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Scattering of waves causes the coherent wave field to be attenuated and dispersed. These phenomena
express the fact that the pulse loses coherence by which incoherent coda energy is created.
First-order scattering theory violates the law of energy conservation and therefore cannot be used
when the wave field is strongly distorted. An approximation is proposed which estimates the
interaction between different scatterers by considering only multiple forward scattering interactions.
Internal of a single scatterer all multiple interactions are maintained. This approximation can only
be valid for the first part of the wave field and sufficiently weak scattering conditions. The
heterogeneous medium can then be described as an effective medium that is a function of the
scatterer density and forward scattering amplitude and the background medium. Simulations of the
multiple scattering process with isotropic scatterers in two dimensions show that the discrepancies
between the exact and approximate solution are small compared to the difference with the
undisturbed wave field, even when the pulse is severely attenuated. Contrary to single scattering
theory multiple scattering maintains the propagation of a stable and localized coherent wave.
Apparently the nonlinear multiple scattering interactions cause a tendency for the coherent wave
field to become insensitive to the specific scatterer distribution. ©1995 Acoustical Society of
America.

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20.Hq, 43.20.Px

INTRODUCTION

Heterogeneity of the constitutive parameters for seismic
or acoustic waves can often be found at every spatial scale,
e.g., in the Earth. Investigating this heterogeneity requires
the understanding of its effect on seismic signals. The main
effect of strong heterogeneity is an effective damping of the
transmitted wave and the creation of incoherent energy
~coda! through scattering.1 Since no actual energy loss
mechanism is needed to explain the damping of the coherent
wave, the transfer of coherent energy to incoherent energy
through scattering can be designated asapparentattenuation.
The damping of the transmitted wave could conceivably be
used to investigate the heterogeneity. The objective of this
article is to make clear which parameters of the heterogene-
ity could, in principle, be extracted from the coherent part of
the wave field. The strategy is to determine the effect of
heterogeneity on the phase as well as the amplitude of the
coherent wave. The forward problem for the coda will not be
discussed.

Many existing theories on wave propagation through in-
homogeneous media use a linear first-order scattering ap-
proximation known as the Born or Rayleigh–Gans approxi-
mation for describing the effect of heterogeneity on the
seismic signal. In this approach thescattered fieldis taken
linearly proportionalwith respect to theperturbations in the
constitutive parameters. For example Snieder2,3 adopted this

linear approach to describe the effect of heterogeneity on the
coherent wave as well as the coda for surface wave record-
ings of earthquakes. With the expressions obtained it was
possible to invert measured data for a model of the lateral
heterogeneity in the Earth’s mantle under Europe and the
Mediterranean.

Linear first-order scattering theory violates the funda-
mental law of energy conservation, hence the Born approxi-
mation cannot be used to analyze the amplitudes of seismic
waves. Especially for high frequencies, when scattering con-
ditions become stronger, attenuation must be described ad-
equately and thereforenonlinear interactionsof thescattered
field with the perturbations in the constitutive parameters
cannot be neglected.

Generally an inhomogeneous medium consists of a con-
figuration of inhomogeneities. For a clear discussion a dis-
tinction should be made between nonlinear scattering inter-
actions internal of a certain~volume! scatterer and nonlinear
scattering interactions between different scatterers. We will
refer to both processes asmultiple scatteringinteraction. The
total response of a scatterer including all multiple scattering
can be given in terms of a scattering operator or scattering
amplitude.4 For a single scatterer the total attenuation and
dispersion of the transmitted waveincluding all multiple
scattering interactions, can be given in terms of the forward
scattering amplitude and the optical theorem states that the
total energy loss due to scattering and absorption can be
related to the imaginary component of the forward scattering
amplitude.

