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Abstract
Modern image coders balance bitrate used for encoding
the location of significant transform coefficients, and bitrate
used for coding their values. The importance of balancing
location and value information in practical coders raises
fundamental open questions about how to code even simple
processes with joint uncertainty in coefficient location and
magnitude. This paper studies the most basic example of
such a process: a 2-D process studied earlier by Weidmann
and Vetterli that combines Gaussian magnitude information
with Bernoulli location uncertainty. The paper offers in-
sight into the coding of this process by investigating several
new coding strategies based on more general approaches
to lossy compression of location. Extending these ideas to
practical coding, we develop a trellis-coded quantization al-
gorithm with performance matching the published theoret-
ical bounds. Finally, we evaluate the quality of our strate-
gies by deriving a rate-distortion bound using Blahut’s al-
gorithm for discrete sources.

1. Introduction

Wavelets provide a sparse representation of information
in natural images, with low-frequency energy captured in a
few coefficients, and information about edges captured in
the few coefficients near the edges. The information of the
edge coefficients consists both of uncertainty in the loca-
tion of those coefficients, and uncertainty in their values. A
wide range of today’s top image coding algorithms, using
an approach that is mathematically known as “nonlinear ap-
proximation”, devote one portion of the bitrate to specifying
locations of coefficients to be coded, and a second portion
of bitrate to code the values of those coefficients. Many in-
tuitively reasonable approaches for balancing bitrates have
been used to code location and magnitude of coefficients,
but the fundamental principles governing optimal trade-offs
between location and magnitude uncertainty have not been
studied, even in the simplest cases. The most common ap-
proach used in practical image coders is to encode the lo-
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cation information without error, and to separately encode
the magnitude. This naı̈ve approach can be found among
popular coders (e.g. [1]) and in theoretical analysis [2]. Re-
cently, Weidmann and Vetterli [3, 4] added formal structure
to the problem of joint encoding for magnitude and location
information, proposing and analyzing a novel compression
framework.

This paper explores the fundamental principles govern-
ing efficient coding of processes with joint location and
magnitude uncertainty by presenting, analyzing, and com-
paring a variety of coding strategies that improve on previ-
ously published bounds on coding performance. Motivated
by these coding strategies, we develop an efficient and prac-
tical coder for such processes, and investigate theoretical
rate-distortion (R-D) behavior. Our work focuses on a very
simple 2-D process with very structured joint magnitude-
location uncertainty, one that combines Gaussian magnitude
uncertainty with Bernoulli location uncertainty. Despite the
simplicity of the formulation, a closed form solution for the
optimal R-D curve remains unknown.

To investigate the coding of this process, we propose
a sequence of frameworks for reaching a jointly optimal
balance of location and magnitude information, and we de-
velop coding strategies from these frameworks. For each,
we derive the operational R-D curve, and we compare these
curves to gain insights on the coding of this process. Our
later coding strategies improve upon the bound introduced
by Weidmann and Vetterli.

Conclusions drawn from our analysis suggest that good
practical coders for our test process should reflect specific
relationships between the encoded bitstreams representing
location and magnitude. Motivated by these conclusions,
we propose a practical compression scheme based on trellis-
coded quantization (TCQ). Our novel approach works by
alternately optimizing two stages of trellis coding, one for
magnitude and one for location. The Viterbi optimization of
the trellis paths improves upon earlier approaches for man-
aging tradeoffs between magnitude and location errors, and
this practical algorithm actually matches the performance of
earlier proposed bounds for the coding of this process.



Finally, we apply the Blahut algorithm [5] to derive a
theoretical upper bound on the R-D curve of the process.
We use this bound to assess the significance of performance
improvements achieved in our study. We conclude that the
coding strategies offered in this paper represent significant
advances on earlier studied coding strategies, but that room
for modest improvement remains at low bitrates.

