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The extraction of the Green’s function by cross correlation of waves recorded at two receivers nowadays
finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give
an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent
inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete
source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the
contribution of all sources in the stationary phase approximation to show that the stationary phase contributions
to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work
constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious
arrival is not canceled and could be misinterpreted to be part of the Green’s function. We give an example of
how spurious arrivals provide information about the medium complementary to that given by the direct and
scattered waves; the spurious waves can thus potentially be used to better constrain the medium.
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I. INTRODUCTION

In recent years the extraction of the Green’s function from
field fluctuations has received considerable attention. This
technique is described in recent tutorials #1,2$, and is in the
seismic community known as seismic interferometry. The
Green’s function can be retrieved by cross correlating the
fields recorded at two receivers. This approach can be used
to extract the impulse response from field fluctuations from
thermal noise exciting elastic waves #3$, from oceanic noise
exciting surface waves #4,5$, from turbulent flow over an
airfoil #6$, from chaotic earthquake signals #7,8$, from indus-
trial noise propagating in the subsurface #9$, or from skeletal
muscle noise #10$. Alternatively, one can use controlled
sources. In this case the advantage of extracting the impulse
response from cross correlation lies in the removal of the
imprint of medium complexity between the sources and the
receivers #11$, or in a more optimal illumination of the target
#12,13$.

Even though the theory of Green’s function extraction is
well developed and numerous applications have been imple-
mented, there are puzzling open questions; this work pre-
sents one of those questions. The Green’s function G can be
extracted by cross-correlating field fluctuations in two loca-
tions rA and rB. In the frequency domain expression !21" of
Ref. #14$ is

% 1
"!r"

#G*!rB,r" ! G!rA,r" − G!rA,r" ! G*!rB,r"$ · n̂dS

= 2i Im„G!rA,rB"… , !1"

where "!r" is the density, n̂ is the normal outward on the
integration surface, and Im denotes the imaginary part. For
sources far from the receivers !r#r!A,B"" the Green’s func-
tion satisfies a radiation boundary condition, so that for a
spherical surface with a normal vector in the radial direction
!G!rA,B ,r"= ikG!rA,B ,r"n̂. Using this radiation boundary
condition, and reciprocity #G!r1 ,r2"=G!r2 ,r1"$ gives, for a
constant wave number k and density on the surface,

% G!rA,r"G*!rB,r"dS = −
"

2ik
#G!rA,rB" − G*!rB,rA"$ .

!2"

Expression !2" is applicable for the case of acoustic waves
treated here. By replacing " /k in the right hand side by
k$2 /m, the analysis is equally applicable to quantum me-
chanics #15$. The superposition of the Green’s function and
its complex conjugate in the right hand side, corresponds, in
the time domain, to the superposition of the causal and
acausal Green’s function. This reflects the well-known fact
that the cross correlation leads to the superposition of the
causal Green’s function and its acausal counterpart !e.g.,
#16,17$". Expression !2" forms the basis for the Green’s func-
tion retrieval from the cross correlation of waves excited by
uncorrelated sources on a closed surface surrounding the ob-
servation points #16$. A similar relation is valid for open
systems where the surface integration needs to be replaced
by an integration over all angles of incidence #18$. Expres-
sion !2" contains a surface integral. The counterpart of this
expression for general linear systems that are not invariant
for time reversal contains a volume integral as well
#15,19,20$.

According to Eq. !2", the Green’s function can be found
by cross correlating the waves excited by sources on a closed
surface. We present in Sec. II a puzzle that suggests that
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unphysical arrivals arise from expression !2". We solve this
puzzle in Sec. III, and illustrate this with a numerical ex-
ample in the subsequent section. This work is not only of
academic interest, we discuss the implications for practical
applications of the Green’s function retrieval in the Conclu-
sion. Details of the employed stationary phase approxima-
tions are shown in the Appendix.

II. PUZZLING APPARENT INCONSISTENCY

We consider the special case of an isolated scatterer as
shown in Fig. 1 with scattering amplitude fk!n̂ , n̂!" for inci-
dent waves with wave number k traveling in the n̂! direction
that are scattered in the n̂ direction. The subsequent analysis
is in the frequency domain, and, because k is constant at a
fixed frequency, we suppress the subscript k in the following.