However for a configuration of scatterers the situation is
more complicated. In the classical paper of Foldy5 the mul-
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tiple scattering of a configuration ofisotropic scatterers was
treated by means of a self-consistent approach. The solution
of the multiple scattering problem reduces to solving a large
set of simultaneous linear algebraic equations. Because of
the complexity of this problem and the absence of suffi-
ciently large computers, Foldy resorted to a statistical ap-
proach of the problem. A configuration average was taken of
the self-consistent equations in order to find an equation for
the configurational average of the wave function. The con-
figuration average of the wave function can also be desig-
nated as the mean wave field or the expectation value of the
wave field. To obtain a closed equation for the mean wave
field an approximation must be made for the configurational
average of the external field incident on a certain scatterer.
Foldy was forced to estimate this configurational external
field by the mean total field which would exist at that point if
the scatterer were not there. Later, more sophisticated ap-
proximations were made by Lax6,7 with the postulate of an
effective field or the quasicrystalline approximation~QCA!.
Waterman and Truell8 extended the work of Foldy to aniso-
tropic scatterers and correlations between scatterers. The
main result was a backscattering correction for interactions
between scatterers in terms of the backscattering amplitude.
Similar statistical results were later obtained by means of the
smoothing method.9 Two important difficulties remain in all
these approaches. First, it is the question which relation ex-
ists between the exciting field acting on a scatterer at a point,
and the total field which would exist at that point if the
scatterer were not there. No formal justifications exist for the
postulated approximations. Second, there is the question of
ergodicity; does the configurational average wave correspond
with a certainrealization or measurementof a transmitted
wave for which the attenuation is accomplished by an aver-
aging interference of scattered waves during propagation.
Several papers address the problem of the interpretation of
the configurational averaging procedure. Wu10 has shown
that differences of arrival time of specific realisations of the
wave field lead to a reduced mean field amplitude which
does not correspond with a true damping of the wave field. A
correction for this effect is suggested by Sato11 who first
aligns these arrival times. Although more sophisticated sta-
tistical and computational methods exist such as the Maxwell
Garnett approach,12 the Coupled multipole method13 and
others14,15we will use yet another approach.

In this article we investigate the effect of forward scat-
tering in case of a distribution of scatterers. The optical theo-
rem can be used to describe the energy loss due to multiple
scattering for a single isolated scatterer. For the inhomoge-
neous medium a model of isolated scatterers superposed on a
homogeneous background medium is taken. By adetermin-
istic approach the interference effects of the direct wave with
the multiple scattered waves are evaluated. The interaction
between different scatterers is estimated by using a multiple
forward scattering approximation~MFSA!. This approxima-
tion assumes that mainly interactions between scatterers in
the forward direction contribute to the coherent part of the
signal. For relatively low scatterer densities the main part of
the energy related with backscattering interaction between
scatterers simply arrive too late to contribute to the early part

of the signal. Therefore the effect of backscattering on the
early part of the signal is a higher order effect and shall be
neglected. However,when the path of propagation is suffi-
ciently long, relatively low scatterer densities can result in
large attenuation of the coherent wave. The MFSA takes all
multiple scattering interactions within each scatterer into ac-
count which leads to a specified value of the scattering co-
efficient for each scatterer. For an illustration of the scatter-
ing interactions considered in the MFSA see Fig. 1.

Instead of an equation for the mean field or configura-
tional average an equation is found for the propagation of the
coherent wave. Instead of an averaging over the statistical
ensemble of random scatterers5–8 the contributions of the
scattered waves are integrated over the first Fresnel zone.
Since all scattering contributions in the first Fresnel zone are
by definition in phase the exact position of these scatterers is
of minor importance and the integration over the Fresnel
zone reduces to spatial averaging over the Fresnel zone. The
problems related with the statistic approaches, such as the
determination of the effective incident field, do not arise.
However, because of ignoring backscattering between differ-
ent scatterers, the resulting approximations are only valid for
early times of the signal.

The MFSA suggests the heterogeneous medium to be
described as a dynamic equivalent medium with attenuating,
dispersive, and possibly anisotropic properties. The fact that
the equivalent medium is frequency dependent is emphasized
by designating the medium as dynamic. This equivalent me-
dium is a function of the scatterer density, the forward scat-
tering amplitude of the scatterers and the homogeneous
background medium. In the MFSA the total effect of the
scatterers is a pulse broadening and an effective damping of
the coherent wave. The actual scatterer density used for cal-
culating the MFSA is a weighted average over the Fresnel
zone since scattering interactions related with scatterers out-
side the Fresnel zone arrive too late to contribute to the early
part of the wave field.

FIG. 1. Left: interactions included in the MFSA; forward, multiple forward,
and backscattering inside a scatterer. Right: interactions not included; back-
scattering between scatterers and long delay interactions.
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The resulting expressions for the MFSA are to lowest
order in scatterer density equivalent to statistical results of
Foldy,5 Lax6,7 and Waterman and Truell,8 although the inter-
pretation is different. The MFSA describes the effect on the
early part of thecoherentwave in terms of aspatial integra-
tion over the first Fresnel zone. The statistical approach de-
scribes the effect on themean fieldor configurational aver-
age in terms of theensemble averageof the scatterer density.