This paper is organized as follows: Section 2 formulates
the problem; Section 3 investigates a series of coding strate-
gies for this problem, and derives upper bounds for the R-D
performance of each; Section 4 develops a practical TCQ-
based coder and compares its operational performance to
the bounds of Section 3; Section 5 uses Blahut’s algorithm
to bound the optimal R/D curve; and Section 6 offers some
concluding observations.

2. Problem Formulation

Consider a memoryless source where symbols are IR �
vectors where one of the entries is zero and the other entry
is drawn from a Gaussian distribution. Our goal is to encode
such a source.
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Define the symbols ' �)( � ��* �+� � ���-,.� � � , that is, ' � �

IR � and takes one of the two possible forms, either
�����/� � �

or
�+� � ��� � . Each symbol is characterized by the magnitude� �
and the location information

� �
, indicating what entry

of the 2-tuple ' � is valued
���

and consequently what entry
of ' � is valued 0. Another way of defining the symbols ' �
is to regard them as drawn from a probability measure 0 in
IR � such that the axes have probability one.

Our objective is to construct a sequence
�21' � � encoding

the sequence
� ' � � using on average 3 bits per symbol, such

that the mean square error (MSE) distortion measure
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is minimized. Denote by
4HG � 3 � the optimal solution of this

problem. This corresponds to the theoretical R-D curve.

3. Coding Strategies

We consider a series of coding schemes and compare
them using their operational R-D curves, which yield up-
per bounds for the curve

4 G � 3 � . Most of these approaches
involve explicitly encoding the magnitude sequence

��� � �
with 3�I bits per symbol and the location sequence

�J� � �
with 3�K bits per symbol, giving rise to the sequences

�L1� � �
and

�M1� � �
, respectively. These sequences are then translated

into the final estimate
� 1' � � . Recall for Gaussian random

variables that the optimal MSE rate distortion curve is4 I � 3 I � ( � �N ( � � "PO ��QSR � (2)

where 3�I is the bit rate per symbol. For Bernoulli ran-
dom variables, we consider the Hamming distortion, cor-
responding to probability of error T N ( 4 K � 3UK � whereT N � C �$�%�! #" E and

3�K ( �WV T N 5:X&Y � � T N � VZ����, T N � 58X[Y � �/�\, T N � � (3)

where 3 K is the bit rate per symbol.

3.1. Basic

The simplest coding scheme for this problem (and the
one used on practical coders of sparse sources as well) in-
volves spending one bit per symbol conveying the location
information

� �
and using the remaining bits to encode the

magnitude information
� �

(for 3^] �
). In this case we set1' �)(_1� �`* � 1� � ����, 1� � � . Figure 1 shows the operational R-D

bound for this coder obtained by taking the convex hull of
admissible operating points. In practice, for rates less than a
bit per symbol, achieving a point on the convex hull requires
a time-sharing scheme to average the performance between
two operating points.

3.2. Location/Magnitude Uncertainty

The above strategy relies on lossless encoding of the lo-
cation information. To improve on that technique we con-
sider another coding scheme, exploiting vector quantization
results in both location and magnitude information.

First, we encode optimally the magnitude sequence�������
and the location sequence

�J�a���
using 3 I and 3 K

bits per symbol (2,3). It can be shown that the optimal esti-
mate

1' � in terms of the MSE (1) is then given by1' � ( 1��� *Mb �/��, T N � T N � 1���2VZ� T N �%��, T N � �/�\,c1�U� �ed�f (4)

Notice that, in general, both entries of this estimate are non-
zero.

The optimal values of
� �N and T N (which indicate the al-

location of the bitrate 3 between 3aI and 3�K ) can be found
using numerical methods. Figure 1 shows the correspond-
ing bound, an improvement over the previous bound. For
rates 3hg �J #"

we send only magnitude information, while
for 3i]kj we essentially send one bit per symbol to en-
code the location information. The behavior of this coder
at low bitrates suggests a different strategy, leading to the
following approach.

3.3. Classification-Based Strategies

Type 1. Clearly, location errors are most costly when
the magnitude of

� �
is large. That suggests the following
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Fig. 1. Theoretical and operational R-D bounds for � �����
. Lines

describe theoretical upper bounds derived in Section 3. Asterisks
mark operational points using the TCQ method of Section 4. This
practical coder achieves performance very comparable to the two-
class scheme [3].

scheme, described in [3] and included here for the sake of
completeness.