To introduce the puzzle we consider, for the moment,
scattering by an acoustic sphere with a radius much smaller
than a wavelength, for such a scatterer the phase is indepen-
dent of frequency and of scattering angle #21$. The scattered
waves travel over a time tA from the scatterer to the receiver
at rA and in a time tB from the scatterer to the receiver at rB.
The Green’s function contains a scattered wave that propa-
gates from rA via the scatterer to rB. The arrival time of this
scattered wave is given by the sum tA+ tB. The cross correla-
tion of these scattered waves gives, in the time domain, a
wave arriving at the difference of these arrival times. Note
that this time difference is the same for any source location
r. The correlation of the scattered waves in expression !2"
thus gives a wave arriving at a time tA− tB at which no physi-
cal wave arrives. We call such a wave a spurious arrival.
Since this arrival has the same travel time for all source
positions r it appears that there is no reason why this arrival
vanishes by averaging over all source positions. In the fol-
lowing section we investigate this apparent inconsistency by
a detailed evaluation of the integral in expression !2".

The situation sketched here applies equally well to an
arbitrary scatterer, but in that case the phase of the scattering
amplitude may depend on frequency. In that case the corre-
lation does not give a wave arriving at a constant time tA
− tB, but the cross correlation of the scattered waves still has

a phase that is determined by the phase difference of the
scattered waves rather than by their sum. In the following we
assume a general scatterer that may have a finite extent and
does not need to be either isotropic or weak.

III. STATIONARY PHASE EVALUATION
OF THE INTEGRAL

In our analysis we follow the treatment of van der Hulst
#22$ and assume sources far away !r#rA,B", consistent with
our assumption in Eq. !2". This makes it possible to evaluate
the surface integral with the stationary phase analysis. The
stationary phase approximation is exact in the limit r→%.
The waves excited by a point source at r recorded at loca-
tions rA,B is given by

G!rA,r" = −
"

4&

eik&r−rA&

&r − rA&
−

"

4&

eikr

r
f!r̂A,− r̂"

eikrA

rA
, !3"

G!rB,r" = −
"

4&

eik&r−rB&

&r − rB&
−

"

4&

eikr

r
f!r̂B,− r̂"

eikrB

rB
. !4"

The cross correlation of these fields corresponds, in the fre-
quency domain, to

! G"rA,r#G*"rB,r#dS

=
!2

"4"#2 ! exp$ik"%r − rA% − %r − rB%#&
%r − rA%%r − rB% dS

T1

+
!2

"4"#2 ! exp$ik"%r − rA% − r − rB#&
%r − rA%rrB

f*"r̂B,− r̂#dS

T2

+
!2

"4"#2 ! exp$− ik"%r − rB% − r − rA#&
%r − rB%rrA

f"r̂A,− r̂#dS

T3

+
!2

"4"#2 ! exp$ik"rA − rB#&
r2rArB

f"r̂A,− r̂#f*"r̂B,− r̂#dS

T4 !5"

The term T1 represents the cross terms of the direct waves at
the two receivers, the terms T2 and T3 represent cross terms
of the direct wave and a scattered wave, while the term T4
accounts for the cross term of the scattered waves. Note that
the latter term contains a phase factor exp#ik!rA−rB"$ for
every integration point, hence it is this term that corresponds,
in the time domain, to the spurious arrival discussed in
Sec. II.

We carry out the surface integrals using a system of
spherical coordinates as shown in Fig. 2. Without loss of
generality we use a coordinate system with the scatterer cen-

FIG. 1. The correlation of scattered waves traveling to points rA
and rB and the times tA and tB used in the discussion of the spurious
arrivals.
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tered on the origin and where the points rA and rB are located
in the !x ,z" plane with xB'xA and zB'zA. In this coordinate
system,

rA = rA' sin (A

0

cos (A
(, rB = rB' sin (B

0

cos (B
(, r = 'sin ( cos )

sin ( sin )

cos (
( .

!6"

For sources located far away !r#rA,B", this gives to first
order in rA,B /r,

&r − rA,B& = r − rA,B!cos ) sin ( sin (A,B + cos ( cos (A,B" .