With the advent of large computers it is possible to in-
vert the algebraic equations related with the multiple scatter-
ing problem as derived by Foldy5 through the self-consistent
approach. Therefore we are able to compare the MFSA with
exact solutions including all multiple scattering effects. In
fact this method is a simplified version of the coupled mul-
tipole method.13 A comparison of the exact response with
effective wave-number approximations has been done by
Nelson,16 who calculated the absorption coefficient. How-
ever, we emphasize the transient character of the multiple
scattering process for a source pulse. Although our analysis
is in the frequency domain, by neglecting backscattering we
anticipate on its effect in the time domain after numerically
inverting back to the time domain. Since the MFSA is pos-
tulated to be valid for early times of the signal, an adequate
comparison with the exact response should also be made in
the time domain. The exact response is therefore presented
after inverting numerically back to the time domain. Numeri-
cal tests on wave propagation through distributions of isotro-
pic point scatterers reveal that the discrepancies between the
exact seismogram and the MFSA are small for the first part
of the seismogram, compared to the difference with the wave
that has traveled through the homogeneous background me-
dium.

I. THEORY

For sake of simplicity the derivations are shown for two-
dimensional scalar wave fields. The extension to three di-
mensions is straightforward. First, the scattering behavior of
a single isolated scatterer is described. Second, the interac-
tion between scatterers is estimated by a multiple forward
scattering approximation. The total wave field can be sepa-
rated into a wave field that is a solution to the homogeneous
wave equation and a scattered wave field:

C~r !5C0~r !1CS~r !. ~1!

Consider the response of a plane wave in the frequency do-
main with unit amplitude which impinges on a heterogeneity
with bounded domain:

C0~r !5exp~ ik i–r !. ~2!

The vectork defines the direction of propagation and the
wavelength for the homogeneous background medium. We
suppose the medium is instantaneously reacting and there-
fore the velocityc0 is independent of frequency:

uk i u5k05
2p

l
5

v

c0
. ~3!

The scattered wave field in the far field due to the incident
wave field defined in Eq.~2! is given in terms of a scattering
amplitude:4

CS~r ,r 8! 5
k0ur2r8u@1

C0~r ,r 8!1G~0!~r ,r 8!

3A~ks ,k i !C0~r 8!. ~4!

The scattering amplitudeA~ks , k i! is a function of the inci-
dent wave vector and the scattered wave vectorks . For the
two-dimensional scalar wave equation the Green’s function
is given by

G~0!~r ,r 8!52
i

4
H0

~1!~k0ur2r 8u!

>
exp„i ~k0ur2r 8u23p/4!…

4Ap/2Ak0ur2r 8u
, k0ur2r 8u@1.

~5!

The functionH0
~1! is the Hankel function of the first kind of

zeroth order.
Generally the energy loss of the incident wave field

passing the heterogeneity is caused by scattering and absorp-
tion. The total energy loss for unit incident wave field@Eq.
~2!# is called the total cross-sectionVTOT~k i!. The classical
optical theorem states that the total scattering cross section
can be related to the imaginary component of the forward
scattering amplitude. In the case of two dimensions:

VTOT~k i !52
Im A~k i ,k i !

k0
. ~6!

The optical theorem can for example be derived by using a
stationary phase evaluation of the scattering integral in the
far field.17

The description of the attenuation of the transmitted
wave is extended to the case of an assemblage of isolated
scatterers by using the optical theorem. Only scatterers
within the Fresnel zone contribute to the early part of the
transmitted wave field. By definition these scatterers radiate
in phase with the background wave field, which means that
the precise location of the scatterer is of minor importance.
The discrete distribution of the scatterers in the Fresnel zone
can therefore be replaced by a smooth scatterer densityn.
The effect of the assemblage of scatterers is evaluated by
again using a stationary phase approximation and the optical
theorem. The actual stationary phase approximation isnot
valid for distributions of scatterers. This approximation how-
ever is only used to evaluate the contribution of the smooth
scatterer distribution in the Fresnel zone that contributes to
the early part of the wave field.

The amplitude distortion of a plane wave impinging per-
pendicularly on a very thin layer~thicknessd! of scatterers is
determined first. In this layer the interactions between differ-
ent scatterers are ignored. Later multiple interactions are in-
corporated by extending the layer to arbitrary thickness. This
procedure is similar to the method presented by Fermi.18

The definition of the geometric variables is shown in Fig. 2.
The total wave field is calculated in the far field for largex:
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C~x,0!5T~d!exp~ ik0x!

