)
1

n
1T .

(B.2)

Using Eq. (B.2) we can write the power method iteration as

π(k+1)T = π(k)TG

= απ(k)TH + π(k)T (αa+ (1− α)1)1T
1

n

= απ(k)TH +
(
απ(k)Ta+ (1− α)π(k)T1

)
1T

1

n

= απ(k)TH + (απ(k)Ta+ 1− α)1T
1

n
.

Since H is typically sparse, the only vector-matrix multiplication can be executed efficiently.

163


	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	INTRODUCTION
	Joint Denoising
	Declipping a Signal in Sparseland
	Reinforcement Learning
	Online Search Orthogonal Matching Pursuit

	SPARSE MODELS
	The Case for Sparse Models
	Compressive Sensing
	Solving P1 and P1
	Subgradient
	Least Absolute Shrinkage and Selection Operator
	The LASSO and Soft-Thresholding Connection
	LARS
	The Homotopy Method
	Group LARS/LASSO

	Greedy Methods

	JOINT DENOISING
	Thresholding Estimators
	Joint Denoising
	The Joint Estimator
	A Better Joint Estimator

	Experimental Results
	Remarks

	DECLIPPING A SIGNAL IN SPARSELAND
	Preliminaries
	Basis Pursuit, Basis Pursuit with Clipping Constraints, and Reweighted 1 with Clipping Constraints
	About the Uniqueness of the Solutions 

	Trivial Pursuit with Clipping Constraints
	Experimental Results 

	SPARSE MODELS FOR REINFORCEMENT LEARNING
	Markov Decision Processes
	The Chain Environment
	The Four-Rooms Grid Environment
	Policies and Value Functions
	Policy Evaluation
	Policy Improvement
	Value Iteration

	Function Approximation
	Bellman Residual Minimizing Approximation
	Least-Squares Fixed-Point Approximation
	Learning Through the Agent-Environment Interaction
	Least Squares Policy Iteration
	Feature Vectors

	Sparse Approximations
	LARS-TD
	OMPBRM and OMP-TDQ
	The Case for Group Sparsity
	Group Sparse Methods for RL

	Experimental Results
	The Stationary Distribution of the Random Walk of the State-Action Graph for Deterministic 1-step Invertible Environments
	Comments


	ONLINE SEARCH ORTHOGONAL MATCHING PURSUIT
	Preliminaries
	Orthogonal Matching Pursuit
	Online Search

	Online Search OMP
	Experimental Results

	CONCLUSIONS
	REFERENCES CITED
	SANITY CHECK FOR THE UNIQUENESS TEST
	PAGERANK