!7"

We use this approximation in the exponents of expression !5"
while we replace &r−rA,B& in the denominators by r. With
these replacements the incoming waves effectively are plane
waves, which make our analysis applicable for the treatment
of the extraction of the Green’s function from incoming
plane waves #18$ as well. The surface integral is related to an
integration over solid angle by the relation dS=r2d*. Mak-
ing these simplifications, expression !5" reduces to

T1 T2

! G"rA,r#G*"rB,r#dS =
!2

"4"#2 ! exp"ikL1#d# +
!2

"4"#2 ! exp"ikL2#
rB

f*"r̂B,− r̂#d# +
!2

"4"#2 ! exp"− ikL3#
rA

f"r̂A,− r̂#d#

T3

+
!2

"4"#2

exp$ik"rA − rB#%
rArB

! f"r̂A,− r̂#f*"r̂B,− r̂#d# ,

T4 !8"

with

L1 = &r − rA& − &r − rB& , !9"

L2 = &r − rA& − r − rB, !10"

L3 = &r − rB& − r − rA. !11"

The integrals in terms T1–T3 have an oscillatory inte-
grand that we analyze using the stationary phase approxima-
tion. The stationary points of the integrals T1–T3 are derived
in the Appendix. The stationary points are located in the
plane of the receivers, the !x ,z" plane for the used coordinate
system, and are sketched in Fig. 3.

The term T1 has two stationary phase points, indicated
with the labels 1A and 1B on opposite ends of the line
through rA and rB. Physically, the stationary phase point 1A

gives a direct wave that propagates to rB and then continues
along a straight path to rA. As shown in the Appendix, the
stationary phase contribution from this point to term T1
gives

T1A = −
i"2

8&k

exp!ik&rB − rA&"
&rB − rA&

=
i"

2k
G0!rA,rB" , !12"

where G0 is the Green’s function of the homogeneous me-
dium in which the scatterer is embedded. The stationary
phase point 1B gives after integration a direct wave that
propagates in the opposite direction; it follows by inter-
changing the indices A and B and taking the complex conju-
gate of the contribution from point 1A as follows:

T1B = −
i"

2k
G0

*!rB,rA" . !13"

r
A

r
B

r

x

z

!

!
A

!
B

FIG. 2. Definition of geometric variables.

r
A

r
B
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1B

2A

2B
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3B

FIG. 3. Stationary points in the surface integral of different
terms.
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The stationary point 2A from term T2 corresponds to the
correlation of a direct wave that propagates to rA with the
scattered wave that arrives at rB. As shown in the Appendix,
the contribution of this stationary phase point gives

T2A =
i"2

8&k

exp#− ik!rA + rB"$
rArB

f*!r̂B,− r̂A" = −
i"

2k
GS

*!rB,rA" .

!14"

This term accounts for the complex conjugate of the scat-
tered wave GS that propagates between the points rB and rA.

The stationary phase point 2B of term T2 gives the corre-
lation between the direct wave arriving from that point at
location rA and a scattered wave that propagates from the
stationary phase point 2B through the scatterer to rB. As
shown in the Appendix, the contribution of this stationary
phase point is given by

T2B = −
i"2

8&k

exp#ik!rA − rB"$
rArB

f*!r̂B, r̂A" . !15"

This term is not a physical arrival because there is no wave
that arrives with a phase given by the length difference rA
−rB. Note that the phase of this term is identical to the phase
of the spurious arrival T4 in Eq. !8".

The contribution of term T3 is due to the stationary points
3A and 3B in Fig. 3 that have the same physical interpreta-
tion as the stationary phase contribution of the points 2A and
2B, respectively, for term T2. Term T3 follows most simply
by interchanging A and B in term T2 and by taking the com-
plex conjugate. It thus follows from expressions !14" and
!15" that

T3 =
i"

2k
GS!rA,rB" +

i"2

8&k

exp#ik!rA − rB"$
rArB

f!r̂A, r̂B" .

!16"

Taking all contributions into account by summing expres-
sions !12"–!16" with term T4 from Eq. !8", and replacing the
integration variable r̂ by −r̂ gives

% G!rA,r"G*!rB,r"dS

= −
"

2ik
#G!rA,rB" − G*!rB,rA"$

+
"2 exp#ik!rA − rB"$

4&krArB
)−

1
2i

#f!r̂A, r̂B" − f*!r̂B, r̂A"$

+
k

4&
% f!r̂A, r̂"f*!r̂B, r̂"d** , !17"

where G=G0+GS is the sum of the direct and scattered
waves.

The last term in expression !17" contains the spurious
event discussed in Sec. II that does not correspond to a
physical arrival. Perhaps surprisingly, there are two terms
within the square brackets that arise from different
stationary-phase arrivals from the different terms in the cross
correlation. For this spurious arrival to cancel, and to make

expression !17" equal to the general relation !2", the terms
within the square brackets must vanish, hence

1
2i

#f!r̂A, r̂B" − f*!r̂B, r̂A"$ =
k

4&
% f!r̂A, r̂"f*!r̂B, r̂"d* .