5
k0ur2r8u@1

exp~ ik0x!1E
0

dE
2`

`

nA~ks ,k i !

3G~0!~x;x8,y8!exp~ ik0x8!dy8 dx8. ~7!

In this expressionT~d! is the transmission coefficient for a
layer of thicknessd. The argument of the Green’s function

and also the scattering amplitude in the far field can for large
values ofx be simplified:

ur2r 8u5A~x2x8!21y82→~x2x8!1
y82

2~x2x8!
,

A~ks ,k i !→A~k i ,k i !. ~8!

With this far-field approximation Eq.~7! becomes:

C~x,0!>exp~ ik0x!S 11E
0

dE
2`

` nA~k i ,k i !exp@ i ~k0y82/2~x2x8!23p/4!#

4Ap/2Ak0~x2x8!
dy8 dx8D . ~9!

Equation~9! can be evaluated with the method of stationary
phase19 resulting in

T~d!5S 12 i
nd

2k0
A~k i ,k i ! D . ~10!

Equation ~10! represents the transmission coefficient for a
thin layer. It should be understood that because of the sta-
tionary phase approximation, only the scatterers in the first
Fresnel zone contribute to this expression. A simplified ver-
sion of the invariant imbedding technique20,21 is used to cal-
culate the transmission coefficient of a layer of arbitrary
thickness. The total medium is composed by subsequently
adding thin layers. It is assumed that the scatterer density is
sufficiently small so that multiple backscattering between
different scatterers can be ignored. This approximation is
based on the argument of arrival time of the bulk of back-
scattered energy. Although neglecting backscattering is not
valid in the frequency we anticipate on its effect after inver-
sion to the time domain. The increase of the transmission
coefficient due to adding a thin layer of scatterers is calcu-
lated using Eq.~10!. By doing so, we include multiple for-
ward scattering interactions and neglect backscattering be-
tween different scatterers:

T~D1d!5T~D!T~d!5T~D!S 12 i
nd

2k0
A~k i ,k i ! D .

~11!

Equation~11! is equivalent to the differential equation:

lim
d→0

T~D1d!2T~D!

d
5

]T~D!

]D
52 iT~D!

nA~k i ,k i !

2k0
.

~12!

With the boundary condition that in absence of scatterers the
plane wave is undisturbed@T~0!51#, the solution becomes:

T~D!5expS i E
0

D n

2k0
A~k i ,k i !dj D

5expS 2 i
^nA~k i ,k i !&

2k0
D D . ~13!

As noted earlier, only the scatterers in the first Fresnel zone
contribute to the stationary phase integral in Eq.~9!. The
additional integration overj in the first line of Eq.~13! im-
plies that only the average ofn A~k i ,k i! over the first Fresnel
zone is of relevance for the propagation of the coherent
wave. To obtain the link between the spatially averaged scat-
terer density and the discrete scatterer distribution, the aver-
aged scatterer density can for a given configuration of scat-
terers be estimated with a weighted sum:

^nA~k i ,k i !&5
( jw~r j !A~k i ,k i ! j

*R2w~r !dr
, ~14!

wherew is the positive weighting function and ther j are the
coordinates of the scatterers. The variability of the different
scatterer distributions for different source receiver pairs is
modeled in the MFSA by using the averaging in Eq.~14! for
every individual wave path. In the special case of a homo-
geneous scatterer density a plane wave effectively propa-
gates with a complex wave numberkeff :

keff5k0S 12
nA~k i ,k i !

2k0
2 D . ~15!

To leading order the corresponding velocity is given by
FIG. 2. Explanations of geometrical variables used for calculation of the
transmission coefficient of a thin layer of scatterers.
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ceff>c0S 11
n Re„A~k i ,k i !…

2k0
2 D . ~16!

Bohren and Singham22 have shown that the forward scatter-
ing amplitude is relative insensitive to the shape of the scat-
terer. Assuming the MFSA is a valid approximation, the at-
tenuation and dispersion of the transmitted wave is therefore
relatively insensitive to the shapes of the scatterers. Foldy’s5

result for the effective wave number was@with similar con-
vention for the definition of the scatterer amplitude as in Eq.
~4!#:

keff5k0A12
^nA~k i ,k i !&

k0
2

5k0S 12
^nA~k i ,k i !&

2k0
2 D 1OS ^nA~k i ,k i !&

k0
2 D 2. ~17!

From Eq. ~17! it can be seen that to lowest order in the
scatterer density the effective wave numbers of the MFSA
@Eq. ~15!# and Foldy@Eq. ~17!# are equal. Note that the con-
figurational average scatterer density used by Foldy is in the
MFSA replaced by the average scatterer density over the first
Fresnel zone.