Consider the two sequences���	��� ( �%
	��
 � ��
�
�� �-���� � � ( �%
	��
 � � 
 ] � �-�
where

� ] � f
We first send the indexing information in

�������
(or equiv-

alently
���F���

). For the elements of the sequence
� '���� � we

spend one bit per symbol encoding the location information� � � , and 3�� bits encoding the magnitude. We do not spend
any bits encoding the sequence

� '���� � . For any symbol '����
we use the representation

1'���� ( ������� � . Hence we are in-
deed coding only symbols with large magnitudes.

The optimal threshold is obtained by minimizing the
distortion with respect to

�
, for a given rate 3 . To be able

to do this, we need to bound the distortion incurred when
coding the (non-Gaussian) sequence

� ��� . An upper bound
is provided by a Gaussian having the same variance; notice
that this does not give a tight bound.

The corresponding bound is depicted in Figure 1. As
can be seen, this improves on our earlier bounds. For high
rates ( 3 ]hj ) the optimal threshold

�
is zero; that is, we

obtain the bound of Section 3.1.
Type 2. One of the drawbacks of the previous approach

is that we need to send the indexing information describ-
ing

��� � �
. To avoid this we consider now a scheme using

classification after encoding the magnitude values. Depend-
ing on the value of the encoded magnitude

1���
we encode

only partial location information with probability of errorT �$1� � � � C ���%�! #" E . Using (4) to construct the encoded se-
quence

1' � , the distortion is a function of both
� �N and T � * � .

Finding the optimal configuration is difficult, but we
simplify the problem by considering a parametric class for
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Fig. 2. Function ��� � ! for R=1.35 bits. Solid: Multiple classes
( " �$#&%

classes). Dashed: Two classes.

the function T � * � , taking the form

T �(' � ( ; O
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where 8 * ( ,:9D� 8 ; ( 9 �
and 8 ) g 8 )<; B�= 


.
Optimizing the corresponding MSE distortion over

� �N
and T ) yields the rate distortion bound shown in Fig-
ure 1. There is a significant improvement over the previous
bounds, especially for rates 3 ] j . Unlike the previous
coding schemes, this scheme only sends partial location in-
formation for those rates.

It is interesting to observe that the general shape of the
function T � * � , in Figure 2, essentially describes a classifica-
tion of the source symbols into two classes: for small mag-
nitudes no location information is encoded, and for large
magnitudes location is encoded without error. This is simi-
lar in spirit to the Type 1 scheme, although we encode mag-
nitude information even for small magnitude values. Al-
though this may explain some difference in performance be-
tween the two coders, we believe that the apparently large
gap between the bounds may have another possible expla-
nation: Computing the R-D bound for the Type 1 scheme re-
quires bounding the distortion of the sequence

��� � � � . There
is no closed form for the distortion incurred on coding such
a sequence, forcing us to use an upper bound that is possibly
not tight. This yields a R-D bound for the Type 1 strategy
that might not be representative of its actual performance.

4. Practical Implementation

In this section, we develop a practical and feasible com-
pression scheme based on trellis-coded quantization (TCQ)
[6]. TCQ allows efficient quantization of Gaussian random
variables, and its optimization structure is easily adapted for
lossy compression of Bernoulli random variables.

Although TCQ encodes a sequence of variables one
symbol at a time, it achieves compression efficiency by
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Fig. 3. Location encoding with penalized transitions in a four-
state Ungerboeck trellis. Each transition corresponds to a pair of
encoded Bernoulli values. Arithmetic coding is used to specify the
particular transition from a given state. Each state has four possible
transitions under the assumed distribution � : two with probability� (solid lines), and two with probability

%�� ��� � (dashed lines).

placing a dependence on the quantization errors. Errors are
cleverly placed in locations where they minimize the impact
on the coded sequence. For TCQ coding of a Gaussian, for
example, variables are often quantized to the wrong quan-
tization bin in order to save bits. The Viterbi algorithm,
however, weighs the distortion costs of such errors, in order
to minimize the overall impact on distortion.