!18"

This relation is known as the generalized optical theorem
that was derived earlier in quantum mechanics #23–25$ and
in acoustics #26$. This theorem guarantees that the spurious
arrivals in expression !17" cancel.

IV. NUMERICAL EXAMPLE

We illustrate the cancellation of the spurious arrival with a
numerical example based on the spectral-element method.
This is a high-order variational numerical technique #27,28$
that combines the flexibility of the finite-element method
with the accuracy of global pseudospectral techniques.
Widely used in seismology #29,30$, we use the spectral-
element method to simulate wave propagation in an acoustic
model that contains an isolated scatterer.

The numerical example is in two dimensions, but it shows
the same behavior as the theory derived above for three di-
mensions. The background velocity and density of the
1500+1500 m model are 1000 kg /m3 and 1500 m /s, re-
spectively, and a single square scatterer !10+10 m" is lo-
cated in the origin. This scatterer has a velocity of 3000 m /s
and a density of 2000 kg /m3. 720 sources are distributed
evenly on a circle with a radius of 500 m from the center of
the scatterer. The source wavelet is a Ricker wavelet with a
central frequency of 50 Hz. In the spectral-element method,
we use Lagrange polynomials of degree N=4 to interpolate
the wave field in each quadrangular cell; the total number of
spectral elements is 90 601. The time step used in the explicit
integration scheme is ,t=0.1 ms and we propagate the sig-
nal for 0.53 s. The wave field is recorded at two receivers
rA= !900,750" and rB= !750,950". The geometry of the ex-
periment is drawn in Fig. 4, indicating that G!rA ,rB" con-
tains a direct arrival at t+0.17 s, and a scattered event at
+0.23 s.

The top panel of Fig. 5 contains the cross correlations of
the waves recorded at rB with those recorded at rA, for each

(0,0)

Br

rA

(750,750)

(750,900)

(900,750)r=500

(1500,0)

(1500,1500)(0,1500)

FIG. 4. Geometry of the numerical example. The 720 sources
are located on a circle with radius 500 m. The scatterer in the origin
has dimensions 10+10 m and is not shown to scale. All dimensions
are in meters.
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source. The bottom panel displays the sum of the cross cor-
relations over all sources, i.e., it is the vertical sum of the
waves in the top panel. The sinusoidal features in the top
panel are the causal and acausal direct and scattered events
with stationary points around t+ -0.17 s, and t+ -0.23 s,
respectively. For example, the stationary point 1A gives the
causal direct wave arriving at t+0.17 s, while the stationary
point 1B gives the acausal direct wave at t+−0.17 s. Simi-
larly, the stationary points 2A and 3A give the causal and
acausal scattered waves arriving at t+ -0.23 s. Of special
interest is the arrival, marked with the label “4” at a travel
time of about 0.03 s. Note that because of the finite size of
the scatterer the arrival time of this wave is not quite con-
stant, but it is the spurious arrival because it arrives before
the direct wave. This spurious arrival is canceled by the con-
tribution of the stationary points 2B and 3B. Indeed, there is
no spurious arrival in the bottom panel at arrival time 0.03 s.

This numerical example confirms that the spurious arrival
vanishes because of the destructive interference of the wave
with nearly constant arrival time !marked with the label 4"
with two stationary phase contributions 2B and 3B. Note that
in this example we did not specify the scattering amplitude
fk!n̂ , n̂!". Its properties are implicitly accounted for by the
spectral element code.

In Fig. 6 we show the sum !in red" over the sources lo-
cated along the lower half of the circle, and the sum !in blue"
over the sources in the upper half circle. The sources along
the lower half circle show the causal direct wave at t
+0.17 s and the causal scattered wave at t+0.23 s, but not
their acausal counterparts. The reason is that the sources on
the lower half circle only launch direct and scattered waves
that propagate from receiver A to receiver B. The sources
along the upper half circle launch waves in the reverse di-
rection, and give the acausal direct and scattered waves
shown in blue. The spurious arrival is marked with the label
“S.” Both subsets of sources give a nonzero spurious arrival.
The contribution from the sources at the lower half mostly
contribute to the nearly constant-time arrival marked with 4
in Fig. 5, while the sources from the lower half mostly con-