The effective wave number derived by Waterman and
Truell8 is ~again with similar definition of the scatterer am-
plitude!:

keff5AS k022 ^nA~k i ,k i !&
k0
2 D 22S ^nA~k i ,2k i !&

k0
2 D 2

5k0S 12
^nA~k i ,k i !&

2k0
2 D 1OS ^nA~k i ,6k i !&

k0
2 D 2, ~18!

where it is assumed that the backscattering amplitude
A~k i ,2k i! is in the order of the forward scattering amplitude.
This is, in fact, an overestimation ofA~k i ,2k i! because for
scatterers with a finite size, the forward scattering is much
stronger than the backscattering. The effective wave number
@Eq. ~15!# agrees to leading order with the effective wave
number derived in Refs. 5–8, as can be seen in Eqs.~17! and
~18!.

Our postulate is that the effective wave number in the
MFSA is a valid approximation if the relative change of this
wave number is small:

Ukeff2k0
k0

U5 ^n&A~k i ,k i !

2k0
2 !1. ~19!

However, this small correction to the homogeneous wave
number can result inlarge attenuation effects. The amplitude
uTu of the transmitted plane wave and its phase shiftDf are

uTu5expS ^n Im A~k i ,k i !&
2k0

D D ,
~20!

Df52
^n ReA~k i ,k i !&

2k0
D.

Since the effective wave number enters the exponent multi-
plied with the path lengthD the amplitude attenuation and
phase shift are not necessarily small. The MFSA can be ex-
pected to be an approximation only for the early part of the

wave field because then the main part of the backscattering
interactions can be neglected since the multiply backscat-
tered waves simply arrive too late. For small scatterer densi-
ties backscattering interactions can be neglected because its
effect will be of a higher order in the scatterer density. Nu-
merical tests show that, for the later part of the signal, non-
forward scattering is crucial for the correct description of the
multiple scattering process.

Assuming that the MFSA is a reasonable approximation,
the heterogeneous medium can for the coherent wave field be
described as an effective homogeneous replacement medium.
Three main effects of the heterogeneity can be seen. First,
the coherent wave is attenuated because of the requirement
of energy conservation. Second, the corrected wave number
is a function of the forward scattering amplitude, the scat-
terer density, and the homogeneous wave number, all of
which can be frequency dependent. The effective wave num-
ber therefore also describes dispersion of the coherent wave
field. Third, the effective wave number also contains an an-
isotropic component. The cause of anisotropy in the MFSA
description of the effective velocity is twofold. A certain pre-
ferred orientation of the scatterers results in a directionally
dependent forward scattering amplitude and therefore in a
directionally dependent effective wave number. A different
average distance between scatterers results in different
weighted averaged scatterer densities over the zone of sta-
tionary phase and therefore in effective anisotropy. However,
the MFSA does not contain a backscattering correction for
correlations between scatterers.

To get insight in the accuracy of the approximation, the
MFSA is compared with the exact solution for distributions
of isotropic point scatterers.

II. NUMERICAL MODELING OF THE WAVE FIELD FOR
ISOTROPIC SCATTERERS

The validity of the MFSA can only be assessed in case a
comparison can be made with an exact solution. However,
for distributions of a limited number of isotropic point scat-
terers the solution of the multiple scattering process can be
reduced to a linear system of equations by means of the
self-consistent approach as in Foldy.5 For every frequency
component a square matrix with rank equal to the number of
scatterers has to be inverted. For details see the Appendix.

The approach described above is taken for calculating
the response for isotropic point scatterers in two dimensions.
These scatterers radiate equally in every direction and essen-
tially reduce to line scatterers in the three-dimensional world.
The wave field scattered by a single point scatterer at loca-
tion r̄ 8 due to an incident wave fieldC0~r ! is given by

CS~r !5G~0!~r ,r 8!AC0~r 8!. ~21!

The scattering amplitudeA is independent of the scattering
angle. We assume that energy loss of the incident wave is
only due to scattering, anelastic attenuation is not taken into
account. Because of the optical theorem a relation exists be-
tween the real and imaginary component of the scattering
amplitude. The total cross sectionVTOT related with the
imaginary component of the~forward! scattering amplitude
@Eq. ~6!# is equal to the scattering cross-sectionVS , or the
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total energy flow in all directions for unit incident plane
wave:

VTOT52
Im A

k0
,

~22!