We use two stages of TCQ to code our information.
Magnitude information

��� � �
is coded in the first stage,

and location information
�J� � �

is coded in the second. The
quantized symbols

�$1' � � are assembled at the decoder by
combining the sequences

� 1� � �
and

�M1� � �
. Each stage is

required to meet a target rate ( 3aI or 3UK ) and optimizes
its trellis path based on the path chosen by the other stage;
the Viterbi algorithm helps to minimize the impact of errors.
Before actually encoding any values, we iterate between op-
timizing the two stages in order to find the jointly optimal
pair of trellis paths.

4.1. Stage I: Magnitude Optimization

Stage I assumes that
�J�����

has been coded lossily to�M1�����
, and it attempts to find the optimal trellis-coding for�������
with a desired rate of 3 I bits per symbol. Our al-

gorithm uses the Ungerboeck trellis and is identical to the
Gaussian TCQ algorithm presented in [6]; the only differ-
ence in our implementation is the distortion function which
is minimized. At each node, we set

1' � ( 1��� * �&1�U� �%�L, 1�U� � .
Instead of minimizing the distortion of the Gaussian itself,
we choose a trellis path for

� 1� � �
to minimize the distortion

of
�$1' � � . As in [6], a TCQ scheme such as this restricts our

operational values of 3�I to be integers.

4.2. Stage II: Location Optimization

Stage II assumes that
��� � �

has been coded lossily to� 1� � �
, and it attempts to find the optimal trellis-coding for��� � �
with a desired rate of 3�K bits per symbol. To allow

lossy encoding of location information (rates 3 K g �
), we

use a special adaptation of the Ungerboeck trellis, where

each transition encodes a pair of locations. The pair of lo-
cations has four equally likely outcomes; typically two bits
would be required to encode each pair. By adjusting the
likelihood of the encoded transitions, however, we may en-
code pairs using fewer than two bits.

In particular, we allow four transitions from each state in
the trellis. These correspond to the four possible outcomes
of a pair of Bernoulli variables. We encode the trellis path
using arithmetic coding with transition probability distribu-
tion � ( �	�P�
�P� � f � ,��P� � f � ,
�	�

, with
� � C �$�%�J �� E . As

shown in Figure 3, each transition is labeled with the corre-
sponding pair of encoded Bernoulli values. For any trellis
path that actually obeys the distribution � , then, each tran-
sition takes on average � � � � bits to encode; notice that
� � � � � C �&� " E . We adjust

�
to in order to ensure that

� � � � ( " 3 K as desired. Thus, we may meet any desired3 K � C � f � �%� E by adjusting the distribution � , and by find-
ing a path through the trellis that obeys that distribution.

For a fixed distribution � , we use Lagrangian optimiza-
tion to find the optimal trellis path that obeys the distribu-
tion. In particular, we define

4�� ����� to be the distortion of
a given path through the trellis, where we measure the dis-
tortion of the sequence

1' � ( 1� �M* �[1� � �%�U,h1� � � . We define3 � ����� to be the rate required to encode a particular trellis
path according to the model � . For any value of � , then, the
Viterbi algorithm finds the trellis path which minimizes the
quantity

4�� ����� V �$3 � ����� ; individual transitions are simply
penalized by their Lagrangian costs instead of their distor-
tions. We search for the proper value of � such that the
trellis path minimizing

4 � ����� V �23 � ����� also matches the
distribution � . As a result, we have found the path with the
lowest possible distortion that meets 3 � ����� ( 3 K .

4.3. Results

In practice, we use an eight-state Ungerboeck trellis for
each stage. (The number of allowable transitions does not
depend on the number of states). To initialize the two-stage
coder, we assume that

� 1� � � ( �J� � �
. We iterate three times

between the two stages, as the chosen trellis paths seem to
converge rather quickly.