tribute to the stationary phase points 2B and 3B in Fig. 5. As
shown in Fig. 6, each of these contributions is nonzero, but
they do cancel when summed. The abrupt truncation of the
sum over sources leads to additional truncation phases
marked with “T,” that individually are nonzero, but whose
sum vanishes as well. Truncation phases result from the
dominant end-point contributions of oscillatory integrals
#31$, and are a known complication in modeling wave forms
with the reflectivity method #32$. Truncation phases also oc-
curred in field application of the extraction of the Green’s
function from ocean-bottom seismic data #33$. Note that the
arrival time of the truncation phases depends on the em-
ployed sources, while the arrival time of the spurious arrival
is fairly constant for every truncated source distribution.
Also, the truncated phases can be suppressed by suitable ta-
pering of the source strength, but this does not suppress the
spurious arrival.

V. CONCLUSION

This theoretical and numerical treatise of Green’s function
retrieval in the presence of scattering has three implications.
First, the comparison of expressions !2" and !17" shows that
the generalized optical theorem holds. This work thus con-
stitutes an alternative derivation of the generalized optical
theorem, although Heisenberg’s original derivation #23$,
which was based on the unitary of the scattering matrix, is
much simpler.

The second implication of this work is that, as shown in
Fig. 6, for a limited source aperture the spurious arrivals do
not vanish. Elegant proofs show that for a spherical scatterer
in an elastic medium the exact Green’s function can be re-
trieved by cross correlation, provided that incident waves
illuminate the scatterer with equal power from all directions
#34,35$. It has been shown for a homogeneous medium #36$
and for a layered medium #37$ that spurious arrivals arise in
the extracted Green’s function when the source aperture is
limited. In seismic applications and other imaging problems,
such spurious arrivals could be misinterpreted as scatterers or
reflectors that are in reality not present. One should be aware
of these spurious arrivals whenever the source distribution
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FIG. 5. !Color" Top panel: cross correlation of the waves re-
corded at the receivers as a function of time !horizontal axis" and
source number !vertical axis" where the sources are numbered
counterclockwise from the east. The labels at the stationary points
are the same as in Fig. 3. The color bar on the left side in the upper
panel indicates the subsets of sources used in Fig. 6. Bottom panel:
the cross correlations after summation over all sources.
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FIG. 6. !Color" The cross correlations of Fig. 5. Solid !red"
trace: sum over all the sources along the lower half circle. Dashed
!blue" trace: sum over the sources along the upper half circle. The
spurious arrival is marked with the label “S,” while truncation
phases are marked with the label “T.”
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used for the extraction of the Green’s function does not fulfill
theoretical requirements.

Third, it has been shown that both the correlation and
deconvolution of waves recorded at different sensors leads to
a new wave state that satisfies the same wave equation as the
original system, albeit possible with different boundary
and/or initial conditions #38$. As we show in this work, that
wave state is for a limited illumination not necessarily the
true Green’s function, but the spurious arrivals that arise after
cross correlation do carry information about the medium.
Suppose, for example, that one wants to locate a scatterer in
an application of target identification and location. Measur-
ing the scattered waves, as in radar applications, constrains
the distance rA+rB traveled by the scattered wave. This con-
strains the scatterer to be located on an ellipsoid. In the nu-
merical example, the spurious arrival is clearly visible. Such
an arrival can be used to constrain the difference rA−rB,
which constrains the scatterer to be located on a hyperboloid
as well. Combining this complementary information makes it
possible to locate the scatterer with greater accuracy. Corre-
lation techniques applied to fields excited by an uneven
source distribution do not necessarily produce the exact
Green’s function, but the extracted field does satisfy the un-
derlying wave equation, and the spurious waves can glean
information about the medium that is complementary to the
direct and scattered waves.
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APPENDIX: EVALUATION OF THE STATIONARY
PHASE INTEGRALS

This section features details of the various stationary
phase integrations starting with term T1 in Eq. !8". Using the
vectors in expression !6", the length L1 of Eq. !9" is given by

L1 = cos ) sin (!rB sin (B − rA sin (A" + cos (!rB cos (B

− rA sin (A" = !xB − xA"cos ) sin ( + !zB − zA"cos ( .