VS5E E
]V

uCS~r !u2 d2r5
1

8k0p
E
0

2p

uAu2 du5
uAu2

4k0
,

where Eq.~5! and Eq.~21! have been used. Equating the
total cross section and the scattering cross section leads to

ReA56A2Im A~41Im A!. ~23!

The positive and negative sign correspond with a phase ad-
vance and delay, respectively. Equation~23! imposes a con-
straint on the value of the imaginary component of the scat-
tering amplitude and consequently on the total cross section:

24<Im A<0 or 0<VTOT<4/k0 . ~24!

This means that for the rather idealized isotropic point scat-
terers the strength of a single scatterer is bounded by the
requirement that energy is conserved.

To produce realistic looking seismograms the scattering
amplitude is defined to have a frequency dependence propor-
tional to f 2. This is the frequency dependence usually ob-
tained from single scattering theory.1,2 For high frequencies
the scattering amplitude is in this example defined to be in-
dependent of frequency. Using Eq.~23! the scattering ampli-
tude can be defined in terms of its imaginary part:

Im A5H 2g~ f 4/ f cut
4 !, f< f cut

2g, f> f cut
g,4. ~25!

The imaginary component defines by virtue of Eq.~23!, apart
from the sign, also the real part of the scattering amplitude.

The source spectrum of the incident wave in the numeri-
cal experiment is given by

f̂5
f2 fmin

fmax2 fmin
,

S~ f̂ !5H 1
2„12cos~2p f̂ !…, 0, f̂,1

0, otherwise
. ~26!

Note that Eq.~15! is derived for a plane incoming wave
rather than a point source. However, such a plane geometry
differs from a point source situation predominantly in geo-
metrical spreading. The attenuation and dispersion of the di-
rect wave is caused by phase interference of the incident
wave with the scattered waves. Similar as in Waterman and
Truell8 ~see the Appendix! the transmission coefficient of a
finite layer @Eq. ~13!# is generalized to obtain:

C~D!5G~0!~D!T~D!

>
exp„i ~k0D23p/4!…

4Ap/2Ak0D
expS 2 i

^nA~k i ,k i !&
2k0

D D
5
exp„i ~keffD23p/4!…

4Ap/2Ak0D
. ~27!

The weighting function defined in Eq.~14! must be defined.
We do not claim to present the optimal weighting function
but our postulate is that the actual sensitivity to the scatterer
distribution is weak because all scatterers in the Fresnel zone
radiate in phase. The weighting function will be mainly a
function of the detour of the scattered wave. The detour is
defined as the difference of the scattered path and the direct
path:

Ds~r !5ur2r su1ur r2r u2ur r2r su. ~28!

The coordinates of the source and receiver are denoted asr s
andr r , respectively. The employed weighting function in the
numerical experiment has the following form:

D ŝ5
k0

p/2
Ds~r !,

w~D ŝ!5H 11cos~pD ŝ!, D ŝ,1

0, otherwise
. ~29!

The normalized detourD ŝ defines a cosine tapered weighting
function over the~frequency-dependent! Fresnel zone. The

FIG. 3. Configuration of the source~square!, receivers~triangles!, and scat-
terers~dots!.

TABLE I. Values of parameters used for calculating the MIPS, MFSA,
BORN, and BACK seismograms.

Quantity Value Explanation

c0 4.0 km/s Background velocity
D 1000 km Source/receiver distance
g 2.7 Strength of scatterers
f cut 0.05 Hz Limit frequency dependency

of scatterer amplitude
fmin 0.01 Hz Source frequency band taper
fmax 0.1 Hz Source frequency band taper
N 300 Number of scatterers
dt 2.5 s Sample time
n 1024 Number of samples
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source and receiver act as focal point for the ellipses, that
define the contours of constant value for the weighting func-
tion.

III. ACCURACY OF THE MFSA

For twelve receivers located concentrically around a
single source a comparison was made between the multiple
isotropic point scattering seismograms~MIPS, see the Ap-
pendix! and the multiple forward scattering approximation
~MFSA! relative to the homogeneous background medium
seismogram~BACK!. The MIPS seismograms will be con-
sidered to be the exact response of the medium with the
scatterers. The configuration of the source, receivers, and
scatterers is shown in Fig. 3. The unit distance is a kilometre.
The employed parameters for the background medium,

source and scatterer characteristics are listed in Table I. The
parameters chosen are exemplary for surface waves triggered
by earthquakes traveling in the Earth’s mantle. The scatterer
densities and the related corrections of the wave number in
the experiment are small~at the maximum around 20% for
f cut, which is around the central frequency!.