We find optimized trellis paths for several combinations
of 3 I ���[�&� "`� j � and 3 K � C � f�� �%� E ; points on the convex
hull of the resulting curve are shown in Figure 1. We ob-
serve that this practical coder achieves performance compa-
rable to upper bound from the Type 1 scheme, but the Type 2
classification bound exceeds both by a considerable margin.

The optimization of Stage II places the location errors
on occasions when they have the lowest impact on distor-
tion. For the case of 3�I ( �

and 3�K ( � f�� , Figure 4
shows the distribution of the values

��� � �
when

1� �>( � �
and when

1� ���( � �
. As expected, most location errors oc-

cur for small values of
� �

.
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5. Theoretical bounds

The above coding schemes provide us a way of obtain-
ing upper bounds for the optimal rate distortion curve for the
process

� ' ��� . These bounds allow us to compare the rela-
tive performance of the coding strategies. No information
is given, however, regarding their performance when com-
pared to the best coder possible. In this section we attempt
to answer this question.

For discrete source and decoder alphabets and an arbi-
trary distortion measure, the Blahut algorithm [5] allows us
to find the R-D curve with arbitrary precision using a fi-
nite algorithm. For a continuous source, an analogue of the
algorithm also exists, however it is not well suited to im-
plementation on a digital computer. One other possibility is
to use a discrete approximation of the source alphabet and
obtain an upper bound for the R-D curve.

To obtain an upper bound for the R-D curve we consider
a finite partition

���U���
of the source alphabet (in our case the

axes of IR � ), and a finite decoder alphabet
��	P��� �

IR � . The
points in the decoder alphabet should be representative of
IR � , but in practice it suffices to consider points close to the
axis. We define the distortion measure carefully, in order to
get an upper bound: for a symbol ' in the source alphabet
belonging to the partition set

� �
and a symbol

	�

in the

decoder alphabet we define the distortion as the maximum
distortion between a symbol in

� �
and

	�

, that is

	 � ' �
	�
 � (9���������� � ���.,�	�
 ��� . This definition is reasonable as long
as the sets

� �
are bounded. We do not encode symbols in

the unbounded sets, taking into account the extra distortion
introduced by such a practice.

Using this technique we obtain a tight upper bound for
the R-D curve of the process, depicted in Figure 1. We ob-
serve that although the Type 2 bound is very close to this
upper bound there is still some room for improvement (ap-
proximately 0.4dB at the rate 3 ( �

).

6. Conclusion
This paper considers one of the most basic processes

having joint location and magnitude uncertainty. Our R-D
curves demonstrate that the naı̈ve approach of sending loca-
tion losslessly is very close to optimal when coding at high
bitrates, but is far from optimal for low bitrate coding. In-
tuitively, the low bitrate regime presents a conflict between
two obvious observations - a) magnitude is not very useful
without knowing where to put it, and b) location is not very
useful without knowing what value to put there. Our experi-
ments show that intelligent strategies to manage this conflict
can yield significant gains. Each strategy is viewed as an ap-
proach to balancing the coding of two random processes -
one representing location and one representing magnitude.
We first consider coding them independently, while opti-
mizing the allocation of bitrate to each. While this im-
proves on a non-optimal allocation, improved strategies are
based on the observation that the reliability of coding any
given location should depend on the magnitude at that loca-
tion. Thus, the two processes should be coded dependently.
Our analysis of strategies for dependent coding verifies this
claim, and we also demonstrate a practical TCQ-based cod-
ing scheme for dependent coding of the two processes.

Ultimately, we are not certain about how close our
strategies come to the optimal curve

4 G � 3 � . Ongoing work
focuses on deriving a tight lower bound for

4 G � 3 � using
Blahut’s algorithm. In addition, we believe that some in-
sight about more effective coding strategies may be gained
by examining the distribution of the output alphabet ob-
tained from Blahut’s algorithm. Finally, we plan to gener-
alize our results to larger classes of signals, including more
pertinent examples from image compression.
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