!A1"

The integration is over the angles ( and ) and the stationary
points are determined by the conditions

!L1

!)
= − !xB − xA"sin ) sin ( = 0, !A2"

!L1

!(
= !xB − xA"cos ) cos ( − !zB − zA"sin ( = 0. !A3"

These expressions determine the angles (s and )s for which
the phase of term T1 is stationary. The first condition gives

sin )s=0, hence the stationary points are located in the !x ,z"
plane.

In the following we treat the stationary point )s=0; the
contribution of the stationary point )s=& follows by com-
plex conjugation. For )s=0, expression !A3" gives

tan (s =
xB − xA

zB − zA
. !A4"

This angle is depicted in Fig. 7 where it can be seen that the
stationary phase point is aligned with the points rA and rB.

Differentiation of expression !A3", and using the geom-
etry of Fig. 7, gives for the second derivative at the station-
ary phase point

!2L1

!(2 = − !xB − xA"sin (s − !zB − zA"cos (s

= − !xB − xA"
xB − xA

&rB − rA&
− !zB − zA"

zB − zA

&rB − rA&

= − &rB − rA& . !A5"

Differentiation of expression !A2" gives at the stationary
point

!2L1

!)2 = − !xB − xA"sin (s. !A6"

For this stationary term, and all other terms, the mixed de-
rivative vanishes at the stationary phase point as follows:

!2L1

!(!)
= 0. !A7"

It follows from the geometry of Fig. 7 that at the stationary
phase point.

L1 = &r − rA& − &r − rB& = &rA − rB& . !A8"

The stationary phase approximation of the ( and ) integra-
tion applied to the term T1 of expression !8" gives #39,31$

r
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r
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r

!
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z
B
! z

A

x
B
! x

A

r
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FIG. 7. Geometric variables for the stationary phase analysis of
term T1A.
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T1A =
"2

!4&"2 exp!ik&rA − rB&"

+!e−i&/4"2, 2&

k&!2L1/!(2&
, 2&

k&!2L1/!)2&
sin (s.

!A9"

The factors exp!−i& /4" arise because the second derivatives
both are negative. The sin (s term comes from the Jacobian
in the angular integration. With expressions !A5" and !A6"
term T1A reduces to

T1A = −
i"2

8&k

exp!ik&rA − rB&"
,&rA − rB&

sin (s

,sin (s&xA − xB&
. !A10"

As shown in Fig. 7, sin (s= !xB−xA" / &rA−rB&. Inserting this
in expression !A10" gives Eq. !12". Term T1B in Eq. !13"
follows by complex conjugation.

Next we treat the contribution of point 2A to term T2 of
expression !8". Using expression !6", the length L2 is given
by

L2 = − rA cos ) sin ( sin (A − rA cos ( sin (A − rB

= − xA cos ) sin ( − zA cos ( − rB. !A11"

The stationary phase condition for the angle ) gives
!L2 /!)=xA sin ) sin (=0, which implies that the stationary
point lies in the !x ,z" plane: sin )s=0. We first analyze the
point )s=0. For this point, the stationary phase condition for
the variable ( is !L2 /!(=−xA cos (+zA sin (=0. This gives
the stationary point

tan (s =
xA

zA
. !A12"

This stationary phase point is sketched in Fig. 8. An analysis
similar as for term T1 shows that at this stationary point L2
=−rA−rB, r̂=−r̂A, !2L2 /!(2=rA, and !2L2 /!)2=xA sin (s.
The stationary phase contribution from point 2A to term T2
of expression !8" thus is given by

T2A =
i"2

8&k

exp#− ik!rA + rB"$
rB

,rA

f*!r̂B,− r̂A"
sin (s

,sin (sxA

.

!A13"

According to Fig. 8, xA=rA sin (s, which leads to expression
!14".

The stationary phase point 2B corresponds to )s=&. The
stationary phase condition for ( is in this case !L2 /!(
=xA cos (+zA sin (=0. This gives the stationary point

tan (s = −
xA

zA
. !A14"

This point is sketched in Fig. 9. Using that (s=&−(A, it
follows that at this stationary point L2=rA−rB, r̂= r̂A,
!2L2 /!(2=−rA, and !L2 /!)2=−xA sin (A. The stationary
phase contribution of this point is thus given by

T2A = −
i"2

8&k

exp#ik!rA − rB"$
rB

,rA

f*!r̂B, r̂A"
sin (A

,sin (sxA

.

!A15"

Using the geometric relation sin (A=xA /rA reduces expres-
sion !A15" to Eq. !15".
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