In the first example the sign of the real part of the scat-
tering amplitude is chosen positive. The wavefront obtains a
phase advance caused by the positive velocity anomalies.
The resulting seismograms for the twelve receivers are
shown in Fig. 4. Although the relative perturbation of the
wave number is small the direct wave is strongly attenuated,
because of the length of the path of propagation. This ex-
ample of multiple scattering is not in the weak scattering
regime; the scattered wave arriving at the tail of the direct

FIG. 4. The multiple isotropic point scattering solution~MIPS, thin solid line!, The multiple forward scattering approximation~MFSA, thick solid line! and
undisturbed wave field~BACK, dotted line!. Scatterers have positive real part of scattering amplitude. The receiver location is indicated by an arrow in the
lower left corner.
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wave ~t.275s.! has a magnitude comparable to the direct
arriving wave field. Note that the amplitude of the direct
wave field shows considerable variability between different
receivers due to variability in the scatterer distributions. This
variability is handled well by the MFSA. The MFSA ac-
counts for this variability because it uses the scatterer density
averaged over the first Fresnel zone for each individual path.
With the configurational average scatterer density of statisti-
cal methods this aspect is more difficult to implement.

The discrepancies between the MFSA and the MIPS
seismograms are small for the early part of seismogram com-
pared to the difference of the MIPS with the undisturbed
~BACK! seismogram. Apparently the inhomogeneous me-
dium behaves like an effective homogeneous medium for the
early or coherent part of the wave field. The scatterer distri-
butions exhibit considerable fluctuation in the scatterer den-

sity. As expected the MFSA does not describe the later part
of the seismogram. In this regime backscattering between
scatterers and wide-angle scattering dominates.

In order to test the accuracy of single scattering and to
investigate whether the strong attenuation is really due to
multiple scattering interactions, the single scattering approxi-
mations~BORN! for the same configuration as in the first
example were calculated, using Eq.~A2! of the Appendix.
The single scattering approximations are denoted as BORN
seismograms because this approximation is intimately re-
lated with the BORN approximation in the sense that the
wave field at the scatterer is estimated by the incident wave
field.

In Fig. 5 the single isotropic scattering seismograms
~BORN! are plotted with thick lines instead of the MFSA.

FIG. 5. The multiple isotropic point scattering solution~MIPS, thin solid line!, The single scatterer approximation~BORN, thick solid line! and undisturbed
wavefield~BACK, dotted line!. The receiver location is indicated by an arrow in the lower left corner. BORN seems to be an unstable approximation.
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Note that the vertical scale in the Figs. 4 and 5 is different.
The MFSA ~Fig. 4! gives a much better estimate than the
BORN seismograms~Fig. 5!. The BORN seismograms are
very unstable or unrealistically sensitive to the specific scat-
terer distribution. The MIPS and the MFSA solution main-
tain the existence of a localized coherent wave. This is not
seen in case of the BORN approximation, because the signal
consists of long reverberations. The paradoxical conclusion
is obtained that by including more complex scattering inter-
actions a more simple wave field results.

Apparently the nonlinear interaction between scatterers
stabilizes the waveform distortion. The MFSA describes this
stabilization effect adequately.

In Fig. 4 the scatterers induce a negative time shift to the
transmitted wave field. When the sign of the real part of the

scattering amplitude in Eq.~23! reverses, the scatterers in-
duce a positive time lag to the scattered wave field. The
resulting positive time shift can clearly be seen in Fig. 6.
Apparently the MFSA is able to handle both the positive and
negative time shifts adequately.

For a number of different configurations the MFSA was
compared to the MIPS seismograms. These configurations
included inhomogeneous distributions as well as different
strengths for the scattering amplitude and dispersive back-
ground media. Similar results were obtained except for very
strong attenuation and also for very low scatterer densities
and strong scatterers. In the first case the effect of back-
scattering becomes important also for the early part of the
wave field. The generalized primary almost disappears. In
the second case a limited number of scatterers in the Fresnel

FIG. 6. The multiple isotropic point scattering solution~MIPS, thin solid line!, The multiple forward scattering approximation~MFSA, thick solid line! and
undisturbed wave field~BACK, dotted line!. Scatterers havenegativereal part of scattering amplitude. The receiver location is indicated by an arrow in the
lower left corner.
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zone do not accomplish the apparent homogeneity that is
needed for the validity of the MFSA.

IV. CONCLUSIONS

A deterministic approximation is presented that accounts
for the attenuation, dispersion, and anisotropy caused by
multiple scattering of the early part of the wave field by
distributions of scatterers. Backscattering between different
scatterers is ignored, therefore this approximation is only
valid for the early or coherent part of the wave field and not
too dense scatterer distributions. The complications related
with a statistical approach namely the closure approxima-
tions or assumptions~e.g., QCA! and the question of ergod-
icity are avoided.

Tests with isotropic point scatterers show that the dis-
crepancies between the exact and the multiple forward scat-
tering approximation seismograms are small compared to the
difference with the seismogram of the undisturbed wave field
for the coherent first arriving wave. Apparently, the inhomo-
geneous medium then approximately behaves like an effec-
tive homogeneous medium. The multiple scattering creates a
tendency of the early part of the wave field to become insen-
sitive to the specific scatterer distribution and to maintain a
localized coherent wave field. This behavior is not seen for
single isotropic point scattering. The variability of the attenu-
ation and dispersion for different receivers is retained in the
MFSA. Therefore a main advantage of this approximation is
its clear interpretation of the scatterer density in terms of a
spatial averaged scatterer density over the Fresnel zone.

The multiple forward scattering approximation neglects
backscattering between different scatterers. The isotropic
point scattering normally overestimate the effect of back-
scattering compared to nonisotropic scatterers, because in
general the finite size of the scatterers leads to an enhanced
forward scattering, the Mie effect.23 We expect the multiple
forward scattering approximation therefore to behave more
accurate for nonisotropic scatterers than for point scatterers,
because the neglected backscattering between scatterers is
usually weaker for scatterers with a finite size.

In the MFSA the corrected effective medium can be de-
scribed by the forward scattering amplitude, the scatterer
density averaged over the first Fresnel zone and the back-
ground medium. Using measurements of attenuation and dis-
persion of the coherent wave field only an estimate of the
spatial average of these parameters over the Fresnel zone can
be obtained. The specific scatterer distribution within the
Fresnel zone cannot be extracted from a single registration of
the coherent part of the wave field. The effective wave num-

ber is only sensitive to the forward scattering amplitude and
thus weakly sensitive to the shape of the scatterers. Only by
combining crossing wave paths or using the incoherent en-
ergy a more detailed description of the spatial distribution of
the scatterers can possibly be obtained.
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APPENDIX: THE SOLUTION OF THE MULTIPLE
SCATTERING PROCESS FOR DISTRIBUTIONS OF
ISOTROPIC POINT SCATTERERS

When the scattering interaction is limited to point scat-
terers, the multiple scattering process can be reduced to a
linear system of equations that can be solved numerically.5

The wave field is described in the frequency domain and is
written as the sum of the direct wave and the scattered field
from the distribution of scatterers

C~r !5C0~r !1(
i51

n

G~0!~r ,r i !AiC~r i !. ~A1!

Replacing the incident wave field at scattereri by the homo-
geneous incident wave field corresponds to the Born ap-
proximation~BORN!:

C~r !5C0~r !1(
i51

n

G~0!~r ,r i !AiC0~r i !. ~A2!

However, the total wave field at each scatterers consist of the
incident wave field plus the scattered wave field radiated
from all other scatterers:

C~r i !5C0~r i !1(
j51
jÞ i

n

G~0!~r i ,r j !AjC~r j !. ~A3!

Define the vectorC by

C5S C~r1!
C~r2!

•••
•••

C~rn!

D ~A4!

and let the matrixM with rank number equal to the number
of scatterers be given by

M5S 21 A2G
~0!~r1 ,r2! ••• ••• AnG

~0!~r1 ,rn!

A1G
~0!~r2 ,r1! 21 ••• ••• •••

••• ••• ••• ••• •••

••• ••• ••• ••• •••

A1G
~0!~rn ,r1! ••• ••• ••• 21

D . ~A5!
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With a corresponding definition of a vectorC0 in Eq. ~A4!,
Eq. ~A3! can then compactly be written as

MC5C0 or C52M21C0 . ~A6!

Numerical methods can be used to calculateC and conse-
quentlyC~r ! from Eq. ~A1!. This solution contains all mul-
tiple isotropic point scatterer interactions and will be denoted
as the multiple isotropic point scattering solution~MIPS!. In
case of the Born approximation, Eq.~A2! is used to calculate
the wave field. Note that the expressions derived in this ap-
pendix are equally valid in any dimension and for any inci-
dent waveC0~r !.